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Abstract. The paper presents recent work on using robust state-of-the-art AI
Planning and Scheduling (P&S) techniques to provide autonomous capabilities
in a space robotic domain. We have defined a simple robotic scenario, reduced it
to a known scheduling problem which is addressed here with a constraint-based,
resource-driven reasoner. We present an initial experimentation that compares
different meta-heuristic algorithms.

1 Introduction

Our current work is mainly aimed at injecting constraint-based, resource reasoning tech-
niques applied to space robotics, especially for applications in planetary exploration.
Promoting autonomy for future space missions certainly involves enormous benefits
such as by reducing operational costs, enabling opportunistic science, or incrementing
mission quality in terms of safety, science return, reliability and flexibility. Very often,
the implementation of autonomous high-level competences on-board (specially to deep
space missions) becomes essential since real time command dispatching is not possi-
ble due to the astronomic distances involved [7], or to the scarce time windows for
establishing communication.

The following futuristic mission scenario is an hypothetical application example
that aims at illustrating how autonomy could be applied in deep space missions.

Mission Scenario. The complete scenario describes a future ESA deep space mission
where groups of autonomous rovers are in charge of collaborating for transporting
supplies between different martian sites. Typical rover activities include loading, trans-
porting and unloading the supplies, as well as performing basic self-maintenance tasks.
Rovers are able to autonomously synthesize efficient action plans by optimizing energy
management and plan completion time. Furthermore, advanced on-board re-planning
capabilities are necessary in order to hedge against environmental uncertainty (i.e.,
rugged terrain, harsh weather conditions, etc.).

We start our analysis from a simplified version of the previous scenario. In par-
ticular, problem complexity is reduced by considering: (1) a unique robot and (2) a



completely deterministic environment. We refer to this simplified problem formulation
as scheduling a single robot in a job-shop environment. This problem can succinctly be
described as the problem of synchronizing the use of a set of machines to perform a set
of jobs over time. Each job consists of a chain of activities that are to be sequentially
processed on different machines for their entire execution. Each activity entails the pro-
cessing of one item on behalf of machine whose utilization is exclusive for the whole
duration of the activity. Each machine can only process one activity at a time, while
all activity durations are fixed. Additionally, the rover is in charge of transporting the
items among all present machines in order to allow their processing along all the jobs;
at the beginning of the process all the items are kept in an initial storage area, while
at the end all the items will have to be unloaded in a final storage area. Transportation
times between different machines depend upon the traveling distance, and the rover can
simultaneously carry a maximum number of items. The goal is to synthesize a sched-
ule where both machine and rover activities are synchronized towards the successful
execution of all jobs while minimizing total completion time (makespan).

The solution that we propose in this paper is based on the last reported results in
constraint-based P&S techniques, with particular attention to the “Precedence Con-
straint Posting” (PCP) approach as described in [4, 9, 3].

The remainder of the paper is structured as follows: section 2 describes in detail the
problem of scheduling a single robot in a job-shop environment; section 3 introduces
our constraint-based solution method as well as a meta-heuristic strategy for solution
optimization; in section 4 we report performance results on a set of reference benchmark
problems; finally, a conclusions section closes the paper.

2 Problem formulation

In this section we define the tackled problem as well as the constraint-based represen-
tation we use as a reference for problem solving.

Problem description. The problem of scheduling a single robot in a job-shop environ-
ment involves synchronizing the use of a set of machines M = {m1, . . . ,mn} and a rover
R to perform a set of jobs J = {j1, . . . , jn} over time. Each job consists of a set of opera-
tions (or Activities) Aj={l0j , u1j , a1j , l1j , . . . , uij , aij , lij , . . . , unj , anj , lnj , u(n+1)j}
to be sequentially processed, where aij is the activity belonging to Job j performed by
machine µij ∈ M , while uij and lij are, respectively, the Unload and Load activities
that the rover must perform at machine µij . l0j is the Load activity performed by the
rover at the initial storage location, while u(n+1)j is the Unload activity performed by
the rover at the final storage location.

The execution of all the activities is subject to the following constraints:

– Resource availability: each activity aij requires the exclusive use of µij during its
entire execution, i.e., no preemption is allowed. All the activities belonging to the
same job demand distinct machines. The activities uij and lij require the exclusive
use of the rover R.



