
Integral AI-based planning for management of
WSNs in military operations

J. Caballero
Universidad de Alcalá, ISG
Alcalá de Henares, Spain

ORCID: 0000-0003-3099-3640

Olaya Perez-Mon
Universidad de Alcalá, ISG
Alcalá de Henares, Spain

ORCID: 0000-0002-4527-6698

Maria D. R-Moreno
TNO & Universidad de Alcalá
The Hague, The Netherlands

ORCID: 0000-0002-7024-0427

Julio de Oliveira Filho
TNO, IAS

The Hague, The Netherlands
ORCID: 0000-0001-5152-4902

Abstract—Military tactical scenarios have been shifting to
more often consider combat situations in urban environments.
Threats in these environments are generally more dynamic in
nature, imposing new requirements on sensors and commu-
nications systems that support military operations. Wireless
sensor networks (WSNs) with a large number of small and
mobile computing nodes became the typical solution. However,
WSNs demand additional complexity to dynamically manage
their tasks, resource allocation, mobility, power consumption, and
communication.

This paper illustrates the integration of AI techniques into a
Battle Management System (BMS) to support military operations
in urban environments. The BMS is enhanced with an AI-based
planner able to plan tasks, allocate resources, and monitor the
WSN operation. The planner takes into consideration energy
harvesting capabilities, secure data transfer, and authorization
procedures. It generates plans using the information received
from the sensors. In case new situations emerge, based on data
fusion information, it automatically replans to adapt to the
uncertainty in the environment. Finally, it takes into account
the coverage between the different components to optimize the
communications and better support WSN’s operator(s) and their
activities.

Index Terms—AI planning, Replanning, Goal Reasoning, Data
Fusion, WSN, Sensor Data.

I. INTRODUCTION

In recent years, there has been a notable shift in military
tactical scenarios with more emphasis on asymmetric urban
combat situations than on traditional open-field warfare. That
shift creates new requirements for sensing and communication
military capabilities to address challenges related to the urban
environment. Key challenges include the more unpredictable
nature of threats, a larger number of locations where a threat
can arise, and the need to continuously monitor extensive
areas. The use of large-scale networks of wireless and unat-
tended sensors became the typical solution proposed to address
these challenges [6] [5]. The development of such networks
has been supported in the Network Enabled Capabilities
(NEC) [8] paradigm, introduced by the British military and
adopted by NATO members [7]. NEC lays the base for a
dynamic, network-centered combat infrastructure.

Numerous studies on Wireless Sensor Networks (WSN)
advanced specific design aspects, such as selecting sensor
technologies [4] or the semantic interoperability of sensor

European Defence Agency (EDA)

services [3]. These aspects are predominantly determined
during the network’s design phase, resulting in a static de-
ployment that lacks adaptability to changes on the battlefield.
During contemporary conflict situations, sensors can be highly
mobile (e.g. deployed as UxVs’ payloads), remotely exchange
processing and communication tasks, and harvest energy when
possible or necessary. Ongoing research, therefore, aims to
develop dynamic and adaptive WSNs that can reconfigure
themselves in response to changing conditions [2] [1].

New advances in fields such as Artificial Intelligence (AI),
Machine Learning (ML), and Robotics, offer adequate mech-
anisms to exploit the dynamic aspect of WSNs to their full
potential. AI and ML techniques benefit from the large amount
of data produced by numerous sensors and are prominently
efficient for tasks such as detection and recognition. Besides
that, AI-based planners can exploit the dynamic network
adaptation to optimize the system’s performance in real-time,
effectively addressing the unique demands of urban combat
scenarios.

This paper illustrates the research and the integration of
AI techniques to support the Battlefield Management System
(BMS) in urban environments. The work is funded by the
European Defense Agency, under the project WIreless sensor
Networks for urban Local Areas Surveillance (WINLAS).
We introduce an AI-based planner and executor for mission
tasks and WSN resource allocation that considers many factors
including the dynamic behavior of urban environments, the
node’s energy harvesting capabilities, the dynamic exchange
of sensor and computing capabilities, and communication
protocols. In particular, our BMS integrates AI techniques that
allow:

• Automated planning: It generates a sequence of actions
to achieve specific goals in a dynamic and uncertain
environment. It considers various factors such as mission
objectives, available resources, sensor coverage require-
ments, authentication, and potential threats.

• Intelligent Resource Allocation: It assists in dynamically
allocating resources in WSNs, including energy, band-
width, and computational capabilities.

