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Abstract

This paper presents recent results on applying advanced au-
tonomous reasoning capabilities for a planetary rover con-
cept for synthesizing complete command plans that involve
a wide assortment of mission requirements. Our solution ex-
ploits AI scheduling techniques to manage complex tem-
poral and resource constraints within an integrated power-
aware decision-making strategy. The main contribution of
this work is threefold: (i) we propose a model of the world
inspired by the Mars Sample Return (MSR) mission concept,
a long-range planetary exploration scenario; (ii) we introduce
a MSR-inspired scheduling problem called Power Aware Re-
source Constrained Mars Rover Scheduling (PARC-MRS),
and we present an extension of a well-known constraint-
based, resource-driven reasoner that returns rover activity
plans as solutions of the PARC-MRS; finally, (iii) we conduct
an exhaustive experimentation to report the quality of the gen-
erated solutions according to both feasibility and makespan
optimization criteria.

Introduction
The forthcoming planetary exploration scene will call for
ambitious robotic missions. Increasing the level of auton-
omy in those missions inevitably entails entrusting the
rovers with higher level responsibilities, such as the syn-
thesis of complete mission plans from high-level goal de-
scriptions, plan adaptation/modification to address contin-
gent situations, and even the possibility of performing op-
portunistic science and hazard prediction (Estlin et al. 2007).

In this work, the Mars Sample Return (MSR) mission
concept (Treiman et al. 2009) is proposed as a plausible and
efficient paradigm-shift to continue the exploration of the
Red Planet in the near future. Roughly speaking, the MSR
mission consists of placing a rover on Mars’ surface, gath-
ering scientific samples from a set of scattered and chal-
lenging sites (up to many kilometers from the landing site)
within relatively short time frames, and transporting them
to a specific location where an ascent vehicle will be in
charge of initiating the return trip. The proposed model en-
capsulates a wide range of interesting features which makes
it particularly challenging, as it involves: first, global path-
planning, focused on “long-range navigation” planning in
contrast to the classical path-planning research which ad-
dresses “local navigation” to trace safe routes between pairs
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of locations separated a few meters apart of each other. Sec-
ond, resource management, by analyzing the energy produc-
tion/consumption profiles of all the plan activities. Third, a
wide assortment of temporal constraints, such as absolute
deadlines on the experiment execution (e.g., to communicate
critical experimental results via orbiting relays), or rover in-
activity periods (e.g., nights or solar storms) represented as
static synchronization events of finite duration.

To this aim, we introduce a MSR-inspired scheduling
problem called Power Aware Resource Constrained Mars
Rover Scheduling (PARC-MRS), and present an extension
of a well-known constraint-based, resource-driven reasoner
that returns rover activity plans as solutions of the PARC-
MRS. Our solving process exploits advanced Artificial In-
telligence (AI) P&S constraint-based, resource reasoning
techniques, in particular “Precedence Constraint Posting”
(PCP) (Oddi and Smith 1997; Cesta, Oddi, and Smith 2002)
to reason upon a detailed model of the PARC-MRS prob-
lem instances. One of the contributions of this work is the
exploitation of a known methodology to represent consum-
able resources by means of a cumulative scheme (Simo-
nis and Cornelissens 1995), to model and solve the pro-
posed scheduling problem. The remainder of the paper is
structured as follows: we start with a detailed description of
the mission scenario of reference. Next, we provide a de-
tailed description of the extended constraint-based, resource
driven reasoner with integrated power-aware decision capa-
bilities. Following that, we conduct an exhaustive experi-
mentation to evaluate the efficiency of our solution algo-
rithm. Finally, a conclusion and future work section closes
the paper.

The Mars Sample Return mission scenario
In this section we provide a definition of the Power-Aware
Resource Constrained Mars Rover Scheduling (PARC-
MRS) problem, that is grounded on the commitment to the
Mars Sample Return (MSR) (Treiman et al. 2009) reliability
and efficiency baseline requirements: the first requirement
refers to the need to synthesize plans capable of partially ab-
sorbing the effects of possible exogenous events arising dur-
ing the plan’s execution, while the second refers to the goal
of minimizing the plan’s completion time, thus maximizing
the overall science return.

The attainment of the mission’s goals requires the use
of the rover’s set of instruments/resources whose utilization
must be synchronized over time in order to guarantee the



Figure 1: Mission scenario overview: (1) navigation, (2) ac-
quiring science (drill) and (3) sample release activities

correct execution of the plan’s activities. Each rover activ-
ity ai requires a specific amount of one or more resources
during its entire execution.

