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Abstract Regular expressions, or simply regex, have been widely asadoower-
ful pattern matching and text extractor tool through desadéhough they provide
a powerful and flexible notation to define and retrieve pattérom text, the syntax
and the grammatical rules of these regex notations are ggtteaise, and even to
understand. Any regex can be represented as a Determimigtion-Deterministic
Finite Automata; so it is possible to design a represemtatcautomatically build
a regex, and a optimization algorithm able to find the bestxeag terms of com-
plexity. This paper introduces both, a graph-based reptaten for regex, and a
particular heuristic-based evolutionary computing alhon based on grammatical
features from this language in a particular data extragiioblem.

Keywords: Regular Expressions, Grammatical-based represent&imtution-
ary algorithms.

1 Introduction

Any Regular Expression, aegex[Friedl, 2002], can be described as a particular
kind of notation for describing patterns of text. When a jgatar string is in the
set described by a regex, it is said that the regex matchestring. The powerful
pattern matching facilities provided by regex in differ@nbgramming languages
such as Perl, PHP, JavaScript, PCRE, Python, Ruby, or Jaeanud been conve-
niently exploited by the programmers or the computer sigentiue the difficulty
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to write and understand the syntax, as well as the semanéaoimgof those regular
expressions.

Any regex can be represented as a Deterministic or Non-Détestic Finite Au-
tomata, a complete discussion of this problem can be foufithampson, 1968],
[Kleene, 1956], [Chang and Paige, 1992]. From an algorithamd programming
perspective the problem about how to represent and lookhBoptimal regex is
an interesting, but usually a hard problem [Gold, 1978] nirtbe set of optimiza-
tion and Machine Learning methods that can be used to regrasd automatically
search for regular expressions, the Evolutionary ComjmutéEC) [Eiben and Smith, 2008]
provides a collection of algorithms inspired in the biolajievolution whose char-
acteristics make them promising to address this problem.

2 Graph-based representation for Regex

Different approaches can be defined to represent a regulaession as an evolu-
tionary based individual, from GAs [Barrero et al., 2009{3B [Dunay et al., 1994].
The final representation of this individual is a critical espin any EC algorithm.

This work presents an initial approach based on graphs festthe basic and syn-
tactic considerations of the regex notation.

2.1 A brief introduction to Regular Expressions

Regular expressions [Cox and Russ, 2007] are a tool usedduiding a compact
representation of string patterns. They have been widelg by programmers and
systems administrators since most of common languagesasuBterl, Java, C or
PHP support regex and many UNIX administration tools suchrap or seduse
them. Regex are commonly used, for instance, to extraogstior validate user in-
puts. Regular expressions contain some special symbddsiegildcards Following
the basic wildcards from IEEE POSIX Basic Regular Expressi®RE) standard,
and POSIX Extended Regular Expressions (ERE) notation)dcards® are con-
sidered in this work which arélus, Star, Question marlandPipe These wildcards
are explained bellow and a graph-based representation@rieled in Figure 1:

Plus +. Repeats the previous item once or more.

Start *. Repeats the previous item zero or more times.

Question mark ?: Makes the preceding item optional.

Pipe |: Causes the regex engine to match either the part on thedefter the
part on the right side. Can be strung together into a serieptidns.

1 A complete syntax reference can be found at http://wwwlegexpressions.info/reference.html
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at a ab a?

Fig. 1 Graph-based representation for main wildcards.

2.2 A particular example on web data extraction

The extraction of simple web data, as URL addresses, is aceenynon and useful
task achieved by a huge type of programs that crawling andiseg the World
Wide Web for useful information. Using the representatiboven in previous sec-
tion, any regex could be represented as a Finite Automate.rdgex could be used
to retrieve a generic URL link (it only considers most cutrasual protocols as
http, https or ftp) from a web page:

(httpghttplftp)://[a-zA-Z]+(\.[a-zA-Z]+)*\.(comnetorg)

Figure 2 shows in detail the graphical representation afrtgex. Note that the
aim of the graph is to accept the string that matches the regeto accept the string
that represents the regex. The graph must accept, for egathgtp://my.url.com
but not the regex itself. Also note the initial node is represd as a node with a
double border and without any label.

Fig. 2 Graph-based representation for a regex.