• Monitoring and Failure Recovery: It monitors the plans
and goals based on the information received from the
different components through data fusion techniques. It
ensures the feasibility and assesses the relevance of the

planned tasks for the mission.
The paper is structured as follows. Section II introduces the

main WINLAS components.Then, section III describes MA-
LAMA, an AI planner developed to carry out the automatic
generation of plans to support military operations. Section IV
outlines the techniques for monitoring and failure recovery of
the plans. Section V shows some of the scenarios that we are
evaluating in WINLAS. Finally, conclusions and future work
are outlined in section VI.

II. WINLAS OVERVIEW

At the beginning of a military campaign, the operator
initiates a mission through the BMS (e.g., red force tracking).
Using the Graphical User Interface (GUI), the operator has
the ability to select different areas on a map, defining the
target regions of interest. This selection triggers a call to
INFOSTAR [26], a data fusion and authentication tool, which
in turn provides the operator with a comprehensive list of
available resources within the WINLAS network. In particular:

Platforms
We consider squads, drones, and vehicles as plat-
forms. Vehicles and drones can be electrical, fuel-
based, or hybrid. Drones can also be a “smart drone”
type, which plans tasks to perform an assigned goal
without the help of our BMS planner.

Sensors
In WINLAS there are different types of sensors
available such as infrared (IR), cameras, radio mon-
itor, optical, acoustic, seismic, life signs (e.g. Body
Network), and Chemical, Biological, Radiological
and Nuclear (CBRN).

Functions
Depending on the mission, there are several func-
tionalities. In our red force tracking mission, there
are defined functions such as threat alerting, threat
monitoring, etc.

With the list of available components, the operator can now
make informed decisions regarding the specific resources to
be utilized for the operation. Through the GUI, the operator
selects them, indicating the platforms, sensors, and functions
that will contribute to the mission. This selection is then
transmitted to an AI planner, MA-LAMA (see next section
for further details), a powerful computational tool designed to
optimize operations.

The AI planner takes into account the selected components,
along with the mission objectives and constraints, and gener-
ates a detailed plan of action. These actions outline the specific
commands that will be executed by the platforms, sensors, and
functions involved in the operation.

With the action plan in hand, the operation enters the
execution phase if the operator agrees with the resulting plan.
At any moment, the operator can accept or reject the plans
that are visually presented to the GUI; add or remove any of
the platforms, functions, and sensors available in the area of
operation; and set new goals or discard previous ones.

Fig. 1. WINLAS Components

If the plan is accepted, the platforms and sensors start
carrying out the assigned tasks. As the operation progresses,
the parameters of the platforms and sensors may dynamically
change due to environmental factors or unexpected events.
These changes serve as crucial feedback for the system.
The data fusion and authentication tool (i.e. INFOSTAR)
continuously monitors and analyses these changes. If the
observed changes significantly deviate from the expected or
planned parameters, the tool triggers a need for replanning.
The process of replanning involves reassessing the mission
goals, incorporating new information, and adapting the action
plan to ensure optimal performance in light of the evolving
circumstances. This iterative cycle of planning, execution,
and potential replanning ensures that the operation remains
flexible, adaptive, and responsive to the dynamic nature of the
mission.

In Figure 1, we can see the WINLAS components and the
information flow among them.

III. PLANNING MILITARY OPERATIONS

Automated planning (AP), or simply planning, is the area
of AI that computationally studies the deliberation process of
finding a set of actions that achieve a set of goals. This set of
actions, also called a plan, is determined by a search process,
which is based on constraints, rules, and characteristics defined
in a domain, and an initial and final state defined in a problem.

Depending on these characteristics, the different AP
branches study different types of problems, such as classi-
cal, numerical, temporal, or probabilistic planning [14]. In
WINLAS, we study a temporal problem, which considers that
actions that are set in the domain have a duration and can
define conditions and effects at their start and end.

The deliberative process that is performed to solve the
problem and produce a plan carries out a search, following
the rules set by the domain. This search is done by a planner,
which will make use of different search algorithms, such as
greedy and A*, and heuristics, mathematical formulas that will
serve to guide and optimize the search through estimations
on how close the intermediate steps of the search are to the
solution of the problem. Additionally, the quality of a plan
can be measured by other numerical variables defined in the

domain, such as the duration of all present actions, or other
domain-dependent variables such as the risk, which shall be
defined in the problem metric.

In the following subsections, we will review our proposition
for the domain and problem that will be used in the WINLAS
system, as well as the main characteristics of the utilized
planner, MA-LAMA, a temporal planner that makes use of
state-of-the-art multi-agent temporal planning techniques to
tackle and solve temporal problems, optimizing any set of
numeric variables defined in the metric.

A. Domain description

In the frame of AP, the domain definition is represented
in the Planning Domain Definition Language (PDDL) [16], a
standard planning language that allows to declare domains and
problems.

