
Model-Unified Planning and Execution for   

Distr ibuted Autonomous System Control 

Pascal Aschwanden4, Vijay Baskaran4, Sara Bernardini6, Chuck Fry4, Mar ia Moreno5, Nicola 
Muscettola1, Chr is Plaunt3, David Rijsman2, Paul Tompkins4 

 
1Lockheed Martin Advanced Technology Center, Palo Alto, CA 94304 

2Mission Critical Technologies, NASA Ames Research Center, Moffett Field, CA 94035 
3National Aeronautics and Space Administration, NASA Ames Research Center, Moffett Field, CA 94035 

4QSS Group Inc., NASA Ames Research Center, Moffett Field, CA 94035 
5Universidad de Alcala, Madrid, Spain 

6Universita
�

 di Trento, Trento, Italy 
 

{ pascal, bvk, sbernard, cfry, malola, cplaunt, rijsman, pauldt} @email.arc.nasa.gov, nicola.muscettola@lmco.com 
 
 

Abstract 
The Intelligent Distributed Execution Architecture (IDEA) 
is a real-time architecture that exploits artificial intelligence 
planning as the core reasoning engine for interacting 
autonomous agents. Rather than enforcing separate 
deliberation and execution layers, IDEA unifies them under 
a single planning technology. Deliberative and reactive 
planners reason about and act according to a single 
representation of the past, present and future domain state.  
The state obeys the rules dictated by a declarative model of 
all relevant aspects of the domain - the subsystem to be 
controlled, internal control processes of the IDEA agent, 
and interactions with other agents.  We present IDEA 
concepts – modeling, the IDEA core architecture, the 
unification of deliberation and reaction under planning – 
and illustrate its use in a simple example.  Finally, we 
present several real-world applications of IDEA, and 
compare IDEA to other high-level control approaches. 

Introduction  

Autonomous control systems classically subdivide into 
three layers – a functional layer that provides both tight, 
fast control of low level system hardware and raw sensor 
data; a deliberative layer that enables long-range planning 
and scheduling of control actions using a model of system 
behavior in the environment; and a reactive layer that uses 
sensor, timing and event data to synchronize the enactment 
of plans with the often unpredictable timing and behaviors 
of the actual controlled system and nature.   

One complaint of this architecture is that the planning and 
reactive layers are only tenuously connected through 
transmission of a plan – they may use models with 

                                      
Copyright © 2006, American Association for Artificial Intelligence 
(www.aaai.org). All rights reserved. 
 
 

disparate levels of fidelity, plan execution logic may differ 
from the logic that was used to generate the plan, and plan 
translations from the planner representation to that used by 
the executive may necessitate over-simplification or mis-
representation. 

The Intelligent Distributed Execution Architecture (IDEA) 
is a real-time architecture that exploits artificial 
intelligence planning as the core reasoning engine for 
interacting autonomous agents. Rather than enforcing 
separate deliberation and execution layers, IDEA unifies 
them under a single planning technology that operates on a 
single representation of the past, present and future state.  
Furthermore, IDEA unifies the entire domain description – 
the descriptions of the controlled subsystem and internal 
control logic, the coordination of control layers (e.g. how 
to interleave plan execution and deliberation) and 
interactions with other agents - in a single model.  Because 
it unifies deliberation and reaction, IDEA enables 
consistency, coordination, flexibility and sophistication 
that is not possible in classical, three-layer approaches. 

IDEA is also unified under the tenets of real-time control.    
Reactions to events are synchronized to a global clock, and 
must complete within the minimum time quantum for the 
application.   

We refer to IDEA controllers as agents.  Since modeling is 
so central to IDEA agents, we begin by describing IDEA 
models and the IDEA modeling language.  We then 
describe the thin layer of functions and services available 
in all IDEA agents.  Planners are specialized IDEA 
components. We continue by discussing how IDEA adapts 
general AI planning, via the model, to reaction and 
deliberation for specific domains, and how the Reactive 
Planner orchestrates the operation of an agent.  We 
conclude with some examples of IDEA agents fielded in 
complex control tasks, and a brief comparison of IDEA 
with other technologies. 



Domain and Agent Modeling 

At the heart of each IDEA agent is a declarative model 
describing the system under control of the agent and the 
interactions with other agents, collectively known as the 
domain.   

IDEA Domain Descr iptions 
IDEA models are represented in XIDDL (XML IDEA 
Domain Definition Language), an XML encoding of a 
generic domain description language for simultaneous 
constraint-based planning and execution. 

 

An XIDDL domain description consists of three major 
pieces.  First, there is a domain model.  In short, the 
domain model describes the union of all feasible states of 
the domain.  It consists of a declaration of: 

• Objects: (e.g., rovers, heaters, cameras, UAVs, targets, 
planners, paths).  The whole domain is built up from 
compositions of objects about which the planners will 
plan, and with which the agent will interact. 

• Attr ibutes (or “ timelines” ):  Each object has one or more 
“ timelines”  which declare the aspects of that object of 
interest (e.g., a communication subsystem object might 
have attributes describing its current configuration, 
current activity, power state and so on).  Some such 
attributes are used internally, some are controlled by 
external agents, and some are used to control subsystems. 

• Predicates (or “ tokens”):  Attributes of each object can 
only be in one mutually exclusive, parameterized state at 
any given time (e.g., a domain might require that a path 
planning subsystem must either be “ idle” , or that it must 
be “planning”  for a particular request).  Predicates 
describe these states.  Each such predicate consists of a 
name and zero or more parameters of declared types.  
Parameters may be controlled internally (by a planner), 
or externally (by exogenous events). 

