
S-Theta*: low steering path-planning algorithm

Pablo Muñoz and Marı́a D. R-Moreno

Abstract The path-planning problem for autonomous mobile robots has been ad-
dressed by classical search techniques such as A* or, more recently, Theta*. How-
ever, research usually focuses on reducing the length of the path or the processing
time. Applying these advances to autonomous robots may result in the obtained
“short” routes being less suitable for the robot locomotion subsystem. That is, in
some types of exploration robots, the heading changes can be very costly (i.e. con-
sume a lot of battery) and therefore may be beneficial to slightly increase the length
of the path and decrease the number of turns (and thus reduce the battery con-
sumption). In this paper we present a path-planning algorithm called S-Theta* that
smoothes the turns of the path. This algorithm significantly reduces the heading
changes, in both, indoors and outdoors problems as results show, making the algo-
rithm especially suitable for robots whose ability to turn is limited or the associated
cost is high.

1 Introduction

Path-planning is focused on finding an obstacle-free path between an initial position
and a goal, trying as far as possible that this path is optimal. The path-planning prob-
lem representation as a search tree over discretized environments with blocked or
unblocked squares has been widely discussed. Algorithms such as A* [1] allow one
to quickly find routes at the expense of an artificial restriction of heading changes
of π/4. However, there have been many improvements such as its application to
non-uniform costs maps in Field D* [2] or, more recently, Theta* [3] which aims

Pablo Muñoz
Departamento de Automática, Universidad de Alcalá, e-mail: pmunoz@aut.uah.es

Marı́a D. R-Moreno
Departamento de Automática, Universidad de Alcaá, e-mail: mdolores@aut.uah.es



Pablo Muñoz and Marı́a D. R-Moreno

to remove the restriction on heading changes that generates A* and gets better path
lengths. The main difference between A* and Theta* is that the former only allows
that the parent of a node is its predecessor, while in the last, the parent of a node can
be any node. This property allows Theta* to find shorter paths with fewer turns com-
pared to A*. However, this improvement implies a higher computational cost due to
additional operations to be performed in the expansion nodes process as it will be
explained in section 3. Other approximations want to reduce the processing time via
heuristics [4] or improving the efficiency of the algorithms [5]. It is worth mention-
ing that these algorithms work on fully observable environments except Field D*,
that can face partially observable environments applying a replanning scheme.

When designing the robot control system, we must take into consideration the
morphology of the robot and the application environment. In this paper we focus
on the path-planning problem for autonomous mobile robots in open environments
with random obstacles as well as indoor areas with corridors and interconnected
rooms.

In [6], an extensive comparison between Theta*, A*, Field D* and A*Post
Smoothed (A*PS) [7] is performed. A*PS is a variant of A* that is based on smooth-
ing the path obtained by A* at a later stage. As a result we can see that Theta* is the
one that usually gets the shortest routes. However, depending on the features of the
robot locomotion subsystem, it may be preferable solutions with longer distances
but with lower number of heading changes.

Therefore, in this paper we propose the S-Theta* algorithm with an evaluation
function that optimizes the heading changes of the route. The field of application is
straight forward: robots whose rotation cost is greater than the movement in straight
line (what is a vast majority). The paper is organized as follows. Next section shows
the notation and the modelization of the terrain used. Then, section 3 describes the
Theta* algorithm. The S-Theta* algorithm definition is given in section 4. The re-
sults obtained when comparing both algorithms will be shown in section 5. Finally,
the conclusions will be outlined.

2 Grid Definition and Notation

The most common terrain discretization in path-planning is a regular grid with
blocked and unblocked square cells [8]. For this kind of grids we can find two vari-
ants: (i) the center-node (fig. 1 left) in which the mobile element is in the center
of the square; and (ii) corner-node (fig. 1 right), where nodes are the vertex of the
square. For both cases, a valid path is that starting from the initial node reaches the
goal node without crossing a blocked cell. In our experiments we have employed
the corner-node approximation, but our algorithm also works with the center-node
representation.