• The domain is described by sets of variable types, logical
predicates, numerical functions, and actions. Thus, a
domain defines the logic proposition of the world: present
objects and agents, the environment where they exist and
operate, and the rules under which they can interact.
These rules, also called actions, are transformations that
can be applied to the current state of the world. They are
formed by parameters, objects, and agents in the world
that are involved in the world transformation. They also
consist of preconditions – logic prepositions that need to
be true in the current state in order for the action to be
eligible to be applied – and effects, which are the logic
prepositions that will change in the world state once the
action is applied.

• For the problem, we need to define the instances of the
typed variables, the initial state of the world (i.e. the
instances of the predicates defined in the domain and
the numerical functions of the initial values) as well as
the goal state that needs to be achieved following the
established rules, and the metrics.

Additionally, since PDDL 2.1 [15], the temporal framework
is introduced and defined, including in the actions the concept
of duration, which is the time that must pass for the next action
to take place. Including this concept in the formulation of an
action means that the conditions and effects are affected. The
conditions are divided into three categories: (1) preconditions
that need to be true before the action starts, (2) preconditions
that need to be true before the action ends, and (3) precondi-
tions that need to be true at all times for the entirety of the
duration of the action. Effects on the other hand are divided
into two types: (1) effects that are applied to the world when
the action starts, and (2) effects that are applied to the world
when the action ends.

An example of a PDDL2.1 action of this domain is shown
in Figure 2. We can see that the action MoveSquad involves a
squad and two waypoints, one for the origin and one for the
destiny; and a duration that depends on the distance between
the two points and the speed at which the squad moves. Then,
the pre-conditions are declared (condition field in Figure 2).
The first one, that needs to be true at the start of the action,

indicates that the squad must be at the origin position. The
second one, which needs to be true for the entirety of the
action duration, indicates that the path between the two points
must be traversable. For the effects (effect field in Figure 2),
the first one will be applied at the start of the action, and it
defines that the squad is no longer in the origin position. The
next two, which will be applied at the end, set that the squad is
at the end of the action at its destiny and that the total distance
traveled by the squad increases by the distance between the
two points.

In order to work inside the WINLAS architecture, our
PDDL2.1 domain contains the following definitions. We in-
stantiate several types of acting entities, also called agents:
squads, vehicles, and drones, which all can move around a set
of positions in an area of a map decided by the operator. We
also declare several types of sensors (see previous section for
the list of sensors considered). As the agents move through
the different map positions, they all can carry, place, activate,
and deactivate the sensors, which can take measures once they
are placed and are active in a given position, or while they are
carried by an agent. The numerical values will define the speed
at which the agents move, the distances between positions,
and the duration of all actions, using a combination of the
distance traveled by the agents and the total duration of the
plan as the metric to measure quality. Energy constraints are
also taken into consideration, so recharging actions are also
planned. Finally, the goals will be a set of measurements being
done in defined map positions to provide better coverage.

The main planning challenge in this domain is the opti-
mization of the available resources, i.e. the sensors between
all the agents, so that the final solution makes the best possible
use of the available resources through the cooperation of the
present agents, striving to optimize the defined metric. In the
following section, we will describe how this planner works
and its main features.

B. LAMA

The planner developed to solve the WINLAS domain is a
multi-agent temporal planner built upon the LAMA planner
[17]. LAMA was the winner in the sequential satisficing
track of the International Planning Competition (IPC) in 2008.
It utilizes forward multi-heuristic search to solve classical
planning problems, using both a landmark heuristic (i.e. based
on propositional formula sets that need to be true in every
possible solution that the planner can achieve) and the FF
heuristic (i.e. ignore the delete effects in a relaxed planning
graph) [27]. Prior to the search phase, LAMA conducts a
translation and preprocess phase over the PDDL read domain
and problem, as it operates internally under the finite-domain
variables paradigm [25] [24], rather than the PDDL defined
binary variables one. By searching for two cost-sensitive
heuristics, LAMA is able to produce high-quality classical
plans through iterative weighted A* searches. However, it does
not support metrics and the temporal framework of PDDL 2.1.