• Compatibilities: The constraint “ rules”  by which the 
parallel, mutually exclusive attribute state transitions are 
controlled and monitored. Compatibilities describe the 
temporal relationships between predicates, as well as the 
relationships between predicate parameters, that are 
feasible in the domain. Once a predicate exists, 
compatibilities define the subset of states and parameters 
that could have existed in the past or might exist in the 
future on the same attribute; or that existed in the past, 
exist in the present and might exist in the future on other 
attributes.  Hence, compatibilities describe predicate 
transitions and enforce feasible behavior. Special 
predicate parameters represent the different transition 
configurations that can occur from a given predicate, as 
given by the compatibilities.  Therefore, either planners 
or exogenous events can generate particular transitions 
by setting the value of the parameters.  

Via these mechanisms, domain models enable a rich 
description of natural and controller behaviors and 

interactions during execution. From the perspective of an 
IDEA user, the purpose of the domain model is to 
“program” the agent to respond appropriately in all feasible 
situations.  

The second element of the domain description is the agent 
topology and configuration description, consisting of the 
“ latency”  (the longest acceptable time for the agent to 
provide a reactive response to a situation), a declaration of 
all of the known initial subsystems and their initial state, 
the communications “channels”  between the agents and 
subsystems in the domain, and finally, a declaration of the 
agent’s internal processes. 

The third piece of the domain description is a declaration 
of the planners in the agent.  This declaration controls how 
the various planners interact with each other and with the 
plan database.  In particular, this declaration includes the 
planner scope, e.g. what attributes and predicates each 
planner can see, the horizon over which each will plan, the 
heuristics (i.e., search strategy) each will use, and finally, 
several domain- and planner-specific recoveries and the 
situations in which they apply (e.g. relaxing the future of 
one or more timelines, relaxing the whole database and 
loading a “standby state” , and so on). 

Language Services for  Modelers 
Though the model, agent and planner declarations are 
technically distinct, XIDDL represents them in a consistent 
manner which allows us to leverage standard XML tools to 
provide powerful “compile time”  cross-validation of the 
contents of these elements (e.g., all states declared in the 
initial state must be legal with respect the domain model). 
We also leverage this generic domain description to 
provide support, via translation, for multiple “back end”  
modeling languages.    

Currently, IDEA supports both Domain Description 
Language (DDL) and New Domain Description Language 
(NDDL) back end languages; both generic and back end 
language-specific “semantic checking”  (e.g. legal constant 
names, unique identifiers, missing, unused or conflicting 
definitions, and so on); and automatically generated model 
documentation, including both embedded “documentation 
strings”  supplied by the modeler and a navigable 
representation of the internal relationships between objects, 
attributes, predicates, guards, parameters, and conditional 
subgoals. 

The Satellite Domain: A Simple Example 
In this section, we introduce a simplified version of a real 
application concerning the operation of a satellite. 
Throughout the paper, we will use this case as a running 
example. 

Consider a satellite which orbits the Earth in order to take 
pictures of some interesting targets. The satellite has a 
number of instruments on board and each of them has 
several operating modes. A camera instrument can take a 
picture of an object only if it has been previously calibrated 



and if the satellite points in the direction of the object. The 
satellite has power to operate only one instrument at a 
time. The tasks performed by the satellite and by an 
instrument can succeed or fail; each must generate proper 
messages to acknowledge its results. 

Table 1: Defining Attr ibutes of a Class in XIDDL 

<define_object_class type="dynamic"> 

   <name>Instrument_Class</name> 

   <attr>Satellite_SV</attr> 

   <attr>Mode_SV</attr> 

   <attr>ActionInst_SV</attr> 

</define_object_class> 

<define_object_class type="dynamic"> 

   <name>Satellite_Class</name>   

   <attr>ActionSat_SV</attr> 

   <attr>PowerStatus_SV</attr> 

</define_object_class>    
We intend to analyze how an IDEA agent represents and 
controls this system, starting from the XIDDL model that 
describes it. The domain has two main classes of objects, 
one representing a generic instrument and the other a 
generic satellite. For the satellite, we are interested in two 
aspects: which task it is performing and to which 
instrument it is giving power. So, we define two attribute 
timelines, one for each of these aspects (see Table 1 for the 
corresponding XIDDL). For the instrument class, we want 
to represent which operation it is executing, which mode it 
is using and on which satellite it is located. We define three 
attributes corresponding to those pieces of information. 
Again, see Table 1 for the XIDDL specification. 

Table 2: Defining Predicates of an Attr ibute in XIDDL 

<define_member_values> 

   <object> 

      <class>Instrument_Class</class> 

      <attr>ActionInst_SV</attr> 

   </object> 

   <pred>Calibrate</pred> 

   <pred>TakeImage</pred> 

   <pred>Idle</pred> 

</define_member_values> 

<define_member_values> 

   <object> 

      <class>Satellite_Class</class> 

      <attr>ActionSat_SV</attr> 

   </object> 

   <pred>TurnTo</pred> 

   <pred>Pointing</pred> 

</define_member_values> 
In our model, an instrument can be in one of three mutually 
exclusive states: it can be calibrating, taking a picture or 
idle (in the case when it is not doing either of the other two 
actions). So, we define three predicates for the 
"ActionInst_SV" timeline which represents the possible 
procedures of an instrument as shown in Table 2. Turning 
our attention to the tasks performed by a satellite, we 
define two activities for the "ActionSat_SV" timeline: one 

describes the action of turning to a new direction and one 
specifies the action of pointing at a target (also in Table 2). 