2.3 Nodes representation

A major problem in a graph representation is the combinaltteriplosion that might
happen if each character is represented by a node. In ordeoiit, the representa-
tion must reduce the size of the graphs using nodes to regresmposed symbols
instead of simple ones. In this way the search space is cafigtieduced, however
a new problem arises: how to automatically construct thepmsed alphabet.
Our approach uses the Zipf Law [Zipf, 1935] to construct tiphabet. Zipf ob-

served that given a corpus, a small subset of the words ctratema high frequency
of occurrences, while most words appears few times in theusofThis fact is used
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to design a heuristic able to identify important strings] ase it to build the alpha-
bet. For instance, given a set of URL examples, it is possibidentify "http” and
"ftp” as common strings, and thus use them as a symbol.

The graph that is evolved is composed by three types of n&@es node is able
to accept a composed symbol such as "http”. Nodes of Njpeontain the symbols
that generated Zipf valid strings, while nodes of tyyeare the strings extracted
using Zipf Law. Symbol#z, N, andNs are the especial characters from regex with
an increasing semantics, so the wildcard ™*” representsclicygraph (see previous
section), whereas symbol "(" is used to maintain the syntakectness of the regex.
The information given from these kind of nodes will be usedayevolutionary
algorithm to guide both the mutation and crossover oparatio

Node|Elements

Ny {4\
N, [{http, https, ftp, com, es, org, net, 8380
Nz [{\d,\w, a-z, A-Z,|}
Na [{C).{. L L1}

N5 {*, +, 7}

Table1 Categorization of Nodes

2.4 Population representation and initial population generation

Each individual in the population represents a graph whosagtype is a regex.
The graph is represented by a variable length list of intemected nodes. In order to
generate always a syntactically correct regex the sii ofodes has been extended
with three more elements, which atg, * and?’. These nodes do not belong to
the vocabulary about regex nor the vocabulary about URLtH®yt are needed to
restrict the effect of the elements * and?, respectively. For example, the regex
abc(de)*will be represented asbc*(de)*, and the program will know that only the
stringedis affected by the operator *.
Figure 3 shows the genotype of an individual that represbategexhttp|ftp):(\w)*.

[ g 0 1 50 gl g g [ 7

N4 N2 N3 N2 N4 N1 N5 N4 N3 N4 N5

Fig. 3 Regular expression for URL address represented as a tiobdes.

Once an individual can be represented, it has been defined benristics to
guide the generation of the initial population. These tsias allow to create well-
formed (syntactically and grammatically) individuals.drder to do that, a maxi-
mum length of the genotype has been defined. Note, that tinggHes a constraint
for the generation of the initial population, for that reasts possible to obtain, in
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any generation, any individual whose genotype exceedsrtaidmum length. A
manually generated regex able to accept all the pattertsso$tudy has 55 nodes.
The maximum length of the genotype of the initial populatiothbe 70 nodes. This
value allows initial population to exceed the length of tladid/regex in, approxi-
mately, a 25%.

3 Mutation and crossover operations for regex evolution

From our previous nodes classification, two different typemutation have been
defined:

e Random. This is equivalent to the uniform mutation operator foundSA or
point mutation in GP. Once a particular nddbat belongs to clasg(n j) in the
graph is selected, it is changed by any randomly token dueila our sets of
nodes. Therefore, any node in the graph can be substitutadybgther.

e Guided. This mutation takes randomly the nodg < N; from the graph, and
it only can be changed by other token (randomly selectedytwbelongs to the
classN;j. This guided mutation tries to use the statistical knowtedgquired
from the analysis of natural language, so the tok&ip could be mutated into
ftp, and the grammatical knowledge from the regex notationhsantldcard*
could be mutated inte. Note, that in the case of the node belongs to chgs
andNs, the same mutation has to be performed twice due to nodesdiepto
these classes appear in pairs. That means, if a node * isedutdb+, then the
corresponding nod€, which represent the end of the operator, must change into
+.

The guided mutation allows one to reuse grammatical andstioal knowledge
from the language used to generate regex, it allows to egsitgrate correct indi-
viduals. However, this produces a second important biasdarséarching process of
individuals.

