
A Coginitive Architecture and Simulation
Environment for the Ptinto Robot

Pablo Muñoz, María D. R-Moreno
Departamento de Automática, Universidad de Alcalá

28805 Alcalá de Henares (Madrid), Spain
Email: {pmunoz,mdolores}@aut.uah.es

Pablo Gallego, Bonifacio Castaño
Departamento de Matemáticas, Universidad de Alcalá

28805 Alcalá de Henares (Madrid), Spain
Email: bonifacio.castano@uah.es

Abstract—In this article we present a cognitive architecture
and we describe some algorithms for simulating the movement
of a hexapod robot (a six legs spider) who has been designed
at the Astrobiology Center (CAB) of the Institute of Aerospace
Technology (INTA) in Madrid (Spain). The robot is called Ptinto
and its aim is to explore the Tinto river and the surrounding
areas.

The cognitive control architecture wants to control Ptinto in
order to make an autonomous exploration of the environment.
It is structured as a three layer system, using a planning and
scheduling component with long-term memory and basic learning
possibilities, and an executor that implements some reactive
behaviours.

The simulation suite is specifically adapted to the geometric
characteristics and dynamics of this particular robot. It includes
both a standalone simulation test-bench (for kinematics designs)
and an environment to interact with the control architecture.

Index Terms—Autonomous agents; cognitive architectures;
planning and scheduling; simulation.

I. INTRODUCTION

The Ptinto robot is being developed for the in-situ analysis
of the shallow and inaccessible areas of the Tinto River at
Huelva (Spain). This river is a unique place for the study of
biodiversity in extreme conditions (high pH and heavy metals).
Besides in the last decade the Tinto River and the surrounding
areas has been the focus of study of NASA scientists to find
similarities to the Martian surface. In that sense, this place
has very good conditions to test robots for future use on Mars
performance.

Therefore, on the one hand, the Ptinto project aims to create
an autonomous and intelligent robot capable of moving over
the uneven surface of the Tinto River and whose technology
could be used, on the other hand, on future missions to
Mars. Legged robots are a useful alternative to the traditional
and easier to implement rovers moving on wheels or tracks.
The main reason is that rovers are inefficient when ground
conditions are unfavorable due to its irregularity, viscosity or
instability (e.g. in sandy or boggy regions). Legged robots,
however, are able to operate in this type of surfaces where the
rovers are useless. For this reason, walking robots are used
in many applications because of their motion characteristics:
adaptability to all fields, greater ability to overcome obstacles
and high mobility.

Spider robots, in particular those endowed with six legs,
raise a great number of new and different challenges to those

robots that move through rolling mechanisms. In general, the
ability to function in adverse terrains is the result of the high
number of degrees of freedom. This number is in direct corre-
spondence with the load of joints in his legs that are usually at
least three. It is obvious that the control and management of
a system of this kind has a very high complexity. Besides the
inherent difficulty of efficiently handling a robot of this class,
we have to deal with the sensitivity of its mechanisms, engines
and multiple joints. This means that, for example, it will be
necessary to ensure that the strength twisting their joints do
not ever exceed a certain threshold of safety.

The paper is structured as follows. First, a brief review of
the state of the art of cognitive architectures is provided. Next,
section III presents our proposed cognitive architecture for
Ptinto. Then, in section IV the simulator suite is described.
Finally some conclusions and future work are presented.

II. COGNITIVE ARCHITECTURES

In the last years many architectures have been designed for
control advanced robotics systems. Many of these architectures
take a human as the main source of inspiration for developing
the architecture, or even try to model human cognition; so
that these systems have become known as cognitive archi-
tectures. As described in [1], a cognitive system is that
who exhibits effective behaviour through perception, action,
deliberation, communication, and through either individual
or social interaction with the environment. This implies, in
general, that a cognitive system must be able to operate on
unknown circumstances or events for which the system was
not designed. Therefore, it is desirable that a cognitive system
is resistant to uncertainty

Typically there are two main cognitivist paradigm: (i) cogni-
tivism based in the representation and processing of symbolic
information, and (ii) emergent systems, focused primarily on
principles of self-organization. Our work is encompassed in
the first group, since we have a single heavy agent capable of
handling symbolic representations of the environment.