A node is represented as a lowercase letter, assuming p a random node and, s and
g the start and goal nodes respectively. Each node is defined by its coordinate pair
(x,y), being xp and yp for the p node. A solution has the form (p1, p2, ..., pn−1, pn)



S-Theta*: low steering path-planning algorithm

Fig. 1 Possible node rep-
resentations in grids. Left:
center-node; right: corner-
node.

with initial node p1 = s and goal pn = g. As well, we have defined four functions
related to nodes: (i) function succ(p) that returns a subset with the visible neigh-
bours of p; (ii) function parent(p) that indicates who is the parent node of p; (iii)
dist(p, t) that represents the straight line distance between nodes p and t (calculated
through the eq. 1); and (iv) function angle(p,q, t) that gives as a result the angle (in
degrees) formed by segments pq and pt (that is, the angle in opposition of the qt
segment) of the triangle formed by4pqt, in the interval [0◦,180◦).

dist(p, t) =
√
(xt − xp)2 +(yt − yp)2 (1)

3 Theta* Algorithm

Theta* [3, 6] is a variation of A* for any-angle path-planning on grids. It has been
adapted to allow any-angle route, i.e. it is not restricted to artificial headings of
π/4 as is the case of A* with 8 neighbors. Although there are works like [9] that
subdivide cells easing this restriction, or others that use more neighbours, but they
are ad-hoc solutions. There are two variants for Theta*: Angle-Propagation Theta*
[3] and Basic Theta* [6]. We assume that talking about Theta* refers to the last
one. The difference between these two versions is how the calculation of the line
of sight between pairs of nodes is performed, being in Basic Theta* simpler but
with a higher computational complexity in the worst case than the variant Angle-
Propagation. Moreover, the latter sometimes indicates that two nodes do not have
line of sight when in fact they do, slightly increasing the length of the resulting path.

Theta* shares most of the code of the A* algorithm, being the main block identi-
cal (alg. 1) and the only variation is in the UpdateVertex function (alg. 2). Thus,
all the nodes will store the following values:

• G(t): the cumulative cost to reach the node t from the initial node.
• H(t): the heuristic value, i.e, the estimated distance to the goal node. In the

case of A* uses the Octile heuristic, while Theta* uses the Euclidean distance
as shown in eq. 1.

• F(t): the node evaluation function expressed by eq. 2.

F(t) = G(t)+H(t) (2)



Pablo Muñoz and Marı́a D. R-Moreno

• parent(t): the reference to the parent node. For A* we must have parent(t) =
p⇒ t ∈ succ(p), however, Theta* eliminates this restriction and allows that the
parent node of t is any node q accessible whenever there is a line of sight between
t and q.

Theta* will expand the most promising nodes in the order established in the open
list, i.e. it first expands the nodes with lower values for F(t) as shown in alg. 1. In
the case that the expanded node is the goal, the algorithm will return the path by
traversing the parents pointers backwards from the goal to the start node. If instead
the open list is empty, it means that it is impossible to reach the goal node from the
initial node and the algorithm will return a failure.

Algorithm 1 Theta* algorithm
1 G(s)← 0
2 parent(s)← s
3 open← /0
4 open.insert(s,G(s),H(s))
5 closed← /0
6 while open 6= /0 do
7 p← open.pop()
8 if p = g then
9 return path

10 end if
11 closed.insert(p)
12 for t ∈ succ(p) do
13 if t /∈ closed then
14 if t /∈ open then
15 G(t)← ∞

16 parent(t)← null
17 end if
18 U pdateVertex(p, t)
19 end if
20 end for
21 end while
22 return f ail