Specifically, the soil extraction operations require a sci-
ence acquisition asset and a sample cache (SCr), which ba-
sically consist of a drilling subsystem and a container with a
capability to store and transport up to C standard-sized sam-
ples, respectively.

Navigation tasks demand a Locomotion, Guidance, Nav-
igation and Control (Loco & GNC) subsystem, which pro-
vides all the functionalities that allow the rover to reliably
reach a desired target. The rover energy supply is provided
by a powering subsystem consisting of a combination of So-
lar Array (SAr) as a primary power source, and a Battery
(Br). The battery is characterized by a maximum capacity
or saturation level Bmax (in Watts-hour) and by a mini-
mum usage threshold Bmin (expressed as a percentage of
the maximum capacity), representing the minimum battery
power level that can be reached, for safety reasons. During
nominal rover operations, the power generated by the solar
panels is sufficient to propel the rover and charge the batter-
ies in the day time, while during the night the rover suspends
every activity. The battery is required to sustain the execu-
tion of the soil extraction activities as well as to maintain the
minimum operating temperature of the rover system during
the night, but under certain conditions, it can also contribute
with additional power for locomotion operations.

More formally, the PARC-MRS problem entails the syn-
chronization of a set of resources R = {r1, r2, . . . , rm}
to perform a set of n rover activities over time A =
{a1, a2, . . . , an}. The set of activities is organized along
a set of ne experiments (or job sequences) Exp =
{Exp1, . . . , Expne}. More concretely, the complete execu-
tion of the i-th experiment Expi is modeled as a tuple com-
posed of the following ordered activities:

Expi = 〈NavS,i, Drilli, Navi,F , Reli〉 (1)

Figure 1 illustrates the PARC-MRS problem scenario, as
well as the basic activities that are executed in a typical
MSR mission: theNavi,j activities represent the long-range
traversals for science acquisition or sample delivery between
two different locations i and j (the initial location of the
rover and the location of the ascent vehicle are denoted with

S and F, respectively); the Drilli activities represent the de-
ployment of the onboard science collection system (i.e., a
drilling instrument) to retrieve and store a soil sample situ-
ated at the location or way-point i; finally, theReli activities
represent the releasing of the sample (collected at the way-
point i) at the final location, where the Mars ascent vehicle
is in charge of uploading it into orbit. The ascent vehicle is
equipped with a robotic arm (Ar) that is used to recover the
soil samples collected by the rover. Every rover activity un-
dergo complete suspension periods during the nights, which
can have different durations depending on the Martian sea-
son.

A feasible solution S = {st1, st2, . . . , stn} is an as-
signment to the start times sti of the activities ai ∈ A
imposing a total order among all the activities activities
ak ∈ {Drilli, Reli : i = 1, 2, . . . , n} ⊂ A, and satisfy-
ing the following set of constraints.

• Temporal Constraints - S is consistent with the partial
ordering imposed in each sequence Expi. Pairs of con-
secutive activities in each sequence Expi are supposed
to be contiguous, i.e., in every sequence, the end time of
each previous activity coincides with the start time of the
following activity. The durations of the Drilli and Reli
activities are lower bounded by the time required to com-
plete the science extraction and the release operations, re-
spectively. The minimum duration of theNavi,j activities
depends on the nominal traversal time (ttij) required to
travel the distance between the pair of i, j waypoints. In
this work, waypoint-to-waypoint paths are considered as
sequences of straight, traversable segments computed dur-
ing the mission preparation phase. Finally, the completion
time of some of the Expi sequences might be constrained
by an absolute deadlines di.

• Sample Cache Constraints - the number of samples con-
tained at all times in the cache SCr cannot exceed the
rover’s maximum sample capacity capacity C.

• Energy Constraints - in our model, the execution of the
power demanding activities (i.e., drilling operations and
navigation) requires a certain amount of energy that has
to be completely available at the beginning of the activity.

Navi,j activities demand a variable amount of energy eij ,
which depends on the traveling distance between the two
different locations i and j, while the Drilli activities de-
mand a constant amount of power ei necessary to operate
the drill subsystem.

The rover powering subsystem imposes an additional
global constraint on the set of activities A. In particular,
the global production/consumption battery usage profile
B(t) is computed according to the hypothesis that the on-
board rover solar arrays produce a continuum of energy at
a monotonic rate σcharge (Watts). The generated power is
directly used to both propel the rover and charge the bat-
tery up to the saturation level Bmax. The surplus energy,
if any, is discarded as the battery cannot be charged in ex-
cess of Bmax (saturation). As the activities ai consume
the energy instantaneously at their start times sti, we can
consider the assessment of the usage profile B(t) only for
t = sti, with i = 1, 2, . . . , n.