In [2] considers the capabilities that a cognitive architecture
should support. These are basically (i) a long-term memory to
store relevant information about beliefs, knowledge and goals
of the system; (ii) a well-organized mental structures that are
representation of the contents of the memory (often related
with human-machine interface -HMI-); and (iii) functional and



learning processes which operate on the mental structures.
However, depending on the system purpose, a cognitive system
must support abilities like recognize and classify elements in
its environment, predict its actions effects or reasoning about
how to solve a situation.

Currently, there is a lot of projects developing on cognitive
systems. For example the Soar framework [3], [4], which
seeks to achieve a general cognitive architecture using ex-
plicit production rules to govern its behaviour, and problem
solving to reach a goal state. It also implements learning and
interaction with the environment capabilities. Similar to Soar
is ACT-R [5] based on how human cognition works. It uses
models that automatically produces a step-by-step simulation
of human behaviour that can be compared with experimental
results. Another architecture centred around unified amodal
representations and mainly dealing with processing of high-
level information is ICARUS [6], [7], whose main difference
is its focus on the organization, use, and acquisition of
hierarchical knowledge structures.

Other cognitive architectures are more focused on per-
formance and integration with robotics, like 3T [8], which
uses three levels of abstraction and description languages
in order to coordinate a planful activites with real-time be-
haviours for dealing with dynamic environment. Like 3T is
the developments under the PACO-PLUS european project,
who made a three-level cognitive architecture [9] that uses
stereo vision coordinated with a symbolic planner to operate
a six axis robotic arm. With an underemphasized interest of
representations and more oriented towards reactive behavior,
there is Subsumption architecture [10], [11], that manages the
execution flow through interconnected state machines.

III. PROPOSED ARCHITECTURE

The proposed cognitive architecture for the control of Ptinto
hexapod robot corresponds to a hybrid three layers (3T)
system, in which top tier will be in charge of the deliberative
process, long-term memory and learning process as a function
of events that occur in the environment. The middle level or
execution system also has a short-term memory, as well as a
series of rules that trigger the reactive behaviour implemented,
in order to response in a short time to eventual situations
that may occur in both the environment and in the internal
state of the robot. Finally, the low level or functional level, is
responsible for providing the functionality of the robot to the
top layer, and relay the information collected by the sensors.
At this time, the robot only has three contact sensors on each
leg, distributed so that it can detect contact with the ground
and obstacles that is unable to overcome. A conceptual vision
of that architecture can be seen in Fig. 1.

Next subsections aim to detail the most interest elements
of the architecture, that is the knowledge base, the learning
process and the reactive behaviour. A detailed information
about the technology used for each layer and the models
deployed can be found in [12].

Fig. 1. Proposed architecture preview

A. Knowledge base

In the designed architecture the knowledge base is located
in the high layer. The model and operations in the knowledge
base are governed by a planning and scheduling system, which
will be responsible for obtaining a route that allows the robot
to reach one or more interest points. In order to do this,
the knowledge base has a three-dimensional model of the
environment in which the robot is. This model represents the
position of the robot and the obstacles who are known a priori.
Also there is the information of the aridity of the terrain point
to point, so the robot can adapt his movement to the soil
conditions at any time.

For operating with the knowledge base, there is a set of
operators modeled as a function of both the environment
parameters (distance, altitude, aridity and obstacles), and the
constraints under the robot is (available energy or capacity to
overcome certain terrain), so that the planning and scheduling
system can operate onto the knowledge base and obtain a route
among the current position and the desired interest points.
If there are several points to reach, a penalty metric can be
defined to allow the robot to decide whether to omit a point,
in function of the balance between the cost of achieving that
goal and the penalty for no achieving it.