When dealing with the successor nodes, the first thing that Theta* does is to
check if among the successors of the current position p, being t ∈ succ(p), and
the parent of the current node q = parent(p), there is a line of sight. The high
computational cost associated to this checking process is due to the algorithm used
(a variant for drawing lines [10] that only uses integer operations for verification)
which linearly grows as a function of the distance between the nodes to evaluate. In
case of no line of sight, the algorithm behaves as A* and the parent node of t is p.
However, if the node t can be reached from q, the algorithm will check whether the
node t has already been reached from another node, and then, only update the node t
if the cost of reaching it from q is less than the previous cost. In this case, the parent
of t will be q and the node is inserted into the open list with the corresponding values



S-Theta*: low steering path-planning algorithm

of G(t) and H(t) as shown in alg. 2. Following the described expansion process,
Theta* only has heading changes at the edges of the blocked cells.

Algorithm 2 Update vertex function for Theta*
1 UpdateVertex(p, t)
2 if LineO f Sight(parent(p), t) then
3 if G(parent(p))+dist(parent(p), t)< G(t) then
4 G(t)← G(parent(p))+dist(parent(p), t)
5 parent(t)← parent(p)
6 if t ∈ open then
7 open.remove(t)
8 end if
9 open.insert(t,G(t),H(t))

10 end if
11 else
12 if G(p)+dist(p, t)< G(t) then
13 G(t)← G(p)+dist(p, t)
14 parent(t)← p
15 if t ∈ open then
16 open.remove(t)
17 end if
18 open.insert(t,G(t),H(t))
19 end if
20 end if

4 S-Theta* Algorithm

The Smooth Theta* (S-Theta*) algorithm that we have developed from Theta*, aims
to reduce the amount of heading changes that the robot should perform to reach the
goal. To do this, we have based on a modified cost function F(t), as shown in eq. 3.

F(t) = G(t)+H(t)+α(t) (3)

The new term α(t) gives us a measure of the deviation from the optimal trajectory
to achieve the goal as a function of the direction to follow, conditional to traversing
a node t. Considering an environment without obstacles, the optimal path between
two points is the straight line. Therefore, applying the triangle inequality, any node
that does not belong to that line will involve both, a change in the direction and a
longer distance. Therefore, this term causes that nodes far away from that line will
not be expanded during the search. The definition of α(t) is given in def. 1 and is
represented graphically in fig. 2.

Definition 1. α(t) represents the deviation in the trajectory to reach the goal node g
through the node t in relation to the straight-line distance between the parent of its
predecessor (t ∈ succ(p) and parent(p) = q) and the goal node.



Pablo Muñoz and Marı́a D. R-Moreno

Fig. 2 Graphical representa-
tion of α . Actual position is
p with parent(p) = q. The
successor considered is t.

To compute α(t) we have used eq. 4. A priori, it could seem interesting to use
the triangle formed by the initial, goal and actual nodes. However, this line stays
unchanged during the search, what implies that the algorithm would tend to follow
the line connecting the initial node to the goal node. This would cause undesirable
heading changes since one could rarely follow that route.

Then, we use the triangle4qtg for α(t) computation, where q= parent(p) and t ∈
succ(p). The result is that once the initial direction has changed, the algorithm tries
to find the new shortest route between the successor to the current position, t, and
the goal node. The shortest route will be, if there are no obstacles, the one with
α(t) = 0, i.e., the route in which the successor of the current node belongs to the
line connecting the parent node of the current position and the goal node. Figure 3
shows how the value of α(t) evolves as the search progresses.

α(t) = arccos
dist(q, t)2 +dist(q,g)2−dist(t,g)2

2 ·dist(q, t) ·dist(q,g)
(4)

with t ∈ succ(p) and parent(p) = q

The alg. 3 shows the pseudocode of the function UpdateVertex for S-Theta*.
For computation purposes, α(t) will be included as a cost in the evaluation func-
tion of the nodes, so the algorithm will also discriminate the nodes in the open list
depending on the orientation of the search. Thus, a node in the open list may be
replaced (which means that its parent will be changed) due to a lower value of α(t).

Fig. 3 Representation of the
evolution of α(t). Arrows are
pointed to the parent of the
node after expansion.