Figure 2: Activity-on-the-node graph representation of the problem model: the edges represent the precedence constraints,
while the nodes (boxes) represent the activities; the resource usage information is shown within each box

Finally, an optimal solution S∗ is a feasible solution
where the plan’s completion time, defined as the highest end
time among of all the plan’s activities, is minimized.

The constraint-based solving algorithm
In this section we present in detail the profile-based, power-
aware reasoning algorithm ESTAp developed in this work
to provide feasible solutions for the PARC-MRS problem, as
well as a meta-heuristic strategy for solution optimization.

The constraint-based PARC-MRS problem
representation
We formulate the PARC-MSR scheduling problem in terms
of Constraint Satisfaction Problem (CSP) (Montanari 1974).
In our CSP-based formulation of the PARC-MSR a set of
decision variables called Minimal Critical Sets (MCSs) are
identified; An MCS is defined as a set of activities that si-
multaneously require a resource rk with a combined capac-
ity requirement greater than the resource’s total capacity,
such that the combined requirement of any subset is less than
or equal to the resource capacity. From the definition of an
MCS, it follows that the posting of a single precedence be-
tween some pair of activities in the MCS is sufficient to elim-
inate the conflict. Each MCS variable is associated with a
domain of feasible values corresponding to the set of prece-
dence constraints that can be posted to resolve the MCS (i.e.,
the possible orderings allowed between any pair of activities
belonging to the same MCS).

Two different types of solving separation constraints
are considered: simple precedence and traversal time con-
straints, denoted respectively as ai ≺ aj and ai ≺val aj ,
where val is the minimum separation value that must hold
between ai and aj . Traversal time constraints are posted be-
tween drilling and/or sample release activity pairs in order to
properly model the traveling times among the different loca-
tions, while simple precedence constraints are used in all the
other cases.

To support the search for a consistent assignment to the
set of MCS variables, for any PARC-MRS problem instance
we can define a temporal constraint network which maps
the temporal constraints in the problem to distance con-
straints between appropriate time-points (i.e., the activity

start times and/or end times); such temporal constraint net-
work corresponds to the so-called Simple Temporal Problem
(STP) (Dechter, Meiri, and Pearl 1991), and is formulated
as a CSP (ground-CSP). Thus, our PARC-MSR formulation
can be seen as a meta-CSP formulation, which utilizes the
ground-CSP representation for the underlying temporal rea-
soning on top of which a second CSP problem is formulated
that enables resource constraint reasoning.

Figure 2 presents an activity-on-the-node graph represen-
tation of the PARC-MRS problem considered here. In the
graph, the nodes represent the problem activities, each char-
acterized by (i) a pair of time points (indicating the start-
ing and end times), (ii) a resource demand, where U(ai, rk)
represents the amount of resource rk required by the activ-
ity ai, and (iii) a specific (flexible) duration, i.e., expressed
as a temporal interval [lb, ub]; the edges correspond to the
precedence relation constraints between the activities, again
expressed as temporal intervals. The graph contains two spe-
cial time points (A and B) indicating the schedule’s time ori-
gin and horizon, respectively.

The integrated power-aware, resource driven
ESTAp solver
The proposed ESTAp procedure for solving instances of
the PARC-MSR problem is based on the precedence con-
straint posting (PCP) approach (Smith and Cheng 1993;
Cheng and Smith 1994), that consists of deciding and post-
ing a set of temporal precedence constraints that elimi-
nates all the resource contentions. Basically, ESTAp is
a modified version of the basic profile-based schema of
ESTA (Cesta, Oddi, and Smith 2002) which provides
cumulative-based resource reasoning by “iteratively level-
ing contention peaks” through the exploitation of a new set
of dominance conditions introduced in (Oddi et al. 2011)
that allow us to take into account both the simple and setup
time precedence constraints within the general problem-
solving strategy.