B. Learning process

Since the robot’s sensors are limited to three contact sensors
placed on each leg, the possibility of learning is limited to
the ability of detecting unknown obstacles or updating aridity
data of the terrain. Both cases are preceded by an unexpected
behaviour on the plan generated by the planning system, and
detected by the performance monitoring undertaken by the
execution system. Prior to the update of the knowledge base,
will take place a reactive behaviour as discussed in the next
subsection.

In the case the executor notifies a new obstacle, the system
will stop the current plan, because this event means that the
current path is cut by an obstacle that does not appear in
the knowledge base. This obstacle will be included in the



knowledge base and the planning system will seek a new
route from the current position and environment status. If a
modification is notified about the aridity of the terrain, the high
level layer updates the aridity data of the current location, but
it does not require to produce a new plan, because typically
the reactive behaviour is enough to overcome that eventuality.

C. Reactive behaviour

The executor is in charge of controlling the system, so that is
able to read the plan obtained by the planning and scheduling
system and break down every action in an ordered sequence
of commands executable by the functional layer. It also
monitors the permanent command execution with the objective
of verifying that the commands are properly executed. But
because the environment information may be incomplete or
may have changed, the executor has some reactive behaviour
to respond quickly (and without interference from the upper
layer) to a few unexpected events.

These events fall into two groups: (i) incomplete or incorrect
information in the knowledge base and (ii) failures in com-
mands execution. In the first group are those who previously
commented: unknown obstacles and changes in aridity. An
unknown obstacle implies that the robot stops his movement,
updates the knowledge base and requests a new route to the
planning system. The second case adjusts the parameters that
govern the movement of the legs, so that the robot can continue
his movement. Also the executor updates the aridity of the
point at which the robot is. Because the modification of the
parameters can be ineffective, this behaviour can be performed
iteratively if a failure is detected in the new movement (and
there is not obstacle detection), ending the iteration when the
movement is correct or a parameter reaches its limit. If a
parameter reaches the limit, the system determines that at this
point is an obstacle and acts accordingly.

For failures not caused by the environment, there might
be severe failures of the system, which involve moving the
system to a safe state and request human intervention. Another
possibility is that the duration of the action execution in
progress exceeds the time established by the planning system,
in this case the system attempts to determine whether the
failure type is as the previously mentioned, treating the event
as if it had found an obstacle in another case.

IV. PTINTO SIMULATOR SUITE

In order to test the cognitive architecture, we have devel-
oped a simulation environment that is specifically adapted to
the geometric characteristics and dynamics of this particular
robot. The whole simulation system has been developed using
MATLAB [13], [14].

The main problem arising in the operation of legged robots
is the following: each time the system of locomotion is placed
in a certain position it is necessary to determine, as accurately
as possible, the performance of each one of the engines, which
power their joints, for a configuration of its feet satisfying
a set of constraints. In general, these conditions are the
number of points of contact with the ground and maintaining

balance throughout the range of motion. This problem, known
as inverse kinematics, admits an algebraic approach but its
resolution can present a very high complexity.

This means that in all robotic projects, whatever their
purpose could be, is always required a prior development of
a simulation system. The simulated program would have to
consider, in advance, all aspects of the robot behaviour. In the
case of robots that move by feet and are designed to work in
adverse conditions, the simulation becomes more complex due
to the need to simulate, not only the device that is designed,
but all the features of the environment where it is going to
be used. A common way to address this objective is creating
various ground models, starting with very simple ones but that
will be progressively more complicated.

Apart from that, a simulation system for the operation and
performance of a spider robot must be able to anticipate, solve
the problems and check the feasibility of the solutions obtained
in all reasonably foreseeable situations that may occur. It is
its duty to verify that the tracking, performance and control
systems are working adequately according to the needs and
expectations of the project.