S-Theta*: low steering path-planning algorithm

In contrast, Theta* updates a node depending on the distance to reach it, regard-
less of its orientation. As a result, the main difference with respect to Theta* is that
S-Theta* can produce heading changes at any point, not only at the vertex of the
obstacles as seen in fig. 4.

Fig. 4 Solution paths for
Theta* and S-Theta* in a
random map. Theta* only has
heading changes at vertices of
blocked cells, while S-Theta*
not.

Algorithm 3 Update vertex function for S-Theta*
1 UpdateVertex(p, t)
2 α(t)← angle(parent(p), t,g)
3 if α = 0 or LineO f Sight(parent(p), t) then
4 Gaux← G(parent(p))+dist(parent(p), t)+α(t)
5 if Gaux < G(t) then
6 G(t)← Gaux
7 parent(t)← parent(p)
8 if t ∈ open then
9 open.remove(t)

10 end if
11 open.insert(t,G(t),H(t))
12 end if
13 else
14 Gaux← G(p)+dist(parent(p), t)+α(t)
15 if Gaux < G(t) then
16 G(t)← Gaux
17 parent(t)← p
18 if t ∈ open then
19 open.remove(t)
20 end if
21 open.insert(t,G(t),H(t))
22 end if
23 end if

α(t) affects the order of the open list, and thus, how the nodes are expanded. So
we need to take into consideration the weight of this term in the evaluation function.
If the relative weight in the evaluation function is to small, the algorithm works like
the original Theta*, but if it is excessive, it possible that the deal between path-
length and heading changes are not fine. α(t) takes values in the interval [0◦,180◦].
Considering a map with 100x100 nodes, the cost of transversing from one corner to



Pablo Muñoz and Marı́a D. R-Moreno

its opposite corner is 100
√

2 ≈ 141, so the cost added by α(t) is usually less than
90◦, a little bit more than the half the cost for traversing among opposite corners of
the map. This implies that the angle can grows near the 50% weight in the evaluation
function, making that nodes with good G+H and higher α(t) values go back into
the open list due to nodes with worse G+H values but with better α(t), and this
is that we want to minimize. For this reason we consider that α(t) is well sized in
relationship with the G(t)+H(t) values. However, for smaller or bigger maps this
shall not be valid. For example, for 50x50 nodes maps, the relative weight of α(t) is
double than for a 100x100 nodes map and, for 500x500 nodes maps, is the fifth part.
In the first case, the penalization implies an excessive cost to expand nodes that are
a little bit far away from the line between s and g, whereas in the second case α(t)
has less effect in the search process. Then, the algorithm tends to behave like the
original one, that is, both expand a similar number of nodes. In order to compensate
this fact, we redefine the value of α(t) as shown in eq. 5, taking into consideration a
map with NxN nodes. In the experiments this estimation works fine, so we consider
that it is valid.

α(t) = α(t) · N
100

(5)

4.1 Implementation issues

We suggest two procedures to improve the implementation of the S-Theta* algo-
rithm. The α(t) computation degrades the S-Theta* performance respect Theta*
because of both, the cost of floating point operations and the increase of the cost
of checking the lines of sight (to make less heading changes, the algorithm needs
to check the line of sight for bigger map sections). However, the degradation is not
significant in terms of CPU time as we will see in the experimental section. This is
thanks to the optimization procedures that will be outlined here and that S-Theta*
expands less nodes than the original Theta*.

Procedure 1 The distance between the node t and the goal node (dist(t,g)) is static
and we can save many operations if once it has been calculated is
stored as a property of the node. Before computing the distance be-
tween a node and the goal node we will check if this operation has
already been performed, so we can save this computation. We only
need to initialize this data to a negative value in the instantiation of
the nodes prior to the search.

Procedure 2 If α(t) is 0, it means that the node and the predecessor of its parent
are in the same line, i.e. the nodes parent(p), p and t are in the same
line. Therefore, and given that t ∈ succ(p) and being the set succ(p)
the neighbours reachable from p, it follows that there is a line of sight
between t and parent(p). This saves the line of sight checking.