Algorithm 1 showsESTAp’s resolution process in detail.
The algorithm receives as input a description of the schedul-
ing problem according to the constraint-based specification
introduced in the previous section, and iteratively performs
a solving sequence composed of three steps: (i) checking
the temporal consistency of the current partial solution; (ii)



Algorithm 1: ESTAp algorithm.
Input: Problem, Horizon
Output: FeasibleSolution, EmptySolution

<meta-CSP, ground-CSP >← CreateCSP (Problem)1
loop2

if CheckConsistency (ground-CSP) then3
// Earliest Start-time Solution extraction4
ESS← ExtractESS (ground-CSP)5
// Resource profiling6
ComputeResourceUsages (ESS)7

// Resource contention peaks levelling8
meta-CSP← ComputeMCSs (ground-CSP)9
if ConflictFree (meta-CSP) then10

FeasibleSolution← ExtractSolution11
(ground-CSP)
Return (FeasibleSolution)12

else13
if Unsolvable (meta-CSP) then14

Return (EmptySolution)15

else16
MCS← SelectMCS (meta-CSP)17
PrecedenceConstraint←18
SelectPrecedence (MCS)
ground-CSP← PostConstraint19
(ground-CSP, PrecedenceConstraint)

else20
Return (EmptySolution)21

end-loop22

estimating all the resources utilization throughout the cur-
rent solution, i.e., by profiling the sample cache, rover and
battery resources; (iii) identifying and resolving all of the re-
source conflicts possibly existing in the current solution. In
the following sections we provide a detailed description of
each of these steps.

Step 1: constraint propagation & temporal con-
sistency checking. Within this step, the tempo-
ral constraint network (ground-CSP) underlying the
problem is checked for consistency by the function
CheckConsistency(ground-CSP) (line 3 of Algo-
rithm 1). If the ground-CSP is found to be inconsistent, the
procedure exists immediately.

Step 2: Resource usage profiles computation. In this
step (lines 4-7), the algorithm extracts a solution and
performs an estimation of all the resource usage pro-
files. At line 5, an Earliest Start-time Schedule1 (ESS)
is extracted from the partial CSP schedule solution
(extractESS(GroundCSP) function), while at line 7
the ComputeResourceUsages(ESS) function returns
all the resource utilization profiles on the basis of the ESS
solution.

In this work, in order to reduce the consumable behav-
ior of the battery to the cumulative scheme used by ESTA,

1ESS is a consistent temporal assignment where all the time
points are assigned with the lower bound values of their respective
feasibility intervals.

we exploit a modified version of the model introduced by
Simonis2 (Simonis and Cornelissens 1995). Below, we de-
scribe how the estimation of the overall power respectively
consumed and produced by all the activities of the sched-
ule is computed according to our adaptation of the Simonis
model.

Energy consumption profile. Figure 3 (left) illustrates an
example of how energy consumptions are modeled in our
framework, by introducing as many battery consuming ac-
tivities, or energy consumers (Cons1 and Cons2) as the
plan’s activities that require energy (A1 and A2, in the fig-
ure). As shown in the figure, the energy consumers’ end
times are constrained to coincide with the horizon time point
(i.e., the end of the schedule), while their start times are con-
strained to match with the start times of A1 and A2 (i.e.,
to the instants at which a specific amount of energy is re-
quired), thereby expressing the fact that each amount of en-
ergy required by a task is lost forever (unless replenished
by a producer task), hence modeling the typical renewable
resource behavior.

Energy production profile. The computation of the energy
production profile follows a logic which is directly exempli-
fied by Figure 3 (right). As a consequence of adopting the
Simonis’ model, the continuous charging rate curve (i.e., the
σcharge rate charging profile) is approximated by means of a
sequence of small, discrete chunks of energy producers (i.e.,
the Prodi activities, in the figure) distributed along the com-
plete horizon. The result is a piecewise constant representa-
tion of the energy production profile; each chunk of energy is
modeled as a time-fixed activity which produces an amount
of energy equal to the nominal quantity of power collected
during the related piecewise segment minus the energy pos-
sibly lost because of saturation during the same segment.
Each energy producer activity starts at the beginning of the
schedule (i.e., the origin time point), and terminates at the
instant at which the battery is charged with the associated
energy chunk (i.e., the energy chunk is released).

Figure 4 presents an MSR problem instance composed of
two job sequences (top) together with the set of the rela-
tive energy consuming activities (four consumers for each
sequence), while at the bottom of the figure, the resulting
overall battery usage profile is drawn (energy consumptions
are depicted as red down arrows, while energy productions
are depicted in green). As shown in the figure, the relation
between the rover activities and their related consumers is as
follows: the first consumers (i.e., those starting at t0) refer
to the consumption of the initial traversals to be performed
before reaching the drill locations; the second consumer re-
fer to the soil extraction operations (Drilli); the third con-
sumers refer to the navigation activities between the soil ex-
traction and final location; and the last consumers of each
job (i.e., those attached to the end of the Reli activities)
are introduced to model the consumption of further possi-
ble movements starting from the final location. The energy

2The Simonis’ model was originally proposed to model con-
sumable resources following a classical cumulative scheme. The
reference model basically copes with stock-based consumable re-
sources (such as a fuel tank or a storage warehouse) in flow shop
or job shop application contexts.



