
A Case Study on Grammatical-based
Representation for Regular Expression
Evolution

Antonio González1, David F. Barrero2, David Camacho1, Marı́a D. R-Moreno2

Abstract Regular expressions, or simply regex, have been widely usedas a power-
ful pattern matching and text extractor tool through decades. Although they provide
a powerful and flexible notation to define and retrieve patterns from text, the syntax
and the grammatical rules of these regex notations are not easy to use, and even to
understand. Any regex can be represented as a Deterministicor Non-Deterministic
Finite Automata; so it is possible to design a representation to automatically build
a regex, and a optimization algorithm able to find the best regex in terms of com-
plexity. This paper introduces both, a graph-based representation for regex, and a
particular heuristic-based evolutionary computing algorithm based on grammatical
features from this language in a particular data extractionproblem.

Keywords: Regular Expressions, Grammatical-based representation, Evolution-
ary algorithms.

1 Introduction

Any Regular Expression, orregex[Friedl, 2002], can be described as a particular
kind of notation for describing patterns of text. When a particular string is in the
set described by a regex, it is said that the regex matches thestring. The powerful
pattern matching facilities provided by regex in differentprogramming languages
such as Perl, PHP, JavaScript, PCRE, Python, Ruby, or Java have not been conve-
niently exploited by the programmers or the computer scientists due the difficulty

1 Departamento de Informática. Universidad Autónoma de Madrid.
C/Francisco Tomás y Valiente, n 11, 28049 Madrid, Spain.
{antonio.gonzalez,david.camacho}@uam.es
2 Departamento de Automática. Universidad de Alcalá.
Ctra Madrid-Barcelona, Km. 33,6. 28871 Alcalá de Henares (Madrid), Spain.
{mdolores,david}@aut.uah.es

1

2 A.González et. al.

to write and understand the syntax, as well as the semantic meaning of those regular
expressions.

Any regex can be represented as a Deterministic or Non-Deterministic Finite Au-
tomata, a complete discussion of this problem can be found at[Thompson, 1968],
[Kleene, 1956], [Chang and Paige, 1992]. From an algorithmic and programming
perspective the problem about how to represent and look for the optimal regex is
an interesting, but usually a hard problem [Gold, 1978]. From the set of optimiza-
tion and Machine Learning methods that can be used to represent and automatically
search for regular expressions, the Evolutionary Computation (EC) [Eiben and Smith, 2008]
provides a collection of algorithms inspired in the biological evolution whose char-
acteristics make them promising to address this problem.

2 Graph-based representation for Regex

Different approaches can be defined to represent a regular expression as an evolu-
tionary based individual, from GAs [Barrero et al., 2009] toGP [Dunay et al., 1994].
The final representation of this individual is a critical aspect in any EC algorithm.
This work presents an initial approach based on graphs that uses the basic and syn-
tactic considerations of the regex notation.

2.1 A brief introduction to Regular Expressions

Regular expressions [Cox and Russ, 2007] are a tool used for providing a compact
representation of string patterns. They have been widely used by programmers and
systems administrators since most of common languages suchas Perl, Java, C or
PHP support regex and many UNIX administration tools such asgrep or seduse
them. Regex are commonly used, for instance, to extract strings or validate user in-
puts. Regular expressions contain some special symbols called wildcards Following
the basic wildcards from IEEE POSIX Basic Regular Expressions (BRE) standard,
and POSIX Extended Regular Expressions (ERE) notation, 4 wildcards1 are con-
sidered in this work which arePlus, Star, Question markandPipe. These wildcards
are explained bellow and a graph-based representation are provided in Figure 1:

• Plus +. Repeats the previous item once or more.
• Start *. Repeats the previous item zero or more times.
• Question mark ?: Makes the preceding item optional.
• Pipe |: Causes the regex engine to match either the part on the left side, or the

part on the right side. Can be strung together into a series ofoptions.