S-Theta*: low steering path-planning algorithm

5 Experimental Results

In this section we show the results obtained by comparing the algorithms Theta* and
S-Theta*. We also include as a reference the base of both algorithms, A*. The fol-
lowing subsections show the results obtained by running the algorithms on outdoors
(random obstacles) maps and indoor maps with interconnected rooms and corridors.
For both cases, we have taken into consideration the average values for the following
parameters: (i) the length of the path, (ii) the total number of accumulated degrees
by the heading changes, (iii) the number of expanded nodes during the search, (iv)
the CPU time or search runtime, and, (v) the number of heading changes.

The algorithms are implemented in Java and all of them use the same meth-
ods and structures to manage the grid information. All non-integer operations use
floating precision. The execution is done on a 2 GHz Intel Core i7 with 4 GB of
RAM under Ubuntu 10.10 (64 bits). To measure the runtime we have employed
System.currentTimeMillis().

5.1 Outdoors maps

In the outdoors maps we have not exploited the Digital Elevation Model (DEM)
to model the terrain. For classical algorithms such as A*, including the height of
the points does not make any significant difference when working with the DEM,
since we can know the height of all points since the movement is restricted to the
vertices. However, in any-angle algorithms, we can traverse a cell at any point. Then,
how to calculate or approximate that value is important. In this paper we have not
considered the height, although extending the Theta algorithms it is not a difficult
task but out of the scope of this paper.

Table 1 shows the results obtained from the generation of 10000 random maps of
500x500 nodes, gradually increasing the percentages of blocked cells to 5%, 10%,
20%, 30% and 40% (each obstacle group has 2000 problems). The way to generate
the maps guarantee that there will be at least a valid path from any starting point
to the goal. To do that, each time an obstacle is randomly introduced, we force
that around the obstacle there are free cells and these free cells cannot overlap with
another obstacle. Bold data represent the best values for each parameter measured.
In all cases the initial position corresponds to the coordinates (0, 0) and the objective
is to reach a node in the last column randomly chosen from the bottom fifth (499,
400-499). Figure 5 shows the last parameter considered to compare the algorithms
(not shown in the table) that is the heading changes.

As we can see, the algorithm that obtains the shorter routes is Theta*, however,
for the accumulated cost of the heading changes (total spin), the best values are
obtained by S-Theta*. The path degradation that occurs in S-Theta* respect Theta*
is 3.6% higher for the worse case (40% of blocked cells), while the improvement in
the number of heading changes is around 29% in S-Theta*. For the same percentage
of obstacles, Theta* performs, in average, 9.555 turns while the number of turns in



Pablo Muñoz and Marı́a D. R-Moreno

Table 1 Experimental results for groups of 2000 random maps of 500x500 nodes

Blocked A* Theta* S-Theta* A* Theta* S-Theta*

Path length Total spin (degrees)
5 % 690.942 674.530 676.984 340.785 15.231 19.878
10 % 697.538 677.510 683.368 457.605 38.887 38.776
20 % 712.171 686.965 699.650 682.290 104.723 82.101
30 % 727.090 697.661 717.739 898.875 204.670 148.129
40 % 744.137 711.997 737.732 1151.685 350.847 249.910

Expanded nodes Runtime (msec)
5 % 18822.062 13193.082 9257.260 953.566 1074.314 829.230
10 % 23613.764 22844.558 16265.886 1175.865 1595.634 1271.088
20 % 31897.962 35410.890 25873.328 1439.859 2027.954 1803.116
30 % 39250.270 44620.867 33491.780 1516.181 2084.500 2111.310
40 % 43999.836 50526.354 41109.494 1390.862 1871.207 2375.552

Fig. 5 Average heading changes for groups of 2000 random maps of 500x500 nodes with different
number of obstacles.