(: d u r a t i v e − a c t i o n MoveSquad
: p a r a m e t e r s (? a − squad ? c1 ? c2 − waypo in t)
: d u r a t i o n (= ? d u r a t i o n (/ (d i s t a n c e ? c1 ? c2) (speed ? a)))
: c o n d i t i o n (and (a t s t a r t (p o s i t i o n ? a ? c1))

(ove r a l l (t r a v e r s a b l e ? c1 ? c2)))
: e f f e c t (and (a t s t a r t (n o t (p o s i t i o n ? a ? c1)))

(a t end (p o s i t i o n ? a ? c2))
(a t end (i n c r e a s e (a g e n t d i s t ? a) (d i s t a n c e ? c1 ? c2)))))

Fig. 2. Move Squad action in PDDL2.1 syntax

C. MA-LAMA

In order to make use of the highly optimized search process
of LAMA, we have introduced several changes that allow us
to solve temporal multi-agent complex-metric problems. This
version is named MA-LAMA.

First, a temporal framework is introduced by modifying the
translate, preprocess, and search LAMA phases. We included
the ’snap-actions’ [19] solution in the translation phase, used
in other modern temporal planners such as OPTIC [18].
That permits to create a new init-end pair of actions for
each durative one, inheriting the appropriate preconditions and
effects and dealing with the duration as a numerical function.
The benefit of including the ’snap-actions’ solution is that
it allows us to later translate the full planning task to the
limited-range variables paradigm without additional effort. The
only remaining point to make this translation possible is the
functional variables encoding, which we will address later
in this section. Then, during the search phase, the duration
numerical function is used as a precondition for the end-
actions to be included in the plan, and as an effect to correctly
monitor the global duration of the plan.

Multi-agent techniques have already proven that they are
capable of reducing the complexity of problems that involve
more than one acting entity (agents) [20]. During the LAMA
translate phase, MA-LAMA performs a problem automatic
agent decomposition, creating a set of individual domains and
problems that can be solved individually. This decomposition
is based on the work of Crosby et. al [21], where the origin
nodes of the Casual Graph after a level-two cycle removal are
used as the root to define the agents, but some changes were
introduced in order to make this decomposition reliable in a
diverse set of domains.

Once the number of agents has been detected, a goal assign-
ment process is carried out by launching relaxed non-delete
searches, one for each detected agent. This process is similar
to the goal assignments that are present in planners such as
CMAP [22] in the multi-agent planning competition CoDMAP
[23]. This allows us to estimate the metric cost of reaching
each goal for each agent, and the final goal assignment is the
one that minimizes the global metric estimation. The other
elements of the domain and problem, such as the metric
components, predicates, and actions, are only added to each
agent problem if they are needed to achieve the goals they

Fig. 3. MA-LAMA architecture overview

were assigned to. Later, each domain and problem pair will
be solved individually, so MA-LAMA will launch as many
search phases as the number of agents that were detected in
the translation phase.

In order to deal with more complex metrics, a new nu-
merical framework has been implemented on top of the
finite-domain representation. This means that we create finite-
domain numerical variables by expanding all the possible val-
ues the numerical functions can take, dealing with them as log-
ical variables until the search phase. This allows MA-LAMA
to correctly deal with complex metrics, as any weighted
combination of domain functions, and numerical conditions
for actions.

As MA-LAMA can launch several search phases if more
than one agent is detected, a plan repair and unification phase
is needed. This phase will analyze each agent’s actions and
will try to build the final cooperative plan, taking into account
the temporal and logical constraints that emerge when dealing
with shared domain variables, such as shared resources. Once
this phase has finished, the final plan will involve all agent’s
actions and will accomplish all the goals that were set in the
original problem file.

Thus, the final structure of the MA-LAMA planner is the
one that can be seen in Figure 3. We can see the Translate
and Preprocess phases are launched one time, extracting the
necessary information to perform the automatic agent decom-
position. Later, once this decomposition has been performed,
the Search phase will be launched for each agent, and the
Unify phase will recollect each agent’s plan, building the
final cooperative multi-agent plan and repairing it if it was
necessary.

D. Domain and problem generation

Most of the work in the generation of PDDL domains
is done by planning experts, mostly manually. This process
requires a deep understanding not only of the language itself
but also of the specificity of the domain to correctly define
actions, the relationships between agents, and the constraints
of the problem. Due to the time-consuming and tedious nature
of this task, an automated procedure has been developed to
generate PDDL domains and problems. It uses the external
source of information coming from INFOSTAR from which
the necessary data is extracted and transformed into the
PDDL format using Python and Jinja2. It extends the work
of Gregory [28] that focuses only on problem generation and
custom reporting. We also automatically generate the domain
description. This allows a quick generation of problems and
domain descriptions without requiring expertise in planning.
It also facilitates working with large amounts of data when
compared to traditional approaches. All this translation process
is seamless for the user.

IV. INTELLIGENT EXECUTION OF THE PLANS

Planning is the reasoning side of acting. When acting (or
executing a process), we need to decide how to perform the
chosen activities while reacting to the environment where they
are taking place. Each action in the plan can be seen as
an abstract task that needs to be refined into subactions or
commands that are more concrete.