– Processing time constraints: all activities aij , uij and lij have a fixed processing
time. Both the machines and the rover can perform one operation at a time.

– Transportation time constraints: for each pair < µix, µjy > of machines, the rover
R is in charge of moving all items processed by the machine µix to the machine
µjy . This entails performing a Load activity lix at µix, transporting the item at µjy ,
and finally performing an Unload activity ujy at µjy . The time necessary to travel
from µix to µjy is directly proportional to the traveling distance, and is modeled
in the problem in terms of sequence dependent setup times stij which must be
enforced between each < lix, ujy > activity pair. All setup constraints satisfy the
triangle inequality property, i.e., given three machines µi, µj and µk, the condition
stij ≤ stik + stkj always holds.

Constraint-based problem representation. The solution here proposed considers the
scheduling problem as a special type of a Constraint Satisfaction Problem (CSP) [6].
A general description of a scheduling problem as CSP involves a set of variables with a
limited domain each, and a set of constraints that limits possible combinations. Hence,
a feasible CSP solution is defined as an assignment of domain values to all variables
which is consistent with all imposed constraints. A general CSP solution scheme can
be seen as an iterative procedure that interleaves two main steps in each cycle:

– A “decision making step” where a variable is chosen to be assigned with a specific
domain value. The decision of the assignment to do next could be taken by either
systematically following an exhaustive search technique (such as a simple depth-
first search), or by using more efficient approaches that use variable and value or-
dering heuristics to guide the search process. Typical general purpose heuristics
generate variable and value orderings by selecting the “most constrained variable
(MCV)” and the “least constraining value (LCV)” respectively.

– A “propagation step” where a set of “inference rules” prune unfeasible solutions
in advance, by removing elements from variable domains when a decision step
is performed. Path consistency algorithms such as “all pairs shortest paths” are
typically used.

New problem modelling assumptions are considered in order to adapt the initial
problem formulation to our constraint-based solution scheme. Hence, the problem is
described now as follows (see figure 1): each machine µij is considered as a binary re-
source that process all job operations aij . The Unload and Load activities are devised to
be performed by a single robotic arm able to manage one item at a time (also modelled
as a binary resource). We introduce an additional kind of activity cij that requires the
use of a new cumulative resource to be processed by the rover, with the aim of mod-
elling the rover capability of simultaneously carrying multiple items. The execution of
cij activities starts when the corresponding Load activity lij starts, and finishes at the
termination of the Unload activity ui+1j .

Related work. Research in CSP-based scheduling has been mainly focused on the de-
velopment of effective heuristic-biased models for efficiently controlling the scheduling



Fig. 1: A cumulative resource is introduced to model the multi-capacity robot usage.

search process (without incurring in the overload of a backtracking search). Two differ-
ent directions can be mainly distinguished to cope with problems which involve both
unary and cumulative or multi-capacity resources respectively. In the first case, some
initial heuristic-biased procedures implement deterministic and one-pass solutions such
as the precedence constraint posting algorithm proposed by [4]. In the second case, we
can mention the resource profile-driven algorithm ESTA [3] as an efficient contraint-
based scheduling technique that additionally addresses cumulative resources.

3 The profile-based solution (extended-ESTA)

Since cumulative resources are needed to model the multi-capacity robot usage, we
have chosen the ESTA algorithm [3] as reference constraint-based solving procedure
to implement our solution. Furthermore, we have studied and adapted the basic prin-
ciples of a recent extension of the SP-PCP (Shortest Path-based Precedence Constraint
Posting) algorithm proposed in [8]. More concretely we have adopted the new set of
dominance conditions introduced in [8] as a set of four basic rules to decide the conflict
resolution strategy by considering sequence-dependent setup times.

3.1 Adapting PCP to our robot scheduling problem

ESTA was initially developed for solving the scheduling problem known in OR litera-
ture as (RCPSP/max) [2]. It follows an advance precedence constraint posting schema
that uses two different abstraction levels of the CSP formulation (i.e., the robot schedul-
ing problem represented as a temporal constraint network) to deal with temporal and



resource aspects of the problem respectively. Thus, ESTA algorithm basically consists
on iteratively interleaving the two following steps until a conflict-free schedule is found:

– Temporal analysis. Corresponds to the first step of the algorithm and consist on
creating a basic temporal network (ground-CSP) to represent and reason about the
temporal constraints of the problem. Thus, temporal constraint network described
here corresponds to a Simple Temporal Problem (STP) formulation where time
points represent start and end times of activities, and temporal constraints between
time points represent both the duration of the activity and the precedence relations
between pairs of activities. Temporal propagation (for computing current bounds
for all time points after posting a new temporal precedence constraint) and solution
extraction1, are operations directly performed over this STP formulation.