1 A complete syntax reference can be found at http://www.regular-expressions.info/reference.html

A Case Study on Grammatical-based Representation for regex 3

a

a+

a

a*

a

a|b

b

a

a?

Fig. 1 Graph-based representation for main wildcards.

2.2 A particular example on web data extraction

The extraction of simple web data, as URL addresses, is a verycommon and useful
task achieved by a huge type of programs that crawling and searching the World
Wide Web for useful information. Using the representation shown in previous sec-
tion, any regex could be represented as a Finite Automata. Next regex could be used
to retrieve a generic URL link (it only considers most current usual protocols as
http, https or ftp) from a web page:

(https|http|ftp)://[a-zA-Z]+(\.[a-zA-Z]+)*\.(com|net|org)

Figure 2 shows in detail the graphical representation of this regex. Note that the
aim of the graph is to accept the string that matches the regex, not to accept the string
that represents the regex. The graph must accept, for example, ”http://my.url.com”
but not the regex itself. Also note the initial node is represented as a node with a
double border and without any label.

http

ftp

https

: / / a-zA-Z

\. a-zA-Z

com

net

org

\.

Fig. 2 Graph-based representation for a regex.

2.3 Nodes representation

A major problem in a graph representation is the combinatorial explosion that might
happen if each character is represented by a node. In order toavoid it, the representa-
tion must reduce the size of the graphs using nodes to represent composed symbols
instead of simple ones. In this way the search space is drastically reduced, however
a new problem arises: how to automatically construct the composed alphabet.

Our approach uses the Zipf Law [Zipf, 1935] to construct the alphabet. Zipf ob-
served that given a corpus, a small subset of the words concentrates a high frequency
of occurrences, while most words appears few times in the corpus. This fact is used

4 A.González et. al.

to design a heuristic able to identify important strings, and use it to build the alpha-
bet. For instance, given a set of URL examples, it is possibleto identify ”http” and
”ftp” as common strings, and thus use them as a symbol.

The graph that is evolved is composed by three types of nodes.Each node is able
to accept a composed symbol such as ”http”. Nodes of typeN1 contain the symbols
that generated Zipf valid strings, while nodes of typeN2 are the strings extracted
using Zipf Law. SymbolsN3, N4 andN5 are the especial characters from regex with
an increasing semantics, so the wildcard ”*” represents a cyclic graph (see previous
section), whereas symbol ”(” is used to maintain the syntax correctness of the regex.
The information given from these kind of nodes will be used byan evolutionary
algorithm to guide both the mutation and crossover operations.

Node Elements
N1 {:, /, \.}
N2 {http, https, ftp, com, es, org, net, 8080}

N3 {\d, \w, a-z, A-Z,|}
N4 {(,), {, }, [,]}
N5 {*, + , ?}

Table 1 Categorization of Nodes

2.4 Population representation and initial population generation

Each individual in the population represents a graph whose phenotype is a regex.
The graph is represented by a variable length list of interconnected nodes. In order to
generate always a syntactically correct regex the set ofN5 nodes has been extended
with three more elements, which are+’ , *’ and?’. These nodes do not belong to
the vocabulary about regex nor the vocabulary about URL, butthey are needed to
restrict the effect of the elements+ , * and?, respectively. For example, the regex
abc(de)*will be represented asabc*(de)*’, and the program will know that only the
stringed is affected by the operator *.

Figure 3 shows the genotype of an individual that representsthe regex(http|ftp):(\w)*.

Fig. 3 Regular expression for URL address represented as a list ofNj nodes.

Once an individual can be represented, it has been defined some heuristics to
guide the generation of the initial population. These heuristics allow to create well-
formed (syntactically and grammatically) individuals. Inorder to do that, a maxi-
mum length of the genotype has been defined. Note, that this length is a constraint
for the generation of the initial population, for that reason its possible to obtain, in

A Case Study on Grammatical-based Representation for regex 5

any generation, any individual whose genotype exceeds thismaximum length. A
manually generated regex able to accept all the patterns of this study has 55 nodes.
The maximum length of the genotype of the initial populationwill be 70 nodes. This
value allows initial population to exceed the length of the valid regex in, approxi-
mately, a 25%.