In this section we present a specific simulation system for
the elementary movements of Ptinto. We describe its physical
and geometrical layout with particular attention to its size,
degrees of freedom and range of motion. In the simulation, we
use two different reference systems. The global one that would
be associated with the ground, and a local one embedded
with the robot. Next we establish the two basic types of
transformations that relate the positions of the angles of each
of its legs and the foot position both directly and vice versa.
We also present simulation algorithms for translation and
rotation movements on flat ground.

A. Geometric description of the robot

In this section we describe the layout of Ptinto. Figure 2(a)
displays a schematic representation of the robot in its resting
position. As it can be seen, its body is a hexagonal prism and
each one of its legs is located at the prism vertical edges. The
vacuum inside the body will be used to place both components
that allow for movement and the potential burden to carry in
terms of their use. In the rest position, including the legs, the
total length is 168 cm, the maximum width 233 cm and its
height is 143 cm.

Each one of its six legs consists of two straight sections of
fixed length joined by other two sections of varying length.
The change in length for each variable component is achieved
by a step-by-step motor. These changes allow the leg to go up
and down. Furthermore, the connection between the body and
each leg has a third engine that changes the angle between the
plane of the leg and the body, allowing the leg moves forward
or backward.

Figure 2(b) shows a schematic representation of a leg with
the denomination of its main elements. It is important to notice
that all the elements of each leg are always in the same plane.
V1 and V2 points are the vertex of the body where the leg is
connected and K and F points are named “knee” and “foot”.



(a) Robot (b) Leg

Fig. 2. Ptinto layout

Thus, the three angles are the three degrees of freedom of
a leg and determine its position perfectly. This means A1,
A2 and A3 determine the foot coordinates. In the other way
around the three foot coordinates can be the three degrees of
freedom that bind the angles values.

Table I shows the range of possible values for A1, A2 and
A3 angles. The angle A1 is assigned a positive value if the leg
is in an advanced situation relative to the body and negative
in the opposite case.

TABLE I
ANGLES RANGE

Angles A1 A2 A3

Minimum -30 60 60

Maximum 30 90 90

B. The reference systems

To control the movement, location and spatial orientation
of a robot like Ptinto we have to use two different rectangular
coordinate system: one of them called “local system” is fixed
in the body of the robot and the other known as “global
system” is fixed in the ground, that is, the scenario where
the robot develops its movements. Both systems are shown in
Fig. 3.

Fig. 3. Reference systems of Ptinto

The local system (shown in lowercase) has its origin of
coordinates at the geometric center of the body of the robot
and its three perpendicular axes coincide with the three prin-
cipal directions. The global system (shown in block letters)
corresponds to a fixed Cartesian system in the scenario in
which the robot moves [15].

In the starting position, also called rest position, each one
of the angles is assigned the value of the center of its total
range and the robot’s feet are supposed to be supported within
the Z = 0 plane of the global system. Then the global and
local coordinate axes are parallel, have the same orientation
and the origin of the local coordinate system in relation to the
global system is

(0, 0, h)

where h is the height of the center of the body of the robot
over the Z = 0 plane in the global system.

In general, the changes and calculations upon the values
of the legs angles and the corresponding foot positions are
performed in the local system and then transformed into the
global system. In general, changes in the values of the angles
of the legs and the corresponding relative positions of these are
performed in the local system and then move into the global
system. This requires always knowing the position of the local
origin of coordinates

−→
Ol = (Ol1, Ol2, Ol3)

and the elements of an orthonormal basis of the local system,
−→
Lx = (Lx1, Lx2, Lx3)

−→
Ly = (Ly1, Ly2, Ly3)

−→
Lz = (Lz1, Lz2, Lz3)

both referenced to the global system.
In this framework if ~R = (Rx, Ry, Rz) and ~r = (rx, ry, rz)

are the position vectors of the same point in the global system
and local system respectively, there is the following relations
between them:

