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Abstract

In the last decade three main ideas have revolutionized the Artificial Intelligence (AI) planning
methods: the plan graph search structure, planning as satisfiability and the search guided by a heuristic
function calculated from a relaxed plan. In this paper we present a new planner, named HPP (Heuristic
Progressive Planner), that has been implemented using several ideas extracted from other heuristic
planners. However, HPP includes a new module (analysis reachability module) that is able to exclude
irrelevant domain-dependent operators for the planning process. The analysis performed by this
module avoids to expand several parts of the search tree allowing to solve more problems. Finally,
the HPP planner has been incorporated into a distributed multi-agent system to allow exploring in
parallel subsets of the search space.

The experimental results show how the HPP planner outperforms FF and state of the art planners
evaluated in the number of problems solved or the number of steps.

1 Introduction

The AI planning community has seen in the last years an important increment of both, the efficiency and
quality of the solutions provided by the available planners. From the GPS [9] to the STRIPS planner [5]
that used a stack of goals and the operators that could achieve them, new contributions has been made
to solve two main problems in AI plannig. On the one hand, how to represent a particular problem, and
on the other hand, how to implement reasoning processes that automatically can solve these problems.

In the knowledge representation for planning, STRIPS has been the more widely used representation, it
has evolved into other richer representations, such as the adl representation [10], or the standard planning
language pddl2.2 [4]. Currently, other approaches that have been used in the planning area is the htn
formalism, ontologies for planning, temporal logic, situational calculus or the propositional logic.

The second main problem in planning, how to implement automatic reasoning techniques, has been
studied through the development of three main ideas: to implement the searching process of the solutions
using a graph-based search structure; through the generation of a set of propositional clauses from the
planning problem that is checked for satisfiability; and finally guiding the searching process using a
heuristic function calculated from a relaxed plan. In the first case we are referring to graphplan [1] and
its descendants, in the second case to sat-based planners [12] and in the third case to the Heuristic Search
Planners (hsp) [2, 8] family.

Despite of these advances, the number of explore nodes by any state of the art planner is still very
high. And one of the reasons is that in the planning process they use a higher number of instantiated
operators and facts than suffice to solve the problem.
For planners based on heuristic search, the main reason for inefficiency is that state space search is not a
very efficient way of traversing big search spaces because states are considered one at a time.



This paper describes HPP (Heuristic Progressive Planner), a FF descendant planner whose main
contribution is the design of an analysis reachability module that is able to exclude some of the operators
that are irrelevants in the planning process. Once these irrelevant operators have been rejected, the search
tree is expanded using an heuristic search planner. HPP has been designed to implement a multi-agent
search module to allow exploring in parallel subsets of the search space.

The paper is structured as follows. Section 2 briefly describes some basic concepts about Heuristic
Search Planners. Section 3 presents the HPP architecture and the algorithms used to improve the efficiency
of the planning process. Section 4 shows several experiments that have been carried out to measure the
behaviour of the HPP planner. Finally, section 5 summarizes the conclusions and future work.

2 Heuristic Search Planners

The Heuristic Search Planners (hsp) transform planning problems into problems of heuristic search by
automatically extracting heuristics functions (h) from the problem, instead of introducing them manu-
ally [2].

Considering a relaxed problem in which all delete lists are ignored, from any state s, the optimal
cost h´(s) for solving the relaxed problem can be shown to be a lower bound on the optimal cost h*(s)
for solving the original problem. As a result, the heuristic function h´(s) can be used as an admissible
heuristic for solving the original problem.

Figure 1 shows the general architecture for a heuristic search planner. This architecture is implemented
by three main modules that can be summarized as follows:

• The Analysis & Processing module is the responsible to analyse and process all the information that
comes from the domain and the initial state of the problem. Usually, a table or a vector is created
with all the possible instantiated operators in the problem. To gain efficiency during the search
process, predicates and variables are codified into numbers.

• The Heuristic Computation module, that computes the cost of applying a determined node in the
search process. Some of the (usual) heuristics that can be used to estimate the cost are:

– To calculate the cost of a set of atoms assuming that subgoals are independent. This heuristic
is called the additive heuristic hadd.

– To combine the cost of atoms by a maximisation operation. This is called the max heuristic,
i.e., replacing sums by maximisation.

– To calculate the number of actions in an explicit solution from a relaxed graphplan algorithm.

• Finally, the Search module, that directly depends on the heuristic computation, uses a search algo-
rithm or a combination of them, according to the objectives that we want to achieve: fast solutions,
solutions with the less number of steps, etc.

Figure 1: HSP general structure.