In real environments, as is the case of WINLAS, we need to
examine the situation where an initial plan has been created,
but the context in which it is being executed deviates from
the expected conditions. This deviation could be caused by
a mismatch between the anticipated and the observed values
due to unmanageable factors in the environment. Alternatively,
it could be a result of changes in the goals of our original
plan, requiring us to address new goals while potentially
disregarding others.

In the following subsections, we address the techniques used
to face these two problems.

A. Failure Detection

We have studied two main approaches for solving the
problem of failure detection: plan repair and replanning.

Plan repair means adapting an existing plan to a new
context while perturbing the original plan as little as possible.
One common technique is plan repair or plan stability [12].
It refers to an adaptation strategy that takes into account the
differences between 2 plans, based on the number of actions
in common. By contrast, replanning is the work of generating
a new plan from scratch without considering stability [13].

In some of the scenarios analyzed, the new plans had in
general very few (or none) goals in common, then, the strategy
presented by Fox et al. [12] was less suitable. However, in the
future, we want to study more in detail this functionality and
add it to our planning system MA-LAMA. Instead, we have
followed a similar approach as Cashmore et al. [13], framing
the replanning problem as a temporal planning problem with

a dynamic initial state. We follow the same classification for
the type of actions: non-interruptible and interruptible. The
first type represents actions that once they have started, cannot
be modified during the execution time. It will either continue
executing until it has accomplished the goal or it will fail and
cause replanning. An example of a non-interruptible action
is the deployment of a sensor, the duration of the action
during the execution phase cannot be altered. Instead, in an
interruptible action, the duration can be adjusted. An example
of an interruptible action is the flying action of a drone. Its
duration can be reduced or the end position where the drone
has to move can be changed.

In the same way as Cashmore et al. [13] state in the
paper, we never start executing a new action from the original
plan when replanning has started, we just finish executing
the already started executing actions. Then, we take into
consideration their invariant conditions and end effects. In this
way, we ensure there are no time inconsistencies.

B. Goal reasoning

Goal reasoning, also known as Goal Driven Autonomy
(GDA), operates as a supervisory function within mission
management. Its primary objective involves monitoring the
current goals of a system, ensuring their ongoing feasibility
and relevance to the mission at hand, and initiating the
establishment of new goals which are passed to the planner.
[9].

As a monitoring function [11], it continuously checks for
unexpected events or situations. It does not rely on the explicit
prediction of the current plan and it may react to unexpected
events by establishing new goals.

In WINLAS this role has been delegated to INFOSTAR.
Thanks to the data fusion algorithms over the data received
from the sensors and platforms, it is able to determine which
new goals should be established and which ones should be
discarded. Then, the planner generates a new plan having
in mind the conditions established for the failures detection
module.

V. EXPERIMENTS

In this section, we present two scenarios to show the
capabilities of MA-LAMA and the overall functionality of the
WINLAS system.

A. Scenario example

The Operations Area used to carry out the experiments
is located within the Campus of the Universidad de Alcala.
This scenario has been chosen as an example to preserve
the confidentiality of the actual area where the demonstration
of WINLAS will be conducted, and because it represents
an urban area with similar characteristics to the real demo.
Furthermore, for the sake of easier visualization of the plans, a
low number of sensors has been used, whereas, in reality, these
plans should consist of a large number of sensors, making
this capability one of the main demonstration objectives of
WINLAS.

Fig. 4. Military operation plans. a) Deployment of sensors in a nominal situation. b) Detection of an explosion with new goals setting.

Initially, the operator selects the location area to operate
which triggers INFOSTAR to return the platforms, sensors,
and/or functions that can be used in those areas. At the
beginning, all the platforms and sensors available are at the
Operations Center (red area of Figures 4a and b). In the
first example (see Figure 4a), she establishes as the mission
goal the deployment of a network of sensors with the fol-
lowing functionalities: Chemical Threat Detection, Vibration
Detection, Radio Monitoring, and Body Monitoring. With this
information, the planner is launched, which provides us with
the solution shown in Figure 5a). The first step involves
switching them on (if they were off), deploying sensors at
points where the communication between the different compo-
nents is optimal, and gathering information about the situation
in those areas. Due to the difficult accessibility of Area A (blue
area), a squad equipped with a Body Network is decided to
be used to place the sensors. This squad will place two sets
of sensors: a seismic detector to monitor vibrations in the
area and an acoustic sensor to detect shots. Simultaneously,
a vehicle is preferable to be used to dispatch the sensors in
Area B (purple area) for the CBRN sensor. Additionally, a
Radio Monitoring sensor is also deployed to intercept radio
communications in a position where all the elements have the
best communication possible.