Table 3: Defining Parameters of a Predicate in XIDDL 

<define_procedure> 

   <name>TurnTo</name> 

   <call_args> 

      <arg> 

         <type>DirectionName_Class</type> 

         <name>turnDir</name> 

      </arg> 

   </call_args> 

   <return_status> 

      <type>ReturnResult</type> 

      <name>resultTurn</name> 

      <flag>flagTurn</flag> 

   </return_status>  

</define_procedure> 

Table 4: Defining Compatibilities in XIDDL 

<define_compatibility> 

   <master> 

      <class>Satellite_Class</class> 

      <attr>ActionSat_SV</attr> 

      <pred>TurnTo</pred> 

   </master> 

[...some model omitted...] 

   <subgoals> 

      <or> 

         <arg>resultTurn</arg> 

         <case> 

            <value>OK</value> 

            <meets type="single"> 

               <class>?_object_</class> 

               <attr>ActionSat_SV</attr> 

               <pred>Pointing</pred> 

               <constraint name="eq"> 

                  <arg>pntDir</arg> 

                  <master>turnDir</master> 

               </constraint> 

            </meets> 

         </case> 

         <case> 

            <value>Failed</value> 

            <meets> 

               <class>Satellite_Class</class> 

               <attr>ActionSat_SV</attr> 

               <pred>TurnTo</pred> 

            </meets> 

         </case>   

      </or> 

   </subgoals>   

</define_compatibility> 
 

Now consider how IDEA describes a predicate, taking 
"TurnTo" as an example. We want to model this procedure 
in such a way that the IDEA agent can send the satellite the 
new pointing target and receive a message from the 



satellite representing the feedback of the action, that is, if it 
succeeded or failed. To this end, we use two parameters, a 
<call_args> "turnDir" to represent the information flowing 
from the agent to the external system (the satellite, in this 
case) and a <return_status> "resultTurn" for the 
information flowing in the opposite direction, from the 
satellite to the agent.  Table 3 shows the XIDDL. 

The last part of the model describes the constraints that 
predicates and attributes have to satisfy. Considering again 
the "TurnTo" predicate as an example, we want to define 
the following behavior: if the turning action succeeds, then 
the satellite will switch into the "Pointing" state, where the 
pointing direction is target of the “TurnTo” . Instead, if the 
turning action fails, the satellite has to try again to turn to 
the proper position.  See Table 4 for the XIDDL. 

The specification of the other compatibilities follows this 
pattern and expresses all the temporal and causal 
relationships between predicates in the same attributes and 
between them. 

The Core IDEA Architecture 

All IDEA agents provide a thin layer of core services for 
model management and data storage, and event and data 
transport and response.  Figure 1 illustrates the architecture 
of an IDEA agent.   

Model Management and Data Storage 
As a basis for decision making, IDEA agents maintain a 
database, the Plan Service Layer (PSL) database (see 
Figure 1), which stores and updates the past, present and 
future state of objects in the domain.  The PSL triggers 
state changes for specific object attributes in reaction to 
events that have occurred, updates to parameter values, or 
the passage of time.  It propagates the effects to other 
objects, attributes, predicates or state parameters, as 
necessary, according to the model.   

The PSL provides consistency checking to verify whether 
the state of the agent continues to conform to the model 
compatibilities. The PSL also provides data manipulators 
that create new instances of object classes and new 
predicates on attributes, assign particular values to 
variables in the state, and retract assignments to variables. 
The PSL design does not commit itself to a specific 
technology to provide these services. However, IDEA 
currently utilizes the EUROPA [Jonsson et al. 2004] 
constraint propagation package as the basis for one of the 
PSL instantiations. 

Event and Data Transport and Response 
Internal and external events and data are communicated as 
IDEA messages.  IDEA defines several message types 
symbolizing different types of events and data 
transmission: 

• Star t Message: Signals the start of a predicate state on a 
particular attribute (timeline). 

• Stop Message: Signals the termination of a predicate 
state on a particular attribute. 

• Status Message: Signals the outcome of a particular 
predicate (e.g. the success or failure of a commanded 
activity). 

• Value Message: Signals the transmission of data (e.g. 
readings from a sensor or parameters from another agent) 
associated with a particular predicate. 

The Agent Relay (see Figure 1) is responsible for relaying 
incoming and outgoing messages within an IDEA agent; it 
relays outgoing messages to Communication Relays and 
incoming messages to Reactors, both described below.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Architecture of an IDEA Agent 

Communication Relays (the box at the top of Figure 1) 
transmit data and events to other agents or systems.  In the 
agent configuration in the model, an IDEA user can 
associate a Communication Relay with any attribute type 
or specific attribute instance to enable it to send messages 
to external systems. As events occur on the attribute (e.g. 
the start of a new predicate or the status on its completion), 
the Agent Relay forwards corresponding messages to the 
associated Communication Relay. Communication Relays 
typically do not interpret the content of the message, but 
limit themselves to translating (marshalling) data to the 
representation of the underlying communication 
technology.   