~R = ~r

 Lx1 Lx2 Lx3
Ly1 Ly2 Ly3
Lz1 Lz2 Lz3

+
−→
Ol



and in the other way around:

~r =
(
~R−
−→
Ol
)  Lx1 Ly1 Lz1

Lx2 Ly2 Lz2
Lx2 Ly3 Lz3


C. Direct geometry

In this section we show how to calculate the three foot
coordinates (xF , yF , zF ) of any leg of Ptinto when the three
A1, A2 and A3 angles are known. To accomplish this aim we
need to take into account the sing criterion for A1 that makes
a sing difference between left and right legs.

This calculation is made in the local reference system
were we know the three coordinates (xV1 , yV1 , zV1) of the
corresponding point of the body and the lengths R =

∥∥∥−−−→A1 K
∥∥∥

and T =
∥∥∥−−→K F

∥∥∥.
Then the coordinates of the knee (xK , yK , zK) for the left

legs are:

xK = xV1
+ R ∗ cos

(π
2
−A3

)
∗ sin(A1)

yK = yV1 +R ∗ cos
(π
2
−A3

)
∗ cos(A1)

zK = zV1
+ R ∗ sen

(π
2
−A3

)
and for the right legs have a difference in:

yK = yV1 −R ∗ cos
(π
2
−A3

)
∗ cos(A1)

Then, the foot coordinates are:
for the left legs:

xF = xK + T ∗ cos(π + (
π

2
−A3) + A2) ∗ sen(A1)

yF = yK + T ∗ cos
(
π + (

π

2
−A3) + A2

)
∗ cos(A1)

zF = zK + T ∗ sen
(
π + (

π

2
−A3) + A2

)
and for the right ones:

yF = yK − T ∗ cos
(
π + (

π

2
−A3) + A2

)
∗ cos(A1)

D. Inverse geometry
In this section we are going to show how to obtain the

three A1, A2 and A3 angles, when we know the three foot
coordinates:

(xF , yF , zF )

In this case, called reverse geometry, the three xF , yF and zF
foot coordinates are the three degrees of freedom of the leg.
These coordinates uniquely determine the values that the three
angles should take to get the corresponding foot position.

In the real robot, this foot position will always be feasible.
However, in simulated cases, the values of the foot coordinates
can be any and even meaningless. In this article we assume
that values xF , yF and zF always correspond to a reachable
foot position.

A fundamental idea in this calculation is that V1, V2, K and
F points, which define a leg, are always in a plane surface
called “the leg plane.”

1) A1 computation: This angle is simply the angle between
the leg plane and the OY axis of the local reference system. It
is necessary to obtain A1 to take into account the criteria we
have chosen to select the angle sign. That is, A1 is considered
positive if the leg is advanced in the direction of the OX local
system axis. For 1, 2 and 3 legs, on the left side of the robot,
the A1 angle is obtained as:

A1 =
π

2
− atan2

(
yF − yV1

xF − xV1

)
where atan2 is the MATLAB function that returns an angle
inside the [−π, π] interval. In contrast, in the case of the right
legs, 3, 4 and 5, the expression for the A1 angle is:

A1 =
π

2
+ atan2

(
yF − yV1

xF − xV1

)
2) A2 calculation: To compute A2 angle we first obtain the

distance D between the foot and its corresponding V1 vertex.

D =

√
(xF − xV1

)
2
+ (yF − yV1

)
2
+ (zF − zV1

)
2

Thus the A2 angle is computed as:

A2 = acos

(
R2 + T 2 −D2

2RT

)
where acos is the MATLAB function that returns the angle, in
the interval [0, π], whose cosine is the value of its argument.

3) A2 calculation: The A3 angle calculation can be ac-
complished in several ways. In this article we have chosen
to compute the cutting points of the two following circumfer-
ences:

• C1 centered at V1 with radius R.
• C2 centered at F with radius T .
According to the geometry of the legs, these two circles are

contained in the “leg plane” and cut at only two points. One
of these two points corresponds with the K point of the leg.