S-Theta* is reduced to 6.994 (26.8% less). Both algorithms always improve A*
in all the parameters except the runtime. For the number of expanded nodes S-
Theta* expands near 28% fewer nodes that Theta* except in the case of 40% of
blocked cells where the improvement drops to 19%. In the case of time spent in
searching the best results are for A*, except for the case of 5% of obstacles, in
which S-Theta* gets the best result. However, S-Theta* shows being slightly faster
than Theta* with less obstacles, only being surpassed by the original with 30% of
obstacles (S-Theta* is only 0.013% slower) and with 40% of obstacles the runtime
degradation is remarkable (21% slower). This is due to the increment in the number
of expanded nodes: with 40% of blocked cells Theta* expands 5600 nodes more
than his execution over maps with 30% of blocked cells, on the other hand, S-Theta*
expands close to 7600 nodes more for the same conditions.



S-Theta*: low steering path-planning algorithm

5.2 Indoor maps

For indoor maps, we have run the algorithms over 1800 maps with different sizes,
150x150, 300x300 and 450x450 nodes (600 maps per size), always starting from the
upper left corner (0, 0) and reaching the target in the opposite corner bottom. The
indoor maps are generated from the random combination of 30x30 nodes square
patterns that represent different configurations of corridors and rooms. These pat-
terns are designed in a way that we can access to the next pattern through doors on
each side, symmetrically placed. Table 2 shows the results for the four comparison
criteria, where the best results are highlighted in bold. Figure 6 shows the heading
changes using a plot representation.

Table 2 Experimental results for groups of 600 indoor maps with different sizes

Nodes A* Theta* S-Theta* A* Theta* S-Theta*

Path length Total spin (degrees)
150x150 247.680 238.130 248.425 1151.025 650.224 584.231
300x300 497.740 480.626 513.876 2074.650 1313.495 1098.458
450x450 746.997 722.412 780.907 3025.950 1918.551 1590.245

Expanded nodes Runtime (msec)
150x150 8260.947 8943.435 4363.208 312.105 301.440 270.228
300x300 36379.942 41096.000 18203.616 1101.347 1281.430 1191.517
450x450 83993.192 96933.753 40562.192 3666.833 4530.158 5230.250

Fig. 6 Heading changes for groups of 600 indoor maps with different sizes.

The data obtained for indoor maps are similar, in general terms, to those obtained
in outdoor maps. In all cases the path length is shorter in Theta* than the rest of algo-



Pablo Muñoz and Marı́a D. R-Moreno

rithms, although in this case A* obtains better results than S-Theta*. Furthermore,
the path degradation in S-Theta* respect Theta* is 4% higher for the smallest size
maps, rising up to 8% in the 450x450 nodes maps. However, for the accumulated
cost of the heading changes, the difference is more significant than outdoors maps,
getting S-Theta* the best results. For 150x150 nodes maps, S-Theta* uses 10% less
turns, whereas in larger size maps this percentage is increased to 17%. In the head-
ing changes there is a clear advantage of S-Theta* above the rest. In bigger maps we
can appreciate the difference: Theta* performs on average 48.433 heading changes
while this value in S-Theta* drops to 33.736 (about 30% lower). Also, it is even
more drastic the reduction in the number of expanded nodes, Theta* expands more
than double of nodes that S-Theta*, being S-Theta* who obtains the best results.
Finally, the best execution time for small maps is obtained by S-Theta*, but is A*
the winner for bigger maps. Comparing S-Theta* and Theta* for 300x300 nodes
maps, S-Theta* is 7% faster than S-Theta*, while for 450x450 nodes maps, Theta
is 13% faster than S-Theta*.

Finally, fig. 7 shows the sum of the length of the paths, and the total cumulative
degree of heading changes for each algorithm. The data are normalized for compar-
ison with Theta*, showing that for the A* algorithm the results are worse than for
Theta*, while in the case of S-Theta* always keeps the values below, starting from
0.93 in 150x150 nodes maps and it gets stabilized around 0.89 from 300x300 nodes
maps.