Figure 3: Energy consumption (left) and production (right) constraints representation

consumption profile is ultimately computed as the sum of all
the power demands (depicted as downward red arrows) on
behalf of all the consumer activities across the whole sched-
ule’s makespan.

Step 3: Resource contention peaks leveling. This step
(lines 8-19 in Algorithm 1) constitutes the most important
part of the solving process, as it deals with the identification
and the resolution of the next resource conflict on the ba-
sis of a specific heuristic rationale. This decision process is
known as “resource contention peak leveling”, since it con-
sists of (i) identifying the resource over-consumptions and
(ii) flattening them through the imposition of new prece-
dence constraints which temporally separate the execution
of the contending activities, according to the steps below.

Resource conflict detection. Firstly, a resource usage anal-
ysis is performed with the aim of determining all possible
resource capacity violations (i.e., the resource contention
peaks), by identifying the sets of activities that are executed
concurrently (on the basis of the ESS projection) and that
cause resource over-consumptions by globally requiring a
resource in excess of its maximum capacity.

More concretely, a meta-CSP is computed by extracting a
set of Minimal Critical Sets (MCSs) from each resource con-
tention peak (ComputeMCS(meta-CSP) function, line
9). For example, contention peaks occurring on the battery
resource are detected for all instants ti where the overlap-
ping of (at least) one production and one consumption activ-
ity causes the total battery capacity to fall below the Bmin

value. Figure 4 shows an example of battery contention peak
spanning over a temporal interval (denoted as critical seg-
ment) during which the battery usage profile remains below
the threshold energy level Bmin (i.e., battery is overcon-
sumed).

Resource conflict resolution. Subsequently, the function
SelectMCS(meta-CSP) (line 17) is invoked to return
the next MCS. Such MCS is chosen according to the most
constrained variable ordering heuristic, so as to select the
MCS candidate (the decision variable) characterized by the
smallest temporal flexibility, i.e., a function of the degree
to which constituent activities can be reciprocally shifted in
time, the idea being that the less flexibility a MCS has, the
more critical it is to resolve that first. Once the MCS is se-
lected, the function SelectPrecedence(MCS) (line 18)

is in charge of (i) selecting a pair of activities from the MCS,
and (ii) deciding their relative separation ordering for MCS
resolution. This decision is made following the least con-
straining value ordering heuristic guideline: the greater the
flexibility is retained after inducing a precedence ordering
constraint, the more desirable it is to post that constraint.

The three steps previously discussed are iterated until
(i) a conflict-free solution schedule (i.e., temporal and re-
source feasible) is found, or (ii) a temporal inconsistency is
detected. In the second case, the algorithm stops as it has
reached a dead-end situation.

Providing better solutions
Both the feasibility and optimization version of the schedul-
ing problem here addressed is NP-hard, and therefore can-
not be solved in reasonable time by using systematic, non-
informed search techniques. As previously stated, the solu-
tions provided by the ESTAp algorithm are generally far
from being optimal as the ESTAp procedure is only con-
cerned with providing feasible solution schedules. There-
fore, we embedded our ESTAp algorithm within an it-
erative sampling optimization loop, similarly to the ap-
proach used in the Iterative Sampling Earliest Solutions
(ISES) (Cesta, Oddi, and Smith 2002) strategy for makespan
minimization, an efficient multi-pass approach which per-
forms quite well in the face of scheduling problems involv-
ing very large search spaces. More concretely, ISES is a
stochastic procedure that controllably broaden the explo-
ration of the search space without incurring in the exponen-
tial cost of classical backtracking strategies, by iterating a
non-deterministic version of theESTAp’s conflict selection
heuristic (called ESTAp

rand) across solutions characterized
by increasingly smaller temporal horizons.

The solution we employ in this work is a simplified
version of the ISES procedure (still referred to as ISES,
for simplicity reasons), and is illustrated in Algorithm 2.
The procedure receives as inputs (i) a scheduling prob-
lem specification, (ii) an initial “sufficiently large” horizon
value (MaxH), and (iii) two additional parameters to con-
trol the stop conditions, i.e., the maximum CPU time allot-
ted for optimization (MaxTime), and the maximum num-
ber of permitted iterations without getting any improvement
(MaxAttempts). Our ISES version works according to the
two following basic steps: (i) an initial and deterministic in-
vocation of ESTAp with the horizon value MaxH (line 1),
in order to find the first feasible solution, and (ii) the execu-



Figure 4: Example of energy profile computation: the consumption components of the profile (eij) are depicted in red, while
the production components are depicted in green

Algorithm 2: The iterative sampling search framework
(ISES) for solution optimization.