Moreover, at this level we assume a two-dimensional co-
ordinate system for the “leg plane”. This particular system is
centered at the V1 point, the OXlp axis parallel to the OY
axis of the local system and directed toward the outside of the
body of the robot and the OYlp axis parallel to the OZ axis
of the same local system.

In this new two-dimensional reference system associated
with the leg the V1 vertex has the coordinates (0, 0) and the
foot position is represented by the −→cp vector, where:

−→cp = (cp1, cp2) =

(√
(xF − xV1)

2
+ (yF − yV1)

2
, zF − zV1

)
Then we calculate the common points of C1 and C2 circum-

ferences as the solution of the following algebraic equation
system:

x2 + y2 = R2

(x− cp1)2 + (y − cp2)2 = T 2

}
These system solutions are obtained using the symbolic

computation facilities of MATLAB. Besides, we know by the



(a) Initial position (b) Pair legs (c) Odd legs (d) Final position

Fig. 4. One step on a horizontal ground

geometric conditions of the problem that there are only two
different solutions (x1,y1) and (x2,y2).

Then, for both we calculate:

Ai =
π

2
− atan2

(
yi
xi

)
, i = 1, 2

and we determine the value of the A3 angle as:

A3 = min {Ai, i = 1, 2}

E. Ptinto movements

This section presents the algorithms required to simulate the
motion of the robot and represent it by the simulation program.

In general, the method is to establish what should be
the final coordinates of the robot elements from a known
position and after a particular movement. The final location
is determined by the new feet position after moving some of
them, step forward or turn a certain angle. In every case, the
three A1, A2 and A3 angles, for each leg, are recalculated
from the new feet position. In addition, we determine the
coordinates of the whole robot points in the local reference
system and also set the robot location in the global system
after it moves.

1) Movements without changing position: These move-
ments correspond to the movement of one or several feet and
that do not involve the displacement of the robot. They include
any change of any foot towards a new admissible position.

The movement of any foot can be symbolized by a vector
~m = (mx,my,mz) in the local system.

Then, from an initial foot location (xFi , yFi , zFi) the final
coordinates are obtained as:

(xFf
, yFf

, zFf
) = (xFi , yFi , zFi) + (mx,my,mz)

Neither the vector
−→
Ol nor the local basis

{−→
Lx,
−→
Ly,
−→
Lz
}

are
changed for this movement.

2) Walking on a horizontal ground: This movement in-
volves a change in the vector

−→
Ol without changing the local

basis
{−→
Lx,
−→
Ly,
−→
Lz
}

. We suppose that Ptinto has three alternate
legs (1, 3 and 5 or 2, 4 and 6) resting on the ground and the
others ones up. Figure 4 shows this movement.

Then if we symbolize the movement of the robot in the by
a vector:

−→
d = (d, 0, 0), the new position

−−→
Olf of the center or

the robot can be obtained by the previous one
−→
Oli as:

−−→
Olf =

−−→
Olf +

−→
d

At the same time, feet on the ground have to be placed
backward in order to keep their previous position

(xFf
, yFf

, zFf
) = (xFi

, yFi
, zFi

)− (d, 0, 0)

and the lifted ones moved forward for stepping:

(xFf
, yFf

, zFf
) = (xFi

, yFi
, zFi

) + (d, 0, 0)

When all this changes are made the three A1, A2 and A3

angles, for each leg, have to be recalculated and Ptinto can be
displayed at its current location and with its new position.

3) Rotating on a horizontal ground: This movement in-
volves a change in the local basis

{−→
Lx,
−→
Ly,
−→
Lz
}

without

changing the
−→
Ol vector. We assume the robot turns α degrees

and revolves about the
−→
Lz vector. We also suppose that Ptinto

has only three alternate legs touching the floor. Figure 5 shows
a 90◦ rotation.