IDEA provides a base Communication Relay class that is 
specialized for different communication protocols, 



including for Carnegie Mellon University’s Inter-Process 
Communication (IPC) and CORBA.  These can be further 
specialized to enable translations into specific external 
system conventions.  For example, two IDEA agents can 
use the built-in IPC Communications Relay to transmit 
events, data and status.  However, to communicate with a 
non-IDEA system (e.g. a spacecraft avionics processor, or 
a robot functional layer), an agent would require a 
specialized Communications Relay to convert IDEA 
messages into commands or remote function calls 
understood by the external system. 

Reactors, unlike Communications Relays, interpret the 
content of messages and react according to the behavior 
specified in the Reactor source code (see their arrangement 
at the bottom of Figure 1). By associating a Reactor with a 
specific predicate or predicates in the domain model, an 
IDEA user can cause it activate under specific 
circumstances defined in the compatibilities. A Reactor is 
either associated with a predicate type on all instances of 
an object class or on a specific object. Messages 
representing events for that predicate type are passed by 
the Agent Relay to the affiliated Reactor. Messages for 
tokens with no explicit token affiliation are sent by the 
Agent Relay to a user-specified default Reactor, typically 
the Reactive Planner, described later. 

The IDEA architecture provides a base Reactor class from 
which applications can define custom Reactor modules, 
with custom behaviors, including full access to the PSL.  
Examples of Reactors include reactive planners, 
deliberative planners, goal loaders and agent shutdown 
reactors.  

Model-Unified Planning and Execution 

IDEA unifies planning and execution by allowing multiple 
planners, operating over different temporal horizons, to 
reason and act on a single representation of the domain 
state history.  Each planner is a Reactor, with access to the 
PSL, whose planning horizon, scope over the database, and 
priority with respect to other Reactors can be customized 
according to the needs of the application.   

At minimum, IDEA agents call on a Reactive Planner (the 
default Reactor) whose priority is higher than all other 
Reactors and whose planning horizon is typically the 
minimum time quantization for the application.  
Optionally, IDEA agents can include other, lower priority 
Reactors, including deliberative planners and goal loaders 
that typically plan over longer horizons.   

In the next section we briefly introduce the EUROPA 
framework, the basis technology for all built-in IDEA 
planners.  The following sections then discuss the specifics 
of the Reactive Planner and two long-horizon planners. 

EUROPA 
EUROPA [Jonsson et al., 2004] is a framework for 
representing and solving constraint satisfaction problems 

(CSPs), with an emphasis on temporal constraint networks.  
EUROPA is descended from HSTS [Muscettola et al. 
1997] and implemented in standard C++. 

All built-in IDEA planners use a straightforward 
chronological backtracking search engine implemented in 
EUROPA.  The same algorithm is used for both 
deliberative (long horizon) and reactive (near-term) 
planning.   

Under constraint satisfaction, all domain state parameters 
(e.g. predicate start times, end times, durations, and 
additional typed parameters) are represented as sets of 
values.  Numerical parameters (integer and real types) are 
represented as intervals. A parameter can freely take any 
value contained in the set or interval.  A key EUROPA 
concept is that constraint propagation, as performed when 
adding new information to the domain state or during 
search, serves only to further restrict these sets.  In the 
context of planning and execution, constraint propagation 
is the method by which time, external events and/or a 
planner (through decisions) narrows the set of possible 
choices for parameters (including those representing start 
times, end times, etc).  When a parameter set collapses to a 
singleton value, it is the only legal value under the given 
circumstances. 

Reactive Planner  
The Reactive Planner is the conduit through which an 
IDEA agent responds to internally and externally-
generated events, data and the passage of time.  As the 
default Reactor, the Reactive Planner receives all incoming 
messages not explicitly modeled to be associated with 
another Reactor.  For each message it receives, the 
Reactive Planner updates the state of the PSL with the 
message content. Using the model compatibilities 
(constraints), it propagates the effects of the update to other 
predicates or parameters.  Further restricting the values of 
predicate parameters may cause the completion or 
termination of some events or activities and the start of 
others.   

A principal role of the Reactive Planner is to maintain 
continuous agent execution – that is, to prevent gaps 
between predicates during state transitions.  The end of a 
predicate can be signaled by a message or can be inferred 
with the passage of time according to the temporal 
constraints imposed by the model.  The Reactive Planner 
makes sure that each attribute has a feasible next predicate 
whenever the current predicate ends. It must solve a 
constraint satisfaction problem (planning) to find the 
successor states that collectively conform to the domain 
model. The horizon of this planning must be extremely 
short to ensure the operation completes within the 
minimum time quantum (see Agent Latency below) of the 
agent – going beyond it could leave a gap between 
predicates in some scenarios. Once it has determined the 
start of a new state or activity, the Reactive Planner must 
signal the event via a message that communicates it to the 
external world.   



As time progresses and messages arrive, the Reactive 
Planner will be invoked over and over again to execute its 
responsibilities. 

Reactive Planning in the Satellite Domain 
Consider again our running example concerning the 
operation of a satellite.  Suppose, for instance, that a 
"TurnTo" predicate is currently under execution. Once the 
activity ends, the Reactive Planner is in charge of deciding 
which token has to be activated next. Just before the 
termination of the activity, the satellite returns a Status 
Message indicating whether the result is “OK”  or “Failed” .  
The Reactive Planner consults the subgoals for the 
“TurnTo”  predicate (see Table 4) in the model.  If the 
“TurnTo”  fails, the Reactive Planner applies the 
corresponding case and will activate another “TurnTo”  
predicate; otherwise it will activate a “Pointing”  predicate. 