– Resource analysis. Roughly speaking, the second step of ESTA basically consist on
the following sequence: firstly, a meta-CSP representation is created by identifying
a set of capacity violations inferred from previous ground-CSP, where variables
correspond to the remaining resource conflicts and values to the set of feasible ac-
tivity orderings to solve them; secondly, a resource conflict is selected by applying
a variable ordering heuristic; and finally, selected conflict is solved by using a value
ordering heuristic that imposes a new precedence constraint (over the ground-CSP)
between some pair of competing activities that contributes to the conflict.

In other words, ESTA algorithm implements a (one-pass) greedy resource-driven
scheduler that uses an earliest start-time resource profile projection (ground-CSP) to
later perform a resource analysis and iteratively select and level “resource contention
peaks” (i.e., over-commitments). More concretely, resource analysis consist on syn-
thesizing the meta-CSP by computing (sampling) the Minimal Critical Sets (MCSs),
i.e., sets of activities that overlaps in time and demand same resource causing over-
commitments, such that whatever subset does not cause a resource conflict (see fig-
ure 2).

Fig. 2: Meta-CSP generation example (MCSs
computation).

The search strategy for selecting and solv-
ing resource contention peaks is biased by
the following variable and value ordering
heuristics:

– Once the decision variables are com-
puted (candidate MCSs), a most con-
strained variable ordering heuristic
chooses the MCS with the small-
est temporal flexibility (free temporal
space).

– Conflict resolution is performed by
a least constrained value ordering
heuristic that levels the contention peak by posting a simple precedence constraint

1 Solution extraction provides a conflict-free schedule in the form of Earliest Start Schedule
(ESS): a consistent temporal assignment of all time points with their lower bound values that
is also resource consistent.



Algorithm 1: Conflict selection and resolution process.

Conflict← SelectConflict (MetaCSP)
Precedence← SelectPrecedence (Conflict)
GroundCSP← PostConstraint (GroundCSP, Precedence)

between two activities that belong to the related MCS according to the follow-
ing criteria: the greater the flexibility is retained after posting a precedence order-
ing constraint, the more desirable it is to post that constraint. This kind of search
heuristics that use the temporal flexibility retained between each pair of activities to
bias the variable and value selection decisions are typically known as slack-based
heuristics [11].

Algorithm 1 depicts in detail the basic steps corresponding to the conflict resolution
process previously explained: within the first step, a collection of candidate MCSs is
computed; the second step selects the most constrained MCS and the ordering choice
to solve it; last step imposes the new leveling constraint within the ground CSP.

Some enhancements have been introduced to basic ESTA algorithm in order to ex-
tend it to specificities of the robot scheduling problem. Let us recall that two types of
resources are managed in this case: on one hand, binary resources are used to model the
machines and the robot usage; and on the other hand, a cumulative resource is used to
model the robot multi-capacity aspect. We essentially introduce the following modifica-
tions: the SelectPrecedence() and PostConstraint() functions that imple-
ment the variable and value ordering decisions are able to detect different types of re-
source contention peaks and impose the corresponding (simple or setup time-bounded)
precedence constraint. More concretely, the profile projection analysis now synthesizes
two different sets of MCSs separately:

– First MCS set correspond to the resource profiles of the machines and robot multi-
capacity usage, and it is synthesized in the same way than the original ESTA does.

– Second MCS set is the result of the contention peaks analysis performed over the
robot usage resource. In this case, setup times associated to load/unload activities
are also taken into account by introducing the underlying rationale of the extended
dominance conditions: distances between each pair of activities are analysed such
that a conflict is found if the separation between them is less than the corresponding
setup time.

Figure 3 illustrates the different kind of activities related to both binary and cumu-
lative resources as well as some precedence constraints between them.