Most of the research effort in this area has been mainly focused on the Search and Heuristic modules,
specially in the last one. However, in the following section, we will show how the Analysis & Processing
module can be modified to help (and improve) the search process.

3 The Heuristic Progressive Planner: HPP

HPP is a forward heuristic planner that bases its Heuristic module on FF, and includes new modifications
in the Search and Analysis modules with the purpose of decreasing the number of visited nodes. Our
planner includes a new module that is the responsible of reducing the number of operators that can be
used during the search process. Figure 2 shows the different modules that compose the HPP architecture.
The next sections explain each module in detail.

Figure 2: HPP general structure.

3.1 The Reachability Analysis and Analysis & Processing Modules

Previously to the new Reachability Analysis module, HPP like FF and other similar planners, processes
and loads all the information in different classes. To decrease the computing time, the strings are coded by
numbers and keep this information in memory. Then, the static and non-static information is separated.
This step is very important to have the first operators instantiation.

In the second step, the instantiation variables will be bound by the all constant combinations that
the problem can have. We will call this combination A vector, that is, the A vector will contain all the
possible operators instantiation.

For example, if we consider the blocksworld domain (see Figure 3) and the problem of Figure 4, the
number of possible applicable operators in the A vector is 24 (this value is obtained by substituting each
variable in the operators by the objects in the problem). At a first glance, we can see that there are 6
unnecessary combinations, that is, when the instantiated variables in the unstack and stack operators are
equal (i.e. (unstack A A), (unstack B B), etc). But even eliminating these 6 combinations (HPP does it),
the combination is still high (in the solution just 6 operators were needed). Table 1 shows the elements
of this vector.

When the Reachability Analysis module is applied, the HPP planner generates two new sets of instan-
tiated operators that contains less elements than in the A vector. Both vectors will be created using two
well-known relaxed heuristics in order to reduce the number of operators.

Table 1: A Vector for the problem of Figure 4.
pick-up A pick-up B pick-up C putdown A putdown B
putdown C stack A B stack B A stack A C stack C A
stack B C stack C B unstack A B unstack B A unstack A C

unstack C A unstack B C unstack C B - -



Figure 3: The Blocksworld domain coded in PDDL.

Figure 4: A problem in the Blocksworld domain.

The first new vector, B vector, will be generated thanks to a relaxed GRAPHPLAN heuristic, that
it will be also used in the Heuristic module (see Section 3.2) to compute the costs. Each operator is
relaxed by simply eliminating its delete list. The relaxed plan graph is similar to that produced by the
GraphPlan, except that it does not contain any mutual exclusion relations. The fact level is built when
all the applicable operators in a determined level are instantiated. When any operator is selected in the
action level, the goals satisfiability will be checked. If the goals have been achieved, the process stops. All
the operators used in the different action levels will be collected and saved in the B vector. Then, for the
previous example, B vector will contain 14 operators as Table 2 shows. The relaxed plan graph consists
of four fact layers and three action layers as Figure 5 shows.

Table 2: B Vector for the problem of Figure 4.
pick-up A pick-up B pick-up C putdown A putdown B
putdown C stack A B stack B A X stack C A
stack B C stack C B X X X

unstack C A unstack B C unstack C B - -

The second new vector, that we have called C vector, is generated using an additive heuristic hadd as
the one used in HPP for computing the heuristic cost. Considering the subgoal independence under this
heuristic, C vector will contain all the operators that are part of the relaxed plan. For the the blocksworld
example, C vector only contains 9 operators (see Table 3). The relaxed heuristic is shown on Figure 6.

For this simple example it is possible to compare the number of operators that other planners will
generate for the same blocksworld example, the results are shown on Table 4. In this example the



Figure 5: Relaxed Graphplan.

Table 3: C Vector for the problem of Figure 4.
pick-up A pick-up B pick-up C putdown A putdown B
putdown C stack A B X X X
stack B C X X X X

unstack C A X X - -

Figure 6: Additive Heuristic used for the C Vector.

improvement on the plan length (number of steps) and time execution are not very important due to the
simplicity of the problem.

Table 4: N. of operators (A Vector) used by other planners in the blocksworld example.
Planner METRIC-FF FF-SPEED LPG SAPA HSP2.0 ALTALT
N. ops 24 18 18 24 18 24

3.2 The Heuristic Module

The heuristic computation is probably the main problem for any planner that pretends to reduce the
search. This module performs the main differences among most of HSP planners. We can devise a good
search algorithm in the search module that branches more or less branches on the search tree, that analyses
more or less nodes, but it is the distance estimation the main factor that makes that a planner is better
than another.