The crossover operation using a graph and grammaticabibegeesentation (see
section 2) needs to consider the inner structure of thishgtaselect part of the
graphs that can be later used in the offspring generationofigpare how the repre-
sentation works, some crossover operations have beendtefine

e One-point. This is the equivalent crossover of the traditional oneypzrossover
found in GA. A point is randomly selected from both parentiétspg its geno-
type in two parts. The new individual generated will inhénit parts, one from
each parent.

e Two-point. Two points inside the graph (both randomly) are selectesh both
sections of the graph are interchanged. It is the equivalémio-points GA
crossovetr.

e Grammatical-based selection. In order to explain this operation, a new con-
cepttyped blockis defined. Let beBy, wherex € {N4,Ns}, a block of variable
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length limited by nodes of class By is named ablock of type xFor example:
+(http|ftp)+’ is a block limited by nodes belongingh class, thus is Bs block.
Grammatical-based selection is heuristically guided amaiks as follows:

1. One pointin the graph is selected.

2. If the selected node is contained intBablock, then the entire block is se-
lected.

3. If the selected node is not included int®@ablock, the algorithm will try to
determine theéBs block that contains the selected node. If that block exists,
then it is selected.

4. Finally, if the selected node does not belong By &lock nor aB4 block, then
only the selected node will be exchanged.

4 Experimental Results

Genetic Algorithms (GA) need an objective function whicloais to evaluate the
population and to differentiate its individual. This fuiwct is calledfitness function
In order to evaluate each regex generated by the prograra wiffil different URLs
is used. With this two notions and the context of this casdysiitiis easy to identify
that a possible fitness function could be the number of URES tie generated
regex is able to match. Nevertheless, this fitness funcsieety restrictive and this
makes the evolution of the individual difficult.
The fitness function used in this case study is based on thmpron of character
that the regex is able to match from the whole test file. Giveimdividualsi, the
fitness ofi is defined by equation 1.

R

50 = =

(1)

WhereN is the number of URLs in the test filay; is the number of characters
that the individual matches from the URL numbérandl; is the total length of the
URL number;j.

There are some parameters which must be specified to exbeu@dy, these param-
eters are the number of parents in the population, the nuaflodispring population
and the mutation rate. These values have been set with tbeiiog values: the par-
ent population is 30, the offspring population is 45 and theation rate is 005.
With these values, the program has been executed takingactmunt all possible
combinations of Mutation and Crossover operations, thanmaérying to launch the
program using random crossover and random mutation, guidessover and ran-
dom mutation, random crossover and guided mutation andeduirossover and
guided mutation.

Figure 4(a) shows the results of launching the program véttdom crossover
and random mutation. As it can be seen, there is no evolutitimel population due
to data dispersion. These bad results are expected becé@hseamdom mutation
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and random crossover, there is no guarantee of generatihfonwaed individual.
Therefore, the probability of generating any individuatiwa good fitness value is
very low. Another execution uses guided crossover and randatation in order to
obtain better results than the previous one. The resultsi®ekecution are shown
in Figure 4(b). As it can be seen, this experiment providetebeesults than the
previous one, but they are not useful since it only recognibe 30% of the ex-
amples. The experiment with random crossover and guidedtiootdoes not work
due to guided mutation needs the creation of well-formediddal (syntactically
and grammatically), and this restriction is not always toyehe random crossover.

Randam Crossover and Random Muation Guided Croseover and Random Muration
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Fig. 4 Mean fitness of graph evolution.

Finally, with guided mutation and guided crossover the bestlt are obtained.
All the generated individuals are well-formed (syntadticand grammatically) due
to the heuristic applied in the operators (see Section 8urei5 shows the result
of this experiment. The evolution of the population is resgrgted in the increase of
the fitness of the population for each generation. The chars how the mean fit-
ness increases and it is closer to the optimal value. Thigevall which represents
that it is matched a 100% of the examples in the test file. Amgta of individual
generated by the program is the followirjigw | ftp+\d/?/A—Z]

5 Conclusions

This work shows a representation and evolutionary algaritiase study based on
both, graphs and grammatical features from the syntax eardmar standards used
to define regex. It have been defined two different kind of gjgezvolutionary oper-
ators, mutation and crossover guided by these grammatinalderations. Although
the experimental results provide an initial evaluationhaf genetic algorithm, more
experiments must be carried out in the future and other petens) such as preci-
sion, need to be considered in order to measure the efficaibg algorithm.
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Fig. 5 Results of execution with guided crossover and guided nautat
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