Once all the sensors were deployed, they started acquiring
data. According to the information captured, an explosion has
occurred (see Figure 4b). Consequently, the INFOSTAR data
fusion tool, based on the obtained information, inferences that
there will be red forces in op top of area C, and it should be
checked. It automatically sets new goals to be achieved: detect
people and record the area of the explosion. The area and the
resources available (2 Electric Smart Drones equipped with
cameras, and the vehicle) are shown to the operator. Once she
approves it, these new goals are sent to the planner, generating
a new plan (see Figure 5b). The planner decides to send the 2
Electric Smart Drones to the new area to detect any potential
individuals present in the explosion area. And, simultaneously,

on the ground, the vehicle previously located in Area B moves
towards Area C. Its objective is to place a camera in a suitable
position to record the area.

The duration of the Move/Fly actions varies depending on
the distance between the platform and the point of interest, as
well as the speed at which the platform moves. On the other
hand, the duration of the different actions associated with the
sensors depends on the specification of the manufacturer. This
information is registered from the GUI.

B. Comparison to other planners
In order to prove the suitability of MA-LAMA for WIN-

LAS, we have launched several tests and compared the per-
formance of our new planner against other temporal planners.
Before explaining the planners we have compared it to, it is
important to clarify the reason why we have not compared
MA-LAMA against the most obvious choices, being these
the participants of the Competition of Distributed and Multi-
agent Planners (CoDMAP) [23], and other temporal multi-
agent planners. First, although all CodMAP participants are
able to deal with multi-agent domains, the competition was
performed under a classical planning paradigm, not temporal,
which means that they are not able to correctly deal with
durative actions and, therefore, with domains such as the
ones we are considering here. Additionally, other multi-agent
planners that are able to deal with temporal problems, such
as TFPOP [29] are not available for free use. This means
that our main goal in this test will be to prove that MA-
LAMA is necessary so that we obtain the best possible solution
measured by two key factors: (1) plan metric value, and (2)
cooperativeness degree, which means to make the best possible
temporal use of each agent, which can be measured as the total
number of actions per agent and in the total plan.

Thus, as MA-LAMA do not need any multi-agent depen-
dent definition in the domain, as would be necessary using
MA-PDDL [30], a multi-agent variation of PDDL 3.1, MA-
LAMA can be compared against temporal planners that are
able to consider plan metrics, such as OPTIC, SGPlan and

Fig. 5. Plans of the two scenarios considered in Figure 4 generated by MA-LAMA. The duration of the actions is in minutes.

LPG. OPTIC [18] is a temporal planner that is able to deal
with plan quality metrics that are not related to the duration
of the plan, supporting the use of hard and soft temporal
constraints and continuous cost functions. SGPlan [31], whose
approach is dividing the full problem into subproblems by
finding subgoals, uses multi-valued world representation to
produce more efficient heuristics in order to deal with temporal
constraints. And, finally, LPG [32], a multi-heuristic planner
that produces high-quality plans using partial planning, and
that is able to keep track of several parallel steps in the cost
function and plan duration. The results for the first problem
can be seen in Table I.

TABLE I
Results for the problem of Figure 4a) by each planner. The values taken into

account are the number of actions in the final plan, the metric value (i.e.
duration) and the search time in seconds.

MA-LAMA SGPlan Optic LPG
Number of actions 20 21 21 20

Metric 74.269 109.881 92.847 74.269
Search Time (sc) 0.02 0.01 0.06 0.01

What can be seen in the first experiment is that the main
complexity of the plan comes from the ability of the planner
to deal with simultaneous actions in each and between agents.
MA-LAMA demonstrates here that, by reducing the complex-
ity and the amplitude of the search space, it becomes easier to
find the best possible action sequence to minimize the metric,
producing better solutions. After the agent decomposition is
done, the set of actions that the planner needs to consider the
possibility to execute each time unit becomes much smaller,
and key interactions between simultaneous actions are found
faster. LPG and MA-LAMA find the best possible solution.
Then, OPTIC and SGPlan find worse solutions in the number
of actions and the duration of the plan.

For the second problem, the results can be seen in Table II.
In this case, we can see that the decrease in complexity

of the problem helps all planners to find the best possible

TABLE II
Results for the problem of Figure 4b) by each planner. The values taken
into account are the number of actions in the final plan, the metric value

and the search time in seconds.