Why we do believe the estimation is the most important factor? The reason is quite simple: “if the
estimation is closed to the real distance, more branches will be excluded, and then fewer nodes will be
processed. Therefore, less search effort time will be spent”.

For our first HPP version, we have used the same FF Heuristic module [8]. As mentioned before, each
operator is relaxed by simply eliminating its delete list. The relaxed plan graph generated does not contain
any mutual exclusion relations, starting from the initial state to the goals. To generate the relaxed plan,
HPP starts with the goal propositions and selects a no-op or action from next action layer that achieves
it, preferring no-ops over actions. This module stops evaluating actions as soon as it finds an action whose
goal state has a better heuristic value.

3.3 The Search Module

The Search Module in HPP can be considered as a Collaborative Multi-Agent system (see Figure 7) with
agents working in parallel and in a subset of the search space. Each agent will use each of the vectors
generated in the Analysis & Processing module performing the Enforced Hill-Climbing (EHC) algorithm
when looking for a solution.

When any agent finds the solution, it will communicate the success to the rest of the agents, and
immediately it will stop the search process. When any agent has exhausted its search space, it will
communicate the failure to the rest. Therefore, if all the active agents return fail is because the EHC
algorithm for all the agents that were collaborating during the search have pruned the branch or branches
that drove to the solution.

Using the idea of FF to provide completeness to the search module, another agent starts searching
using the A vector but in this case with the Best First Search (BFS) algorithm. Thanks to this algorithm
it is possible to save the list of nodes previously expanded and sorted by the less cost. So if there is a
solution to the problem, this will be found.

Another important difference between FF (and other HSP Search modules) and our approach, is that
it does not have any reference to previous visited nodes. HPP contains information of all the visited nodes
and their costs during the search process. If a node has been previously expanded, HPP will save time in
generating all the previous expanded branches that end in a fail search, with the considerably time and
space improvement (of course this difference will be more obvious in hard problems).

Figure 7: Search Module Architecture.



4 Experiments

In order to compare the behaviour and efficiency of the HPP planner, we have selected three planning
domains from the last IPC, and several well-known planners. For these domains, several features (such
as number of problems solved, number of steps or execution time) have been evaluated. Since HPP is
an heuristic-based planner we have chosen two well-known FF variants: Metric-FF and Speed-FF. HSP
could not be used because it did not supported the domains of the IPC’04 Competition.

To provide a complete experimental evaluation of HPP, other two planners were selected. Both plan-
ners, lpg [6] and SAPA [3] implement a hybrid heuristic parallel technique to implement the search
process. These planners were selected because they are planners that use an heuristic module to estimate
the cost and they were good competitors in the IPC’03 and IPC’04. Other planners as SATPLAN [12]
or SGPlan [13] that were good competitors in the last IPC, have not been chosen because they are not
heuristic search planners and we want to compare our system against similar planners to be fair with the
comparison and test the new module added to the planner. crikey [7], although is a heuristic planner
and incorporates a STP for time reasoning, we have not compared HPP against CRICKEY because HPP
does not yet incorporate this feature.

The main features of these planners can be summarized as follows:

• lpg search strategy uses Temporal Action graphs (TA-graph) and some heuristics to solve incon-
sistencies from the current TA-graph. The evaluation is based on the estimated number of search
steps required to reach a solution (a valid plan), its estimated makespan, and its estimated execution
cost. Given that lpg bases its search in a non-deterministic local search, we have run five times
each problem, and considered the third best solution found. It will be considered the baseline to
compare the results.

• SAPA is a domain-independent heuristic forward chaining planner that can handle durative actions,
metric resource constraints, and deadline goals. It employs a set of distance based heuristics to
control its search. It uses admissible heuristics for objective functions based on makespan and slack
to consider optimisation factors. The heuristics are derived from the relaxed temporal planning graph
structure, which is a generalization of planning graphs to temporal domains. The temporal graph is
built by increasing incrementally the time (makespan value) of the graph.

From the seven domains proposed in the International Planning Competition of 2004 (IPC’04), we
have discarded: UMTS and Settlers. In the UMTS domain the objective is to minimise the time and it is
oriented to optimal planners (HPP is not). The Settle domain was a difficult domain for all the IPC’04
planners so most of them solved very few problems.

From the other five domains, we have just randomly selected three: Pipesworld, the Satellite and the
PSR domain because of the lack of space to show the results in all the domains. The time bound for all
the problems is 150 seconds.

In the Pipesworld domain, we have not considered the complex domain version, that is, with goal
deadlines, because HPP does not support yet the PDDL2.2 version. In this domain the objective is to
control the flow of oil through a pipeline network, using several constraints. Table 5 shows the number of
problems solved by each planner. As it can be seen, HPP solves the fifty problems (100%).