From the point of view of the robot, this rotation represents
a change in the angles of the leaned legs in such a way that,
after making the turn, their feet are in the same point than
they were before rotating. This implies, similarly to the case of
marching, a rotation movement of Ptinto body and the opposite
turn of the feet of the legs touching the ground. In the same
way that for walking, the lifted legs make a gyration in the
same sense than the robot does.

To make these turns we have chosen the Rodrigues-
Hamilton [16] quaternions method. This strategy is simple
and can be applied for all rotations occurring during our
simulation. In some special cases it may need a higher number
of operations that other more direct methods, however, its
generality is a very important advantage that compensates for
these cases.

The rotation around the vector
−→
Lz about an angle α is

represented by the quaternion:

Q =
(
cos (α�2 ) , sin (α�2 )

−→
Lz
)



(a) Initial position (b) Rotating (c) Rotating (d) Final position

Fig. 5. Rotating on a horizontal ground

From this quaternion, the
−−→
Lxf and

−−→
Lxfvectors, obtained as

result of rotating the
−−→
Lxi and

−→
Lyi vectors, can be computed

as:(
0
−−−→
, Lxf

)
= Q ◦

(
0,
−−→
Lxi

)
◦Q∗; (0,

−−→
Lyf ) = Q ◦(0,

−→
Lyi)

◦Q∗

where Q∗ is the quaternion conjugate and ◦ the quaternion
product.

Then the feet touching the floor have to be rotated around
the same vector

−→
Lz and about the angle −α. This is done by

the quaternion:

Q =
(
cos
(α
2

)
, sin

(α
2

) −→
Lz
)

In that case, the leaned feet coordinates after rotation are
(xFf

, yFf
, zFf

) and the ones before it are (xFi , yFi , zFi), they
are related by:(

0, xFf
, yFf

, zFf

)
=
(
Q −) ◦ (0, xFi , yFi , zFi)

◦ (Q −)∗
and, in the same way, for the lifted feet rotation about an angle
α,the relation is:(

0, xFf
, yFf

, zFf

)
= Q ◦ (0, xFi

, yFi
, zFi

) ◦ Q ∗

After all this transformation we recalculate the A1, A2 and
A3 angles and draw the robot on the simulator screen.

V. CONCLUSION

This work presents a solution to the locomotion problem
of a hexapod exploration robot, in particular of the Ptinto
prototype. For this we present a cognitive architecture with
basic learning possibilities and reactive behaviours models, as
well as a suite to simulate the complex kinematics of a six-
legged robot with three degree of freedom per leg.

An hexapod robot is a challenge both technically and
software. In order to design and test complex kinematics
models, we implement the particular geometry of Ptinto into
a simulator suite, that allows us to check the behavior of
the robot movements. Also this simulator let us to prove the
cognitive architecture. This architecture, despite working with
few sensors capabilities, is able to handle the robot and update
the terrain information on the go, so that Ptinto is able to carry
out its mission, which is make exploration missions.

VI. FUTURE WORK

The basis of the architecture is finished and fully functional,
but some behaviours are too simple to control Ptinto in com-
plex areas. In this fact, there could be interesting implement a
predictive model for anticipating the stability in the next step,
using the data from the knowledge base and the information
provided by the position of each leg through the kinematics
model of the robot. With this and with more movement
models, the robot might be able to select the correct motion
task for each terrain in order to exhibit a better locomotion.
Also, introduce more sensors will let us expand the learning
possibilities.

Related to the simulator, the next thing that has to be done
is to elaborate movement algorithms for more complicated
terrains. This means not flat grounds and even softer ones.
In the first case, when the floor becomes irregular it will
be necessary to use more complicated gaits that the tripod
ones considered in this paper. On top of that, more elaborated
vector transformation should be taken into account and when
footprints are not on a plane, some equilibrium aspect would
appear.