3 Mutation and crossover operations for regex evolution

From our previous nodes classification, two different typesof mutation have been
defined:

• Random. This is equivalent to the uniform mutation operator found in GA or
point mutation in GP. Once a particular nodei that belongs to classj (ni, j) in the
graph is selected, it is changed by any randomly token available in our sets of
nodes. Therefore, any node in the graph can be substituted byany other.

• Guided. This mutation takes randomly the nodeni, j ∈ Nj from the graph, and
it only can be changed by other token (randomly selected) which belongs to the
classNj . This guided mutation tries to use the statistical knowledge acquired
from the analysis of natural language, so the tokenhttp could be mutated into
ftp, and the grammatical knowledge from the regex notation, so the wildcard*
could be mutated into+. Note, that in the case of the node belongs to classN4

andN5, the same mutation has to be performed twice due to nodes belonging to
these classes appear in pairs. That means, if a node * is mutated into+, then the
corresponding node*’, which represent the end of the operator, must change into
+’.

The guided mutation allows one to reuse grammatical and syntactical knowledge
from the language used to generate regex, it allows to easilygenerate correct indi-
viduals. However, this produces a second important bias in the searching process of
individuals.

The crossover operation using a graph and grammatical-based representation (see
section 2) needs to consider the inner structure of this graph to select part of the
graphs that can be later used in the offspring generation. Tocompare how the repre-
sentation works, some crossover operations have been defined:

• One-point. This is the equivalent crossover of the traditional one-point crossover
found in GA. A point is randomly selected from both parents splitting its geno-
type in two parts. The new individual generated will inherittwo parts, one from
each parent.

• Two-point. Two points inside the graph (both randomly) are selected, then both
sections of the graph are interchanged. It is the equivalentof two-points GA
crossover.

• Grammatical-based selection. In order to explain this operation, a new con-
cepttyped blockis defined. Let beBx, wherex ∈ {N4,N5}, a block of variable

6 A.González et. al.

length limited by nodes of classx, Bx is named asblock of type x. For example:
+(http|ftp)+’ is a block limited by nodes belonging toN5 class, thus is aB5 block.
Grammatical-based selection is heuristically guided and it works as follows:

1. One point in the graph is selected.
2. If the selected node is contained into aB4 block, then the entire block is se-

lected.
3. If the selected node is not included into aB4 block, the algorithm will try to

determine theB5 block that contains the selected node. If that block exists,
then it is selected.

4. Finally, if the selected node does not belong to aB5 block nor aB4 block, then
only the selected node will be exchanged.

4 Experimental Results

Genetic Algorithms (GA) need an objective function which allows to evaluate the
population and to differentiate its individual. This function is calledfitness function.
In order to evaluate each regex generated by the program, a file with different URLs
is used. With this two notions and the context of this case study, it is easy to identify
that a possible fitness function could be the number of URLs that the generated
regex is able to match. Nevertheless, this fitness function is very restrictive and this
makes the evolution of the individual difficult.
The fitness function used in this case study is based on the proportion of character
that the regex is able to match from the whole test file. Given an individualsi, the
fitness ofi is defined by equation 1.

F(i) =
∑N

j=1
mi j
l j

N
(1)

WhereN is the number of URLs in the test file,mi j is the number of characters
that the individuali matches from the URL numberj andl j is the total length of the
URL numberj.
There are some parameters which must be specified to execute the GA, these param-
eters are the number of parents in the population, the numberof offspring population
and the mutation rate. These values have been set with the following values: the par-
ent population is 30, the offspring population is 45 and the mutation rate is 0,05.
With these values, the program has been executed taking intoaccount all possible
combinations of Mutation and Crossover operations, that means trying to launch the
program using random crossover and random mutation, guidedcrossover and ran-
dom mutation, random crossover and guided mutation and, guided crossover and
guided mutation.