MA-LAMA SGPlan Optic LPG
Number of actions 7 7 7 8

Metric 19.713 19.721 19.715 19.714
Search Time (sc) 0.01 0.00 0.02 0.00

solution in terms of metric, as the search space is reduced
and simultaneity can only happen between agents, not inside
each agent plan. Nevertheless, it is important to note that LPG
introduces an extra action that does not affect the metric. This
would normally not be relevant to mention since it can be
still considered that it is the best possible solution, but if we
are evaluating the capacity of a planner to deal with multi-
agent problems, not introducing extra actions that delay each
agent plan, even if it does not affect the overall metric, is not
desirable, as in real-life scenarios would mean that the Electric
Smart Drone is available for other uses later in time.

Thus, we can conclude that in these two scenarios, MA-
LAMA performs better than the other planners in this multi-
agent domain, as it produces the best possible solution in the
two cases.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented an AI-based BMS to sup-
port military operations in urban environments. The tool pro-
vides several important functionalities in the context of sensor
networks and operational activities. It enables the scaling of
sensor networks with the capability of self-energy harvesting,
ensuring a sustainable and independent power source for the
sensors. Additionally, it facilitates secure data transfer and
authorization, ensuring the integrity and confidentiality of the
transmitted information.

One of the main features of the tool is its ability to generate
plans based on the information received from the sensors. By

analyzing the sensor data, it formulates actionable plans and
strategies for various operational activities. We have described
the AI-planner MA-LAMA, a multi-agent temporal planner
that provides optimized solutions for the scenarios. Since MA-
LAMA supports PDDL 2.1 language, we can model a wide
range of problems regardless of the scenario. In situations
where new and unexpected events or circumstances arise, the
tool employs data fusion techniques to integrate and analyze
information from multiple sensors. This enables it to gain a
comprehensive understanding of the environment and generate
new goals or discard old ones. By automatically replanning, it
ensures that the operations remain effective and responsive to
the changing dynamics and uncertainties in the environment.

In the future, we want to test MA-LAMA in more compli-
cated scenarios where charging stations are placed in different
positions on the map and vehicles are considered charging
stations for the drones. In this way, we will be able to consider
other metrics such as energy consumption or risk as the metrics
for the plan optimization.

ACKNOWLEDGMENT

This project is funded by the EDA project number
B1486IAP4GP.

REFERENCES

[1] L. B. Ruiz, J. M. Nogueira, and A. A. F. Loureiro. Manna: A manage-
ment architecture for wireless sensor networks. IEEE Communications
Magazine, 41(2):116–125, 2003.

[2] C. De Marziani, R. Alcoleas, F. Colombo, N. Costa, F. Pujana, A.
Colombo, J. Aparicio, F. J. Alvarez, A. Jimenez, J. Urena, et al. A low
cost reconfigurable sensor network for coastal monitoring. In Procs. of
the IEEE OCEANS 2011, pp: 1–6, 2011.

[3] B. J. Powers. A multi-agent architecture for nato network enabled
capabilities: enabling semantic interoperability in dynamic environments
(nc3a rd-2376). In Service-Oriented Computing: Agents, Semantics, and
Engineering: International Workshop, SOCASE 2008, Estoril, Portugal,
May 12, 2008 Procs., pp: 93–103. Springer, 2008.

[4] M. Winkler, K.-D. Tuchs, K. Hughes, and G. Barclay. Theoretical
and practical aspects of military wireless sensor networks. Journal of
Telecommunications and Information Technology, pp: 37–45, 2008.

[5] A. Ali, Y. K. Jadoon, S. A. Changazi, and M. Qasim. Military oper-
ations: Wireless sensor networks based applications to reinforce future
battlefield command system. In 2020 IEEE 23rd International Multitopic
Conference (INMIC), pp: 1–6. IEEE, 2020.

[6] M. P. Urisic, Z. Tafa, G. Dimic, and V. Milutinovic. A survey of military
applications of Wireless Sensor Networks. In 2012 Mediterranean con-
ference on embedded computing (MECO), pp: 196–199. IEEE, 2012.

[7] C. R. F. Palaganas. Implementing NATO network enabled capability:
Implications for nato response force’s envisioned roles. Information as
Power, 1:175–197, 2007.

[8] D. Ferbrache. Network enabled capability: concepts and delivery. Journal
of Defence Science, 8(3):104–107, 2003.

[9] M. Molineaux, M. Klenk, D. W. Aha. Goal-driven autonomy in a navy
strategy simulation. In Procs. of the 24th AAAI Conference on Artificial
Intelligence, pp: 1548–1554, 2010.

[10] M. Iovino, E. Scukins, J. Styrud, P. Ögren, C. Smith. A survey of
Behavior Trees in robotics and AI. Robotics and Autonomous Systems,
154:104096, 2022.