ACKNOWLEDGMENT

This work is funded by the Castilla-La Mancha project
PEII09-0266-6640.



REFERENCES

[1] D. Vernon, G. Metta and G. Sandini. A Survey of Artificial Cognitive
Systems: Implications for the Autonomous Development of Mental Ca-
pabilities in Computational Agents, IEEE Transactions on Evolutionary
Computation, vol.11(2), pp.151-180, April 2007.

[2] P. Langley, J. E. Laird and S. Rogers. Cognitive Architectures: Research
Issues and Challenges. Cognitive Systems Research, vol.10(2), pp.141-
160, 2009.

[3] J. E. Laird, A. Newell, and P. S. Rosenbloom. Soar: An architecture for
General Intelligence. Artificial Intelligence, vol.33(3), pp.1-64, 1987.

[4] John E. Laird. Extending the Soar Cognitive Architecture. In Proceeding
of the 2008 Conference on Artificial General Intelligence 2008, 224-235,
2008.

[5] J. R. Anderson, D. Bothell, M. D. Byrne, S. Douglass, C. Lebiere,
and Y. Qin. An Integrated Theory of the Mind. Psychological Review,
vol.111(4), pp.1036-1060, 2004.

[6] P. Langley, K. Cummings and D. Shapiro. Hierarchical Skills and
Cognitive Architectures. In Proceedings of the Twenty-sixth Annual
Conference of the Cognitive Science Society (pp. 779-784). Chicago,
IL, 2004.

[7] P. Langley and D. A. Choi. Unified Cognitive Architecture for Physical
Agents. In Proceedings of the Twenty-first AAAI Conference on Atificial
Intelligence. Boston: AAAI Press, 2006.

[8] R. Bonasso, R. Firby, E. Gat, D. Kortenkamp, D. Miller and M.
Slack. Experiences with an Architecture for Intelligent, Reactive Agents.
Journal of Experimental & Theoretical Artificial Intelligence, vol.9(2-3),
pp.237-256, 1997.

[9] D. Kraft, E. Baseski, M. Popović, A. Batog, A. Kiær-Nielsen, N. Krüger,
R. P.A. Petrick, C. Geib, N. Pugeault, M. Steedman, T. Asfour, R.
Dillmann, S. Kalkan, F. Wörgötter, B. Hommel, R. Detry and J. Piater,
Exploration and Planning in a Three-level Cognitive Architecture. In
International Conference on Cognitive Systems (Workshop at the IEEE
International Conference on Robotics and Automation), 2008.

[10] R.A. Brooks. A Robust Layered Control System for a Mobile Robot.
IEEE Journal of Robobotics and Automation, vol.2, pp.14-23, March
1986.

[11] R. A. Brooks. Intelligence without Representation. Artificial Intelligence,
vol.47, pp.139-159, 1991.

[12] P. Muñoz, M. D. R-Moreno and B. Castaño. Integrating a PDDL-based
planner and a PLEXIL-executor into the Ptinto Robot. In Proceedings of
the 23rd International Conference on Industrial, Engineering and Other
Applications of Applied Intelligent Systems: Next-Generation Applied
Intelligence (IEA-AIE 2010). Lecture Notes In Artificial Intelligence,
pp.72-81 Córdoba, Spain, June 2010.

[13] P. Marchand and T. Holland, Graphics and GUIs in MATLAB. Chapman
and Hall/CRC, 2002.

[14] The MathWorks, Inc. MATLAB 7: Creating Graphical User Interfaces.
http://www.mathworks.com/help/pdfdoc/matlab/buildgui.pdf.

[15] V. M. Budanov, Algorithms of motion planning for a six legged walking
machine. Journal of Mathematical Sciences, Vol 146, No 3, 2007.

[16] W.R. Hamilton. Elements of Quaternions. volume I, Chelsea Publishing
Company, Thrid edition, 1969.