Figure 4(a) shows the results of launching the program with random crossover
and random mutation. As it can be seen, there is no evolution in the population due
to data dispersion. These bad results are expected because with random mutation

A Case Study on Grammatical-based Representation for regex 7

and random crossover, there is no guarantee of generating well-formed individual.
Therefore, the probability of generating any individual with a good fitness value is
very low. Another execution uses guided crossover and random mutation in order to
obtain better results than the previous one. The results of this execution are shown
in Figure 4(b). As it can be seen, this experiment provides better results than the
previous one, but they are not useful since it only recognizes the 30% of the ex-
amples. The experiment with random crossover and guided mutation does not work
due to guided mutation needs the creation of well-formed individual (syntactically
and grammatically), and this restriction is not always trueby the random crossover.

(a) Random crossover and random mutation (b) Guided crossover and random mutation

Fig. 4 Mean fitness of graph evolution.

Finally, with guided mutation and guided crossover the bestresult are obtained.
All the generated individuals are well-formed (syntactically and grammatically) due
to the heuristic applied in the operators (see Section 3). Figure 5 shows the result
of this experiment. The evolution of the population is represented in the increase of
the fitness of the population for each generation. The chart shows how the mean fit-
ness increases and it is closer to the optimal value. This value is 1 which represents
that it is matched a 100% of the examples in the test file. An example of individual
generated by the program is the following:[\w∗ | f t p∗ \d/?/A−Z]

5 Conclusions

This work shows a representation and evolutionary algorithm case study based on
both, graphs and grammatical features from the syntax and grammar standards used
to define regex. It have been defined two different kind of specific evolutionary oper-
ators, mutation and crossover guided by these grammatical considerations. Although
the experimental results provide an initial evaluation of the genetic algorithm, more
experiments must be carried out in the future and other parameters, such as preci-
sion, need to be considered in order to measure the efficiencyof the algorithm.

8 A.González et. al.

Fig. 5 Results of execution with guided crossover and guided mutation.

Acknowledgements

This work has been partially supported by the Spanish Ministry of Science and In-
novation under the projects Castilla-La Mancha project PEII09-0266-6640, COM-
PUBIODIVE (TIN2007-65989), and by HADA (TIN2007-64718).

References

[Barrero et al., 2009] Barrero, D. F., Camacho, D., and R-Moreno, M. D. (2009).Data Mining and
Multiagent Integration, chapter Automatic Web Data Extraction Based on Genetic Algorithms
and Regular Expressions. Springer.

[Chang and Paige, 1992] Chang, C.-H. and Paige, R. (1992). From regular expressions to dfa’s
using compressed nfa’s. pages 90–110.

[Cox and Russ, 2007] Cox and Russ (2007). Regular expressionmatching can be simple and fast.
[Dunay et al., 1994] Dunay, B. D., Petry, F., and Buckles, B. P. (1994). Regular language induc-

tion with genetic programming. InProceedings of the 1994 IEEE World Congress on Computa-
tional Intelligence, pages 396–400, Orlando, Florida, USA. IEEE Press.

[Eiben and Smith, 2008] Eiben, A. E. and Smith, J. E. (2008).Introduction to Evolutionary Com-
puting (Natural Computing Series). Springer.

[Friedl, 2002] Friedl, J. E. F. (2002).Mastering Regular Expressions. O’Reilly & Associates,
Inc., Sebastopol, CA, USA.

[Gold, 1978] Gold, E. M. (1978). Complexity of automaton identification from given data.Inform.
Control, 37:302–320.

[Kleene, 1956] Kleene, S. C. (1956). Representation of events in nerve nets and finite automata.
In Shannon, C. E. and McCarthy, J., editors,Automata studies, volume 34, pages 3–40.

[Thompson, 1968] Thompson, K. (1968). Regular expression search algorithm.Comm. Assoc.
Comp. Mach., 11(6):419–422.

[Zipf, 1935] Zipf, G. (1935). The psycho-biology of language. Houghton Mifflin, Boston, MA.