Once both sets of candidate MCSs are computed, they are merged to select the most
constrained MCS. Similarly, the solution of the conflict consists in imposing a “simple
precedence constraint” if the selected pair of activities belonged to the first MCS set,
or a “precedence constraint with a setup time” otherwise with the following exception:
if a “crossed conflict situation” is solved (see figure 4), a specific profile projection
analysis is performed with the aim of avoiding possible dead-ends. If the cumulative-
related activity attached to the target activity constrained by the new ordering is involved
in a peak, the opposite precedence ordering constraint is imposed.



Fig. 3: Some examples of simple precedence constraints (SPC) and precedence constraints with
setup times (ST).

Fig. 4: The possible crossed orderings that may lead to a dead-end.

3.2 Providing better solutions

Since the previous one-pass, greedy solution does not guarantee optimality, we used an
efficient optimization framework (in contrast to the costly backtracking-based schemes)
with the aim of providing better results. We adopted the advanced IFLAT [10] iterative
sampling optimization schema that allows us to find lower solution’s makespan and
overcome situations where unsolved conflicts are encountered. The underlying idea is
to iteratively run the extended-ESTA algorithm such that different paths are randomly
explored within the search space, by using a “meta-heuristic [1] strategy” to bias the
process.

The algorithm 2 illustrates the IFLAT process. The procedure takes two parameters
as input: an initial solution S and the amount of backtracking (MaxFail) that delimits
the number of failed attempts at improving the solution. The exploration of different
solutions is broaden by a meta-heuristic strategy that basically interleaves the follow-
ing two steps on each cycle: firstly, a retraction step removes an arbitrary number of
solving constraints (with a specific retracting probability) from the “critical path” of
the last solution; and secondly, a flattening step attempts at repairing the “partially de-
stroyed solution” by running extended-ESTA with it. If a better makespan solution is
found, the best solution (Sbest) is updated and the counter is reset to 0. Otherwise, if no
improvements have been found within the MaxFail iterations, the algorithm returns the
best solution encountered.

4 Preliminary Results Analysis

In this section we provide a first evaluation of the efficiency of both the determinis-
tic extended-ESTA algorithm, and the iterative sampling framework for solution opti-
mization. The test input data was obtained from previous work of [5] which aimed at



Algorithm 2: IFLAT optimization algorithm
Input: S, MaxFail
Output: Sbest

Sbest← S
counter← 0
while (counter ≤ MaxFail) do

// Retracting step
RELAX (S)
// Repairing step
FLATTEN (S)
if (Mk (S)<Mk (Sbest)) then

Sbest← S
counter← 0

else
counter← counter + 1

providing robust and efficient solutions for a large variety of scheduling problems. In
particular we are interested in the “trolley problem” instances [12], as a well studied
problem in OR that essentially contains the same elements than our robot scheduling
problem2.

The considered benchmarks consist on problems of size n x m, where n is the num-
ber of jobs and m corresponds to the number of machines. The number of operations
or activities per job is equal to the number of machines. We used two different sets
of solvable instances of size 10x5 where the capacity of the robot is 2 and 3 respec-
tively. The equivalent benchmark sizes on our model is given by the following formula:
n · (m + (m + 1) · 2 + (m + 1) + 1). Hence, the real size of the scheduled problem
instances is 10x24.

We implemented the solving procedures under evaluation in Java and were tested
them on a PC with 3Gb of RAM and an AMD Athlon(tm) XP 2400+ of CPU.

Table 1 shows the performance results of the tests corresponding to the determin-
istic extended-ESTA and solution optimization framework. The metrics provided are
the makespan, the completion time, and the number of attempts that IFLAT performs
during an estimated time of v1800 seconds. Additionally, it shows the comparative
performance value ∆LWU%3 (the standard baseline performance metric used in the
OR literature), as well as the completion time and the number of the IFLAT attempts in
average. The general settings used for the IFLAT tests are the following: the maximum
number of the relaxations and the removal probability are respectively set to 4 and 0.2,
and the randomization factor is set to 0.2.

2 Unfortunately, the results described in [5] are not available any more, hence we offer a com-
parison completely internal to our own work.

3 Due to the lack of detailed results, the comparative analysis is performed against an estimated
lower bound that corresponds to the length of the longest job.