Deliberative Planners and Goal Loaders 
IDEA agents may also utilize traditional, deliberative 
planners to create plans that achieve a set of goals, to 
elaborate on existing plans or to load externally-generated 
plans that specify events far into the future. As with the 
Reactive Planner, custom planners are IDEA Reactors. 
They can differ from the Reactive Planner in several 
important ways: 

• Hor izon: Custom planners are often configured to reason 
deliberatively by extending their planning horizons to 
many minimum-time quanta, thereby giving them greater 
influence over future events.   

• Scope: The scope of attributes over which custom 
planners can reason and operate is adjustable.  This 
enables both general planners that create plans over the 
entire domain and focused planners that reason about 
specific aspects of the domain.   

• Pr ior ity: Deliberation often requires more computation 
time than the duration of a reactive cycle. In order to 
maintain reactivity to internal and external events during 
deliberation, custom planners must be given lower  
priority with respect to the Reactive Planner. This allows 
the Reactive Planner to curtail deliberation if events force 
a timely response. 

• Configuration: If desired, a user can custom-configure 
the search heuristics for each custom planner, causing 
potentially very different search behaviors. 

Custom planners are associated with specific predicate 
types in the agent configuration.  By adding horizon and 
scope parameters to these predicates, IDEA users can 
enable an agent to automatically adapt those characteristics 
to the domain state. The invocation of a custom planner 
happens in same way as the initiation of any other state or 
activity – through the action of the Reactive Planner in 
starting the planner’s associated predicate.   

Deliberative planners in IDEA have long horizons and 
solve for new plans or elaborate existing ones. Goals might 
be specified to the agent in the initial state specification, or 

by some other mechanism. Through search, a deliberative 
planner must find a plan that links the current domain state 
to the goals. At each search step, the planner makes a 
decision (e.g. adds a new predicate to an attribute, picks a 
value for a parameter, etc) and commits it to the PSL.  
Occasionally the planner must retract decisions to explore 
other parts of the plan space.  Because the process 
minimally restricts temporal parameters, resulting plans are 
typically temporally flexible, that is, the predicate start and 
end times and durations are defined over time intervals.  
During plan execution, and subject to these intervals, it 
becomes the job of the Reactive Planner to determine 
precisely when a predicate starts and ends. IDEA’s built-in 
deliberative planner allows the Reactive Planner to 
interrupt between each decision.  In this way, an agent can 
continue to react to events even as protracted deliberation 
continues. 

The goal loader is designed to import externally-defined 
goals (a temporally flexible plan) into the PSL. The goal 
loader parses an application-dependent goal representation 
into an intermediate data structure, and then invokes the 
built-in deliberative planner to populate the PSL with the 
new data.  Because the plan is largely or fully specified and 
presumably adheres to the model, the search is far more 
straightforward than for full plan generation. 

Deliberative Planning in the Satellite Domain 
Resuming the satellite example, if the goal is to take a 
picture of a target in an attitude different from the initial 
attitude, a planner could formulate a plan where the 
satellite first turns to the new attitude and, once the satellite 
is pointing in the correct direction, the camera calibration 
occurs and the camera takes a picture.  The start times, end 
times and durations of the predicates in such a plan might 
be flexible; this would give the Reactive Planner the 
freedom to activate and deactivate predicates at the 
appropriate times, based on external events.   

IDEA in Operation 

Having introduced the notion of model-unified planning 
and execution, we now describe how the Reactive Planner 
orchestrates the operation of an IDEA agent.   

Reactive Cycle 
In response to events, the Reactive Planner undertakes a 
number of activities to update the PSL database time, 
events and data, to maintain PSL database consistency, to 
end predicates (according to events and the model) and 
start new ones to ensure continuous execution, and, if 
necessary to recover from database inconsistencies or 
timeouts.  This series of activities is the reactive cycle.  
Table 5 lists all the steps of the reactive cycle.  

The entire reactive cycle must fit within the characteristic 
time of the agent, called the latency. The reactive cycle 
contains three update steps (2, 4 and 7), three 



corresponding optional recovery steps (3, 5 and 8) and a 
communication step (9).  The operations in the update 
steps were introduced in the Reactive Planner section 
above.  The following sections describe the agent latency, 
the conditions under which recoveries are necessary, and 
steps that an agent can take to recover. 

Table 5: The Reactive Cycle 

Step Description 

1 Lock the database such that only the Reactive 
Planner has access. 

2 Update time in the database according to the clock. 

3 If Step 2 causes a database inconsistency, recover 
using the recovery registered for this type of 
inconsistency. 

4 Handle incoming messages, and update the database 
accordingly. 

5 If Step 4 causes a database inconsistency, recover 
using the recovery registered for this type of 
inconsistency. 

6 End predicates if they are controllable and have a 
successor (and additional logic) 

7 Execute a chronological backtracking search to 
determine: 

• the value of variables in the scope of the Reactive 
Planner 

• the next predicate on each remaining attribute 

8 If Step 7 created an inconsistency, or no plan could 
be found, recover using the recovery registered for 
this type of inconsistency. 

9 Communicate newly started executable predicates 
and the values and status corresponding to goal 
tokens that just ended. 