Table 5: Number of problems solved in the pipeline notankage nontemporal domain by each planner.
Planner Metric-FF FF-Speed LPG SAPA HPP

Percentage 72% 98% 50% 12% 100%

Figure 8 shows the results when the planners are compared by the number of steps. HPP finds better
solutions in the 54% of the problems, FF-Speed in the 24%, Metric-FF in the 16% and LPG in the 6%.

From the results shown on Figure 9, we see that HPP finds faster solutions in the 38% of the problems,
Metric-FF in the 44% and FF-Speed in the 18%.

The second domain, Satellite, it was already used in the IPC’03 competition, the goal is to collect
image data with the satellites available in the problem. Table 6 shows the number of problems solved by



Figure 8: Results in the pipesworld domain comparing the number of steps.

Figure 9: Results in the pipesworld domain comparing the execution time.

each planner. HPP solves the higher number of problems, 27 of a total of 36 problems as Metric-FF, then
FF-Speed and LPG and finally, SAPA.

Table 6: Number of problems solved in the satellite domain by each planner.
Planner Metric-FF FF-Speed LPG SAPA HPP

Percentage 75% 72% 72% 61,11% 75%

Figure 10 shows the results when the planners are compared by the number of steps. HPP finds the
better solutions in all the problems solved.

As mentioned before, the time bound given to each planner to solve the problems is 150 seconds. From
the results shown on Figure 11, we see that LPG finds faster solutions in the 66% of the problems, Metric-
FF in the 22% and HPP in the 12%. But it is worth while to mention that in the 50% of the problems
(until problem 19) in all the planners except SAPA, the execution time differs in a few milliseconds.

The last domain is PSR. It consists of a number of lines in an electricity network where the flow of
electricity through the network is given by a transitive closure over the network connections that depends
on the states of the switches and electricity supply devices.

Table 7 shows the number of problems solved by each planner. SAPA is not shown because it does not
solve any problem. HPP solves again the higher number of problems 44 of a total of 50 problems. Then,
Metric-FF, LPG and FF-Speed.



Figure 10: Results in the satellite domain comparing the number of steps.

Figure 11: Results in the satellite domain comparing the execution time.

Table 7: Number of problems solved by each planner in the PSR domain.
Planner Metric-FF FF-Speed LPG HPP

Percentage 86% 26% 54% 88%

The results when the planners are compared by the number of steps in this domain are as follows.
HPP, FF-Seed and Metric-FF find the same number of steps in all the problems solved by them. LPG
presents the worse performance.

Finally, Figure 12 shows the solutions found comparing the execution time.
From the results, we see that Metric-FF finds faster solutions in the 64% of the problems, FF-Speed

in the 18%, LPG in the 10%, and HPP in the 8%. Again, it is worth while to mention that in the 53% of
the problems, in all the planners the execution time differs in a few milliseconds.

Previous experimental results shows both main experimental contribution. On the one hand, HPP is
able to solve more problems than the rest of the considered planners, and on the other hand, HPP is able
to find the best quality solution founded by any other planner.



Figure 12: Execution time in the PSR domain.

5 Conclusions

This paper has presented a new heuristic planer, named HPP. This new fast heuristic planner is able to
solve more and complex problems that its progenitor FF. The only module that heritage exactly as its
father is the Heuristic module. HPP adds a new module called Reachability Analysis in charge of reducing
the number of invalid operators that can be applied in each search step. The module uses the relaxed
GRAPHPLAN of the Heuristic module to this purpose. Another new feature that HPP incorporates in
the search module is the collaborative multi-agent system that explores in parallel subsets of the search
space. HPP also has the capability to remember past situations that can help to discard already failed
visited nodes.

From the experimental results shown in Section 4, HPP outperforms in the parameters measured
(number of problems solved and the quality of the solution measured using the number of steps or plan
length) to all the considered planners in the three selected domains from the IPC 2004 competition.

Currently, HPP has been implemented in C# under the .NET Windows platform. We believe that
the execution time can decrease several magnitude orders under the Linux Operative Systems (note that
the other planners we run under Linux). As soon as the Mono version will be available, we will repeat
these experiments and compare HPP and the other planners. We are sure that we can also outpeform the
execution time if HPP is run under the same conditions.

Finally, in the next future, we want to add other features like time and resource reasoning capabilities
to HPP following the ideas sketched in the IPSS planner [11]. IPSS is a hybrid planner composed of two
systems executing in parallel. The IPSS planner reasoner is a HSP predecessor so we want to substitute
this module by HPP and influence the planner search to prune choices that lead to either temporal or
resource inconsistencies.
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