Fig. 7 Normalized values
for path length + total spin
degrees for indoor maps
(normalized to Theta*).

6 Conclusion

In this paper we have presented S-Theta*, an algorithm that is based on Theta*. The
main motivation in this work was inspired by the idea that the cost of performing
heading changes in real robots is high and it can be desirable to have longer paths
with less turns (or at least with smoother turns) than shorter paths with abrupt di-
rection changes. High degree heading changes in real robots are translated into high
battery consumption and a lot of time in turning. Based on this idea, we have modi-
fied Theta* to compute the path deviation from the optimal path. For that, we have



S-Theta*: low steering path-planning algorithm

introduced a new parameter in the evaluation function called α(t), that effectively
reduces the number of heading changes required by the search algorithm to achieve
the objective, as well as the total cost associated with these turns.

As the experimental results show, the S-Theta* algorithm improves the original
algorithm Theta* on the number of heading changes and its accumulate cost, in
exchange for a slight degradation on the length of the path. This is true for both
outdoors and indoor maps without considering the Digital Elevation Model (DEM)
to model rough outdoor terrains. Taking into consideration that an optimal solution
is the one that includes both the length of the path and the cost associated for turn-
ing, S-Theta* gets better results than Theta*, being small improvements for outdoor
maps and more remarkable for indoor maps. In the case of outdoor maps, the best
results are obtained with 40% of obstacles, in which S-Theta* gets 8% of improve-
ment. In indoor with maps of 450x450 nodes, the improvement reaches the 10%.

In addition, since S-Theta* expands fewer nodes than the original Theta*, it will
require less memory, which is always a plus in embedded systems, typically limited
by memory and computation.

Acknowledgements Pablo Muñoz is supported by the European Space Agency (ESA) under the
Networking and Partnering Initiative (NPI) Cooperative systems for autonomous exploration mis-
sions.

References

1. I. Millington and J. Funge, Artificial Intelligence for Games, 2nd ed. Morgan Kaufmann
Publishers, 2009.

2. D. Ferguson and A. Stentz, “Field D*: An interpolation-based path planner and replanner,” in
Proceedings of the International Symposium on Robotics Research (ISRR), October 2005.

3. A. Nash, K. Daniel, S. Koenig, and A. Felner, “Theta*: Any-angle path planning on grids,”
in In Proceedings of the AAAI Conference on Artificial Intelligence (AAAI), 2007, pp. 1177–
1183.

4. P. M. noz and M. D. R-Moreno, “Improving efficiency in any-angle path-planning algorithms,”
in 6th IEEE International Conference on Intelligent Systems IS’12, Sofia, Bulgaria, September
2012.

5. S. Choi, J. Y. Lee, and W. Yu, “Fast any-angle path planning on grid maps with non-collision
pruning,” in IEEE International Conference on Robotics and Biomimetics, Tianjin, China,
December 2010, pp. 1051–1056.

6. K. Daniel, A. Nash, S. Koenig, and A. Felner, “Theta*: Any-angle path planning on grids,”
Journal of Artificial Intelligence Research, vol. 39, pp. 533–579, 2010.

7. A. Botea, M. Muller, and J. Schaeffer, “Near optimal hierarchical path-finding,” Journal of
Game Development, vol. 1, pp. 1–22, 2004.

8. P. Yap, “Grid-based path-finding,” in Advances in Artificial Intelligence, ser. Lecture Notes in
Computer Science, vol. 2338. Springer Berlin / Heidelberg, 2002, pp. 44–55.

9. G. Ayorkor, A. Stentz, and M. B. Dias, “Continuous-field path planning with constrained
path-dependent state variables,” in ICRA 2008 Workshop on Path Planning on Costmaps, May
2008.

10. J. Bresenham, “Algorithm for computer control of a digital plotter,” IBM Systems Journal,
vol. 4, pp. 25–30, 1965.