10 Unlock the database such that other planners may 
gain access. 

Agent Latency 
IDEA agents are synchronized to a clock provided by the 
Agent Timing Service.  The latency (

�
) of an execution 

agent is the upper bound on the duration of a reactive 
cycle.  It is also the smallest time unit (sampling rate) with 
which an IDEA agent operates. However, as will be 
described later, we have also implemented experimental 
agents that operate at a sampling resolution that is smaller 
than one latency; such an agent is capable of responding to 
externally triggered events with a sub-latency granularity. 

During execution, the Reactive Planner process sleeps until 
events prompt it to respond.  When an external system 
posts an asynchronous event (such as a status message), or 
an intrinsic state transition is required as per the plan being 
executed, the Reactive Planner Runner schedules a wakeup 
with the Agent Timing Service. The wakeup time marks 
the beginning of a reactive cycle, as listed in Table 5.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Agent Reaction Times at Full- and Sub-
Latency Resolutions 

The significance of latency (and sub-latency) is illustrated 
in Figure 2. Let us consider a simple scenario where an 
asynchronous event (labeled (����) in the figure) is posted by 
an external system at time t1. Let us also assume that the 
domain model is written such that the IDEA agent is 
required to post a command (labeled as ( �� �� )) in response to 
the asynchronous event. As soon as the asynchronous 
event is sensed by the agent, a wakeup is scheduled by the 
Planner Runner (labeled ( �� �� )) for time t2. Let us also 
assume that it takes the agent 

�
/2 time units to process and 

issue the response command.  In the case of an agent with 
a resolution equal to 

�
, the wakeup time is scheduled for 

the next latency grid value. For a sub-latency agent, it is set 
for the next sub-latency grid value. The agent wakes up at 
the scheduled time in both cases and posts a response after 
half a latency. It can be shown that the worst case response 
time is the same for both agents (2 

�
) but on an average, 

the sub-latency agent has a better response time. 

Timeouts and Recovery 
If the Reactive Planner is unable to complete its reactive 
cycle within one latency, the agent flags a “controller 
timeout”  error.  The IDEA framework provides the user 
with modeling hooks to define an appropriate course of 
action to gracefully terminate in the event of a controller 
timeout error. One commonly used approach is for the 
agent to revert to a default set of standby states and then 
take the necessary recovery action. 



Inconsistencies and Recovery 
During execution, events may occasionally be in conflict 
with the past, current or future (predicted or planned) state 
represented in the PSL database.  The plan, expressed as 
the future state, is only a specific instance of all possible 
scenarios that might happen in practice. If a model does 
not properly predict some event, or, under incomplete 
information, if the plan incorrectly assumes the particular 
event will not occur, the occurrence of the event will cause 
an inconsistency in the database.  Events that cause 
inconsistencies include receiving an unexpected response 
from the subsystem being controlled, receiving a response 
at an unexpected time, or not receiving one at all. 

When such unforeseen events take place during execution, 
the Reactive Planner, with the assistance of a deliberative 
planner, must either be able to make the plan consistent, or 
discard it entirely and generate a new one.  The Reactive 
Planner initiates plan repair by freezing (preventing 
removal of) all past state known to be true and removing 
certain constraints on present and future plan state.  Then, 
using a repair strategy encoded in the agent model, a 
deliberative planner can take appropriate steps to restore 
consistency. The actions of the Reactive Planner are often 
enough to enable a deliberative planner to restore 
consistency without explicit recovery actions. In other 
situations, specific subsystem fault recovery steps might be 
needed to resolve the conflict that triggered the fault before 
continuing with the normal course of operation. In still 
other cases, repair actions might discard the current plan 
that is being executed and replace it with one that the 
controlled subsystem can handle in its degraded capacity. 

Recovery is more complicated when an inconsistency 
occurs during a reactive cycle between steps of deliberative 
planning or goal loading.  Recall that the built-in IDEA 
deliberative planner cedes control of the PSL database 
between each decision. Any event will cause the Reactive 
Planner to interrupt the deliberative planner, to insert the 
effects of the event into the PSL, and to check for 
consistency.  If the new events come in conflict with the 
existing partial plan, the Reactive Planner undoes the 
decisions of the deliberative planner or goal loader, assigns 
a failed status to the execution of the planning or goal 
loading predicate, and assigns a new start to the affected 
attributes. 

Applications 

IDEA agents have acted as high-level controllers for a 
number of space- and military-relevant systems.  We 
summarize a few in the following sections. 

K9 
The Collaborative Decision Systems (CDS) project 
demonstrated a wide range of technologies applicable to 
human-robot exploration missions to the surface of the 
moon or Mars [Pedersen et al. 2006]. In this context, the 

K9 robot performed autonomous surveys of multiple pre-
designated rocks, and relayed data back to “astronauts”  in a 
nearby habitat. The K9 Plan Manager and K9 Executive 
were both IDEA agents.   

The K9 Plan Manager received goal targets (rocks) from 
the “astronauts” , and created plans in two stages. First, it 
used a map of known terrain and the locations of target 
tracking acquisition points and goal positions to create a 
minimum-distance network of paths. Then, using a 
EUROPA-based activity planner, considered the path 
network in creating a concurrent activity plan that achieved 
as many of the science measurement goals as possible 
within the allotted time. Plans encompassed navigation, 
target acquisition and tracking, instrument placement and 
image sampling activities.  The Plan Manager sent those 
plans to the K9 Executive.   