[11] F. Ingrand, M. Ghallab. Deliberation for autonomous robots: A survey.
Artificial Intelligence, 247:10-44, 2017. ISSN 0004-3702,

[12] M. Fox, A. Gerevini, D. Long, I. Serina. Plan stability: replanning versus
plan repair. Procs. of the 16th International Conference on Automated
Planning and Scheduling (ICAPS), 2006.

[13] M. Cashmore, A. Coles, B. Cserna, E. Karpas, D. Magazzeni, W.
Ruml. Replanning for Situated Robots. Procs. of the 29th International
Conference on Automated Planning and Scheduling (ICAPS), 2019.

[14] A. Cales, A. Coles, M. Martinez, P. Sidiropoulos. International Planning
Competition in ICAPS, 2018.

[15] M. Fox, D. Long. PDDL2.1: An extension to PDDL for expressing
temporal planning domains. Journal of Artificial Intelligence Research,
20:61-124, 2006.

[16] M. Ghallab, C. Knoblock, D. Wilikins, A. Barrett, D. Christianso, M.
Friedman, C. Kwok, K. Golden, S. Penberthy, D. Smith, Y. Sun, D.
Weld. PDDL - The Planning Domain Definition Language. The 4th
International Conference on Artificial Intelligence Planning Systems
1998 (AIPS 98), 1998.

[17] S. Richter, M. Westphal. The LAMA planner: Guiding cost-based
anytime planning with landmarks. Journal of Artificial Intelligence
Research, 39:127-177, 2010.

[18] J. Benton, A. Coles, A. Coles. Temporal planning with preferences
and time-dependent continuous costs. Procs. of the 22nd International
Conference on Automated Planning and Scheduling (ICAPS), pp: 2-10,
2012.

[19] D. Long, M. Fox. Exploiting a Graphplan Framework in Temporal
Planning. Procs. of the 13th International Conference on Automated
Planning and Scheduling(ICAPS), pp: 52–61, 2003.

[20] A. Torreño, E. Onaindia, A. Komenda, M. Štolba. Cooperative Multi-
Agent Planning: A Survey. ACM Comput. Surv. 50, 6, Article 84:32,
2017.

[21] M. Crosby, M. Rovatsos, R. Petrick. Automated Agent Decomposition
for Classical Planning. Procs. of the 23rd International Conference on
Automated Planning and Scheduling, pp: 46-54, 2013.

[22] D. Borrajo, S. Fernández. MAPR and CMAP. Procs. of the Competition
of Distributed and Multi-Agent Planners (CoDMAP), pp: 46-54, 2015.

[23] M. Štolba, A. Komenda, D. L. Kovaks. Procs. of the Competition of Dis-
tributed and Multi-Agent Planners (CoDMAP). International Conference
on Automated Planning and Scheduling (ICAPS), 2015.

[24] C .Backstrom, B. Nebel, Complexity results for SAS+ planning. Com-
putational Intelligence, 11(4):625-655, 1995.

[25] M. Helmert. The Fast Downward planning system. Journal of Artificial
Intelligence Research, 26:191-246, 2006.

[26] P. de Oude, G. Pavlin and J. P. de Villiers. High-Level Tracking Using
Bayesian Context Fusion. 21st International Conference on Information
Fusion (FUSION), Cambridge, UK, pp: 1415-1422, 2018.

[27] J. Hoffmann and B. Nebel. The FF Planning System: Fast Plan
Generation Through Heuristic Search. Journal of Artificial Intelligence
Research, 14:253 - 302, 2001.

[28] P. Gregory. PDDL Templating and Custom Reporting: Generating Prob-
lems and Processing Plans. Procs. of the 30th ICAPS, Nancy, France,
pp: 14-19, 2000.

[29] J. Kvarnström. Planning for loosely coupled agents using partial order
forward-chaining. Procs. of the 21st International Conference on Auto-
mated Planning and Scheduling (ICAPS), pp: 138–145, 2011.

[30] D. L. Kovacs. Kvarnström. A Multi-Agent Extension of PDDL3.1.
22nd International Conference on Automated Planning and Scheduling
(ICAPS), pp: 19-27, 2012.

[31] C. W. Hsu, B. W. Wah, R. Huang, Y. X. Chen. Handling Soft Con-
straints and Goals Preferences in SGPlan*. Proc. ICAPS Workshop on
Preferences and Soft Constraints in Planning, 2006.

[32] A. Gerevini, I. Serina:. LPG: a planner based on local search for planning
graphs with action costs. Procs. of the 6th International Conference on
Artificial Intelligence Planning Systems (AIPS), 2002.