Input: Problem, MaxH, MaxTime, MaxAttempts
Output: Sbest

Sbest←ESTAp (MaxH)1
while (¬ StopCondition (MaxTime, MaxAttempts)) do2

Sol←ESTAp
rand (Mk (Sbest))3

if (Mk (Sol)<Mk (Sbest)) then4
Sbest← Sol5

tion of an optimization loop, in the shape of successive calls
to ESTAp

rand where at each iteration the temporal horizon
is reduced to the best solution makespan Mk(Sbest) found so
far (line 3), thus forcing the algorithm towards solutions of
increasingly smaller makespans. The algorithm returns the
best solution encountered when either of the two stop con-
ditions previously described is met.

Experimental analysis

In this section we conduct an experimentation analysis
which aims at assessing both: (a) the efficiency of our solv-
ing algorithm ESTAp; and (b) the efficacy of an optimiza-
tion framework based on the ISES strategy.

The MSR benchmark problem sets

Due to the lack of comparative scheduling problem instances
of reference in literature which suitably match the character-
istics of our MSR problem description, we decided to gener-
ate a problem library by using our own benchmark instance

generator MSR/Gen3 for the class of problems here referred
to as PARC-MRS.

The benchmark library used in this work has been instan-
tiated by using seed templates whose baseline parameters
were carefully selected from specifications characterizing
recent real-world rover-based missions. More concretely, we
have based our benchmark production on one of the rover
models contained within the ESA’s 3DROV (Poulakis et al.
2008) simulator, an advanced planetary robot design, visu-
alization, and validation tool. The 3DROV’s rover model ac-
tually represents a prototype of one of the possible config-
urations of the ExoMars rover, a planned Mars mission to
search for possible biosignatures of Martian life (van Win-
nendael, Baglioni, and Vago 2005).

The MSR benchmark library used in the experimental
phase of this work consists of three different benchmark sets
(containing 40 problem instances each) where each set is
composed of instances respectively characterized by 20, 25
and 30 experiment sequences (referred to as MSR40–20,
MSR40–25 and MSR40–30, respectively)4.

Experimental results
The empirical analysis has been organized in two different
parts, relatively to the feasibility and the optimization as-
sessments respectively. The former analysis conveys the re-
sults related to the execution of the deterministic ESTAp

algorithm on the computation of a feasible schedule solu-
tion, while the second analysis focuses on the outcome pro-
duced by the optimization framework (ISES) on the attempt

3The MSR/Gen Java code can be downloaded from the follow-
ing link: atc1.aut.uah.es/∼mdolores/PARC MSR

4The complete MSR benchmark library, as well as a self-
contained description of the specific format of each problem in-
stance and seed templates can be downloaded at the following link:
atc1.aut.uah.es/∼mdolores/PARC MSR



to improve the results obtained from the feasibility analysis.
In either case, we solved the benchmark instance sets pre-
viously presented under three different environmental con-
ditions, depending on the particular period of the year the
mission takes place, i.e., summer, winter and mid-season.
The idea is to study the performances of the solar arrays
and battery-powered rover relatively to the problem at hand,
under different conditions of available daylight. More con-
cretely, a martian day is slightly longer than 24 terrestrial
hours (here considered exactly 24 hours for simplicity rea-
sons) and, depending on the particular season and latitude
of the rover’s area of operations, daytime periods might vary
from approximately 16 hours (i.e., the nights lasting 8 hours)
to 8 hours (i.e., the nights lasting 16 hours). In our study,
we also considered a “mid-season” situation where each day
is equally divided in 12 hours of daylight and 12 hours of
night. In the model, we use the simplifying assumption that
the day/night transitions occur instantaneously. Regardless
of the season, feasible solution plans must guarantee the
rover’s capability to retain the energy required to keep the
rover subsystems sufficiently warm during the night inactiv-
ity cycles. It should be noted that for obvious reasons, such
heating power can only be supplied by the onboard battery.

As explained in the previous section, 3 different bench-
mark sets are used in the experimental campaign, labeled
in agreement with the notation MSR40–x–yh, where x de-
notes the number of jobs of each instance of the set (x ∈
20, 25, 30), and y refers to the duration, expressed in hours,
of the night periods (y ∈ 8, 12, 16, referring to summer,
mid-season and winter light conditions, respectively). Every
problem instance contains four experiment sequences char-
acterized by deadline constraints (therefore defined critical),
two of which are forced to be executed at some random in-
stant before the 10th day of mission, while the other two are
forced to be completed before the 20th day of mission.