Extended-ESTA IFLAT

Cap = 2 Cap = 3 Cap = 2 Cap = 3

Benchmark MK CPUs MK CPUs MK CPUs #Iter MK CPUs #Iter

Robot test (1) 2696 171.25 2680 199.92 2644 2330.65 31 2560 2035.86 22

Robot test (2) 2817 163.60 2339 185.77 2528 1992.36 31 2566 2123.15 27

Robot test (3) 2925 162.55 2660 173.86 2671 2131.64 24 2609 2172.49 26

Robot test (4) 2962 164.55 2656 215.49 2737 2502.52 25 2591 2334.52 27

Robot test (5) – – 2633 191.38 2780 3277.77 23 2384 2035.11 29

Robot test (6) – – 2428 186.77 2512 2366.13 36 2213 2240.06 25

Robot test (7) – – 2492 263.63 2584 2175.12 25 2721 2011.04 24

Robot test (8) 2652 174.92 2916 251.74 2877 2062.49 26 2474 2054.08 27

Robot test (9) 2509 173.63 2307 257.82 2291 2089.43 29 2093 2176.26 27

Robot test (10) 2750 172.36 2463 235.48 2437 2208.64 28 2346 2097.10 28

Robot test (11) – – 3272 253.21 3247 2816.75 21 2874 2052.16 26

Robot test (12) 3279 125.99 3380 234.37 3343 2636.52 29 3212 2243.99 27

Robot test (13) 3580 170.30 3179 224.38 3034 1991.38 27 2587 2333.39 28

Robot test (14) 3064 175.98 3134 223.52 2613 3045.66 25 2558 2211.21 24

Robot test (15) 2623 164.68 2991 220.45 2609 2457.38 28 2635 2008.09 27

Robot test (16) 2900 179.57 2890 232.56 2705 2603.94 30 2493 2028.71 29

Robot test (17) – – 3202 241.86 3071 2206.43 24 2858 2133.43 26

Robot test (18) 3382 216.13 3130 243.87 2739 2200.67 29 2792 2402.53 28

Robot test (19) 3461 171.28 3071 229.53 2956 2696.34 32 2893 2140.92 28

Robot test (20) – – 2889 224.75 2573 2195.64 32 2521 2036.93 29

∆LWU% CPUavs ∆LWU% CPUavs ∆LWU% CPUavs #Iterav ∆LWU% CPUavs #Iterav

307.21 170.49 288.60 224.52 276.53 2399.36 27.75 256.17 2128.55 26.70

Table 1: Preliminary experimental results.

From previous results we can mainly extract the following conclusions: the makespan of
the solutions is significantly improved, in average, with the IFLAT optimization frame-
work on both instance sets. Furthermore, we can see that the number of solutions found
is larger (all instances are solved) with IFLAT. Solution’s makespans are also improved
if we compare the results of both instance sets each other corresponding to the one-
pass experiments. On the contrary, the computation time was increased since this is the
price to pay in expenses of getting better quality results. It is worth saying that we are
actually studying different ways to enhance the one-pass extended-ESTA solution such
that by improving the performance of the profile analysis performed when a crossed
constraint is found. This would allow us not only getting better completion times, but
also increasing the possibility of optimizing the solution quality with IFLAT, since the
number of iterations performed (within the same time) would be also increased.

5 Conclusions

In this paper we have studied the use of existing constraint-based, heuristic-biased tech-
niques to solve the problem of “scheduling a robot in a job-shop environment”. In par-
ticular we have chosen two different PCP-based algorithms as basis for building our



extended-ESTA solution: an enhanced SP-PCP for addressing problems that involve
sequence-dependent setup times, and the advanced profile-based ESTA for dealing
with (multi-capacity) cumulative resources. Extended-ESTA basically creates a meta-
representation of the temporal network where resource aspects are explicitly addressed
by performing a resource contention peaks analysis. Furthermore, setup times are con-
sidered when contention peaks are solved since transportation constraints have to be
satisfied. A deterministic and greedy implementation has been presented, to later em-
bed it within a larger iterative-sampling search framework. This allowed us to promote
solution optimization by broaden search space coverage. Then, we have performed a
preliminary empirical experiment over a set of reference benchmarking problems to get
initial solution quality evaluation.
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