 

Figure 3: Gromit (left) and K9 (center ) with an 
“ Astronaut”  in the NASA Ames Marscape 

Sharing a large segment of the domain model with the Plan 
Manager, the Executive loaded the plans into its own PSL 
database, and executed the plans by dispatching commands 
to the K9 functional layer and monitoring progress from 
the system.  The Executive enabled fault responses for 
some commands, and also relayed telemetry and plan 
execution status back to the Plan Manager.  Via the Plan 
Manager and the Executive, “astronauts”  could also 
manually terminate plan execution to re-specify targets on 
the fly. 

Gromit 
Gromit was also part of the CDS project at NASA Ames.  
Its main role was to pre-survey rocky areas for targets 
worthy of later investigation by K9 or astronauts.  Gromit 
pursued a list of position way-points, collected stereo 
panoramic images of specific areas, and built 3D models of 
the areas covered in the images. Gromit could also respond 
to voice commands from space-suited astronauts to go to 
specific locations to collect survey data.  As with the K9 
rover, Gromit implemented an IDEA Executive agent. The 
Gromit Executive called on two focused deliberative 
planners – one for image-taking and another for mobility. 



It received high-level goals from astronauts and both the 
deliberative planners acted on them to produce plans that 
interleaved mobility and image-taking.  Importantly, unlike 
the K9 Executive, the Gromit Executive coordinated the 
robot’s individual functional layer modules.   

The Gromit model decomposes into five distinct parts:  an 
interface to enable immediate commanding by astronauts; 
an interface to planned activities (via a transmitted plan); a 
core logic of the high-level executive that allows it to de-
conflict astronaut voice commands from planned actions, 
and to map high-level commands (astronaut and plan) into 
Gromit functional layer primitives; and the Gromit 
functional layer itself. 

HURT 
The HURT (Heterogeneous Urban RSTA Team) project 
implemented a mixed-initiative (combining human and 
autonomous decision makers) environment consisting of a 
manned command center, humans on the ground, and 
several unmanned autonomous aircraft working in  
coordination for Reconnaissance, Surveillance and Target 
Acquisition  (RSTA).  In this project, IDEA was used as a 
component of the Planning and Execution system (PLEX).  
In this role, the PLEX agent received dynamic notifications 
about what resources it had available to plan with (i.e., 
which aircraft, and the capabilities of each) and a series of 
task requests from the command center for coverage and 
tracking of various dynamic targets. The PLEX agent’s job 
was to coordinate these tasks with respect to the available 
aircraft and their capabilities; motion, geographic location 
of both of the aircraft and targets; temporal constraints; and 
task priorities. 

In this domain, the PLEX Plan Manager generated a plan 
based on the available information, and commanded the 
aircraft to service all of the tasks for which sufficient and 
appropriate resources were available, in priority order.  In 
particular, not all aircraft were appropriate for all types of 
requests. Hence, the planner had to reason with respect to 
several types of resource constraints.  When a new high 
priory task arrived, the Plan Manager generated a new plan 
that took this change into account. 

A recent version of the PLEX Agent was tested in the field 
with four live aircraft.  The most recent version, running at 
a latency of 0.2 seconds, was tested with six aircraft (in 
simulation). 

LITA 
In August-October 2005, an IDEA-based executive 
[Baskaran et al. 2006] was deployed on the Zoe rover in 
the context of the “Limits of Life in the Atacama Desert 
(LITA)”  field campaign, sponsored by the NASA ASTEP 
program. In LITA field experiments, Zoe autonomously 
traversed the desert, and using a suite of science 
instruments, searched for evidence of microscopic life. 

Mission goals were specified on a daily basis by scientists 
working in a remote location (in Pittsburgh, PA), and were 

then uplinked to the rover operating in the Atacama desert 
via satellite. Examples of high level goals are motion to a 
specific location or an area of interest to gather scientific 
data and deployment of a plow to dig a shallow trench to 
collect information about sub-surface elements. Given the 
high level goals, an on-board Mission Planner generated 
suitable courses of actions for the day that the Rover 
Executive then executed. In addition to ensuring that the 
plan generated by the Mission Planner was executed in a 
timely manner, it was the responsibility of the RE to 
coordinate recovery sequences whenever faults were 
triggered. Invariably, the first action the RE had to take in 
the event of a fault was to quickly stop the rover. The RE 
successfully handled recoveries for faults such as 
Navigator, Vehicle Controller and Position Estimator 
process crashes, and navigation related faults (e.g., 
inability to find suitably safe drive arcs). The RE also 
operated in coordination with a Science Planner/Science 
Observer running on-board to facilitate opportunistic 
science (science-on-the-fly). 

 

Figure 4: Zoe Rover  in the Atacama Deser t 

Under the control of the Rover Executive, Zoe traversed a 
cumulative distance of 117 kilometers with a longest 
uninterrupted autonomous operation of about 5 km. The 
cumulative time of operation of the rover under the 
supervision of the RE was 116 hours. The rover 
autonomously recovered from eight different types of 
faults during field operations. 

Related Work 

The Remote Agent (RA) [Muscettola et al. 1998], which 
operated aboard the Deep Space 1 spacecraft, embodied a 
three-layer architecture - Functional, Execution and 
Planning/Scheduling. Each layer called on different 
reasoning technologies and representations, and was 
therefore difficult to integrate and test. Most of the 
traditional autonomous control architectures follow this 



approach, differing in the degree to which one layer 
dominates over the others [Locke 1992, Bonasso et al. 
1997, Borrelly et al. 1998, Estlin et al. 2000]. They all 
share the same disadvantages. 