Table 1 collects the results of both the feasibility (feasi-
bility assessment section) and optimization assessment (op-
timization assessment section), for each previous benchmark
set. All the reported figures are computed by averaging the
data obtained from the 40 instances belonging to every set.
The results shown in each column of the table have the fol-
lowing meaning:

– Mkspavg(mins) is the average solution makespan length
(expressed in minutes).

– CPUavg(secs) is the average CPU computation time (ex-
pressed in seconds).

– Cacheavg(%) represents the rover’s average sample
cache usage (expressed in percentage5) along the whole
plan’s horizon.

– Batavg(%) is the battery resource usage (expressed in
percentage5) along the whole plan’s horizon.

5Resavg = 1
n∗maxCap

n∑
i=1

∫mki

0
fi(t)dt

mki
× 100, where n is

the number of problem instances, maxCap is the resource max-
imum capacity, mki is the solution’s makespan of each instance,
and fi(t) is the curve representing the resource utilization profile
along the complete makespan.

– ∆avg
LWU (%) conveys the average improvement ratio (ex-

pressed in percentage6) between the makespan lengths re-
lated to the initial and optimized solutions, respectively.

– #Iter(avg) is the average number of iterations per-
formed by ISES while attempting at improving the ini-
tial solution within an estimated maximum time window
of 10 minutes (or after 200 consecutive attempts if no
makespan improvement is obtained).

A maximum CPU time of 10 minutes has been allotted
for each optimization run. In both assessments we consid-
ered an initial mission horizon of 138 Sols (Martian days).
Finally, the current experimentation has been executed on an
Intel(R) Core(TM)2 Quad CPU Q8200 @2.33Ghz machine,
with 4Gb RAM.

From the observation of the obtained results, we can in-
fer the following conclusions. Relatively to the results re-
turned by ESTAp, it can be observed that for all the three
benchmark sets, the average makespans (Mkspavg(mins)
column, feasibility assessment) follow an increasing trend
with the shortening of the daylight periods, thus confirm-
ing our expectations about the significant impact of the sea-
sonal conditions on the solution quality (the results show
that in some cases the plan’s duration can be as much as
doubled). Still relatively to the makespan, we can appre-
ciate the significant improvement rates provided by ISES
(Mkspavg(mins) column, optimization assessment), rang-
ing from a 35.6% improvement for the MSR40–20–8h in-
stances, to a 8.5% improvement for the MSR40–30–16h
instances. It should be however observed that, in the latter
case, only an average of ≈ 3 optimization iterations have
been possible within the allotted time of 10 minutes (see
#Iter(avg) column).

Still relatively to the makespan improvement averages, it
can be observed that the deteriorating seasonal lighting con-
ditions severely affect the optimization quality (∆avg

LWU (%)
column), as the room for “compacting” the plan’s activities
decreases for reasons related to both the augmented rover
periods of quiescence, and the higher amount of battery
power that must be charged before the rover goes off-duty. In
fact, this power (which might otherwise be used to perform a
number of pre-dusk activities that have to be inevitably post-
poned to the following day) must be saved to guarantee the
equipment’s proper heating during the longer nights.

With regards to the average battery power utilization (see
both Batavg(%) columns), we observed a rather regular
trend which confirmed that the shorter the martian days’
duration, the higher is the battery average power demand.
While this result may seem quite straightforward (e.g., more
battery power is required to safely “survive” the longer
nights), the fact that approximately the same amount of
power is used for both the baseline and makespan-optimized
solutions is puzzling.

One possible explanation may be directly derived from
the formula used for the Batavg assessment, as we can see

6∆avg
LWU = 1

n

n∑
i=1

mki −mk0
i

mk0
i

×100, where mki corresponds

to the makespan length of the optimized solution provided by
ISES, and mk0

i is the the makespan length of the initial solution
provided by ESTAp



ESTAp (feasibility assessment) ISES (optimization assessment)
Benchmark Mkspavg CPUavg Cacheavg Batavg Mkspavg ∆avg

LWU Cacheavg Batavg #Iter(avg)

MSR40–20–8h 17027.2 50.367 28.575 8.864 12620.325 35.628 30.473 8.679 14.575
MSR40–20–12h 19336.232 55.609 33.062 21.511 15990.45 26.399 33.866 21.395 12.375
MSR40–20–16h 30144.4 59.440 23.535 39.771 25729.3 17.239 25.795 39.672 11.3

MSR40–25–8h 23826.228 108.793 30.458 8.91 20870.925 21.805 33.954 8.861 7.85
MSR40–25–12h 29249.686 121.651 28.153 21.598 26293.85 17.907 28.481 21.523 6.05
MSR40–25–16h 41558.232 163.706 22.062 39.825 37720.55 11.785 24.801 39.783 4.725

MSR40–30–8h 30605.825 181.842 32.674 8.889 26643.7 15.588 35.213 08.857 5.775
MSR40–30–12h 36516.125 207.214 30.166 21.639 33517.45 9.248 30.995 21.608 3.975
MSR40–30–16h 52707.65 272.359 22.435 37.185 48680.2 8.569 22.819 38.034 2.925

Table 1: Experimental results corresponding to the feasibility and optimization assessments

that while shorter plans should require less battery power
(e.g., the distance traveled are shorter), the Batavg value is
inversely proportional to the makespan (i.e., an optimized
makespan increases the Batavg value). Despite all of the
above, the very strict correspondence of values in all the
cases remains however to be fully explained.

Finally, the average rover cache utilization data (both
Cacheavg(%) columns) deserve some attention. Looking
at the Cacheavg(%) columns, a decreasing utilization of
the cache can be observed as the seasonal situation move
from the summer to the winter daylight conditions. This can
be noticed for all the MSR40–25–∗ and the MSR40–30–
∗ benchmark sets, and the same behavior applies to both
the feasibility and the optimization assessment data (even
though it can be observed that in the makespan-optimized
solutions the average cache utilization tends to increase).
This circumstance is easily explained as a direct conse-
quence of the longer times necessary to complete the same
missions under less favorable power charging conditions
(i.e., longer plan makespans entail a less efficient cache uti-
lization). Yet, it can also be observed that in the MSR40–
25–∗ case, the previous regular trend is not followed: as
the lighting conditions worsen, there is an “counterintuitive”
behavior where the average cache utilization seems to in-
crease, before definitely falling to the expected values. This
“anomaly” on the general trend might be explained with the
influence of the maximum time windows on the execution
of some job sequences, which may cause the rover to de-
cide not to release all of the acquired samples at the AV
location before heading for a new experiment’s location,
in order to satisfy some experiment-related deadline con-
straint. It is straightforward that in all such circumstances,
the cache utilization tends to increase as the cache itself
remains occupied by the unreleased samples. The reason
this phenomenon becomes evident only with the smaller in-
stances (i.e., those composed of 20 experiment sequences) is
related to the fact that, since each problem instance always
has 4 sequences characterized by a deadline (regardless of
its size), the presence of such deadlines become more rele-
vant for the instances where the constrained/unconstrained
sequences ratio increases.

Conclusions and Future Work
In this paper we presented last results on delivering ad-
vanced autonomous reasoning capabilities to robotic plan-
etary exploration. In our current work, we were inspired

by the requirements of a particular rover-based Mars ex-
ploration mission, namely, the Mars Sample Return (MSR)
mission concept. One of the contribution of this work is to
integrate the most significant MSR mission requirements
into a scheduling problem model, the Power Aware Re-
source Constrained Mars Rover Scheduling (PARC-MRS)
problem. Following the proposed model, we presented a
scheduling algorithm aimed at synthesizing complete plan
sequences that span the whole mission horizon by reason-
ing upon a wide set of realistic mission requirements. More
concretely, the reasoner we propose focuses on a number of
results belonging to previous research, and provides an ex-
tension of a well-known constraint-based, resource-driven
procedure which exploits power-aware reasoning capabili-
ties within an integrated resolution strategy, where a wide
variety of complex temporal and resource constraints are
considered, with special attention paid to the energy require-
ments. Indeed, one of the main contributions of this work
is the successful exploitation of a well known methodol-
ogy to represent renewable resources by means of a classi-
cal cumulative scheme, to model and solve the PARC-MRS
problem. We also conducted an experimentation assessment
to evaluate the efficiency of our solution algorithm, as well
as the effectiveness of an optimization schema in providing
minimum-makespan solutions.

The contents of this paper describe an ongoing work.
More activities are currently being carried out in many direc-
tions, like the refinement of the terrain model to take into ac-
count characteristics such as slope, compactness, roughness,
etc., in view of a fully dynamic utilization of the scheduling
engine in a simulated Sense-Plan-Act loop execution con-
text. It was outside the scope of this paper to present the
preliminary results of such experimentation. The interested
reader may refer to (Dı́az et al. 2012) for more information
on the current state of activities.
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