More recent approaches, such as CLARAty [Volpe et al. 
2001], try to overcome some of the drawbacks of these 
using an architecture with two layers: a functional layer 
and a decision layer. The decision layer integrates planning 
and execution through a tightly-coupled database that 
synchronizes planning and execution data from two 
different representations: one from CASPER [Chien et al, 
2000] (planning) and the one from TDL [Simmons and 
Apfelbaum, 1998] (execution). In contrast, IDEA unifies 
planning and execution under the same modeling and 
planning framework.  

Another two-layer architecture is the model-based 
approach pursued by Williams [Williams et al 2004]. This 
framework consists of a Reactive Model-Based 
Programming Language (RMPL) and an executive (Titan). 
RMPL is a rich language, given in terms of Markov 
Processes that combines ideas from reactive programming 
with probabilistic and constraint-based modeling. The 
language abstracts the state of the functional level so the 
programmer can reason in terms of state variables not 
directly corresponding to observable or controllable states.  
By comparison, in IDEA, models represent the functional 
layer variables directly, alongside the representation of 
internal agent variables and variables of other decision 
agents. Titan generates control sequences to move the 
system from the current state to the desired state and 
diagnoses anomalous situations. It has two main 
components: a deductive controller which estimates the 
most likely current state of the system and generates 
commands to reach the goals, and a control sequencer that 
produces a set of goals relying on the control program and 
the current state estimates. In this way the control system 
design is simplified.  Whereas IDEA provides mechanisms 
for interleaving and controlling deliberative and diagnostic 
processes, it is not clear in the Titan approach how the 
underlying cost of diagnosis/planning can be controlled. 

Conclusion 

Contrary to traditional autonomous control architectures, 
IDEA unifies the technologies, state representation and 
domain modeling for deliberation and execution.  Under 
IDEA, all decision makers are planners, operating over 
different temporal horizons and different breadths of scope. 
They reason about and act upon a single representation of 
the state.  All relevant features of the application domain, 
including the controlled subsystem, control strategies and 
processes, and interactions with other controlling systems, 
are modeled, intermixed and represented equally in the 
domain state. This collective state model defines how 
internal and external stimuli (events, status, data) and the 
passage of time alters the state, including the initiation, 
reconfiguration or termination of control actions.  This 

holistic view of autonomous control enables consistency, 
coordination, flexibility and sophistication that is not 
possible in traditional three-layer architectures. 

IDEA’s reliable operation on several space- and military-
relevant systems attests to its fundamental approach to 
autonomous control, and demonstrates how the IDEA 
architecture can readily be adapted to a wide range of pre-
existing system configurations and requirements. 

References 

[Baskaran et al. 2006] Baskaran, V., Muscetolla, N et al., 
“ Intelligent Rover Execution for Detecting Life in the 
Atacama Desert” , Workshop on Spacecraft Autonomy, 
AAAI Fall Symposium, Washington D.C., October 2006.  

[Bonasso et al., 1997] Bonasso, R. P., Firby, J., Gat, E., 
Kortenkamp, D., Miller, D., Slack, M. “Experiences with 
an Architecture for Intelligent, Reactive Agents,”  Journal 
of Experimental and Theoretical Artificial Intelligence, 9, 
2/3, pp:237—256, 1997. 

[Borrelly et al. 1998] Borrelly, J.  Coste-Manière, E., 
Espiau, B., Kapellos, K., Pissard-Gibollet, R., Simon, D. 
and Turro, N.  1998. “The ORCAD Architecture” . 
International Journal of Robotics Research, 17(4). 

[Estlin et al. 2000] Estlin, T., Rabideau, G., Mutz, D., and 
Chien, S. 2000. “Using Continuous Planning Techniques to 
Coordinate Multiple Rovers” . Elec. Trans. on AI, 4, pp: 
45-57.  

[Jónsson et al., 2000] Jónsson, A., Morris, P., Muscettola, 
N., Rajan, K. and Smith, B. 2000. “Planning in 
Interplanetary Space: Theory and Practice,”  Proceedings of 
the 5th International Conference on AI Planning and 
Scheduling, pp. 177–186.  

[Locke 1992] Locke, C. “Software architecture for hard 
real-time applications: Cyclic executives vs. fixed priority 
executives” . The Journal of Real-Time Systems, 4(1):37—
53, 1992. 

[Muscettola et al. 1998] Muscettola, N., Nayak, P., Pell, 
B., and Williams, B.C. 1998. “Remote Agent: To Boldly 
Go Where No AI System Has Gone Before,”  Artificial 
Intelligence 103(1-2), pp: 5-48.  

[Pedersen et al. 2006] Pedersen, L., Clancey, W., Sierhuis, 
M., Muscettola, N., Smith, D., Lees, D., Rajan, K., 
Ramakrishnan, S., Tompkins, P., Vera, A., Dayton, T., 
“Field Demonstration of Surface Human-Robotic 
Exploration Activity,”  AAAI Spring Symposium, 2006. 

[Volpe  et al. 2001]  Volpe, R.,  Nesnas, I., Estlin, T., 
Mutz, D., Petras, R., Das, H. “The CLARAty Architecture 
for Robotic Autonomy,”  Proceedings of the 2001 IEEE 
Aerospace Conference, Big Sky, MT, 2001.  

[Williams et al 2004] Williams, B., Ingham, M., Chung, S., 
Elliott, P., and Hofbaur, M. 2004. "Model-based 
Programming of Fault-Aware Systems." AI Magazine, 
24(4), pp. 61-75. 


