Principal Component Analysis of data complexity measures for cancer breast prediction

Mario Cobos, Armando Collado-Villaverde, Daniel Rodriguez and David F. Barrero

Universidad de Alcalá, Madrid, Spain
mario.cobos@edu.uah.es, {armando.collado, daniel.rodriguezg, david.fernandezb}@uah.es

Introduction

- Machine Learning algorithms require large quantities of data and time
- Data complexity can be characterized using the twelve metrics defined by Ho and Basu [TB02]
- We confirm the results obtained by the original authors, and attempt to correlate data complexity and classifier quality using a well-known dataset
- In order to do so, we use k-fold cross validation repeatedly
- To correct potential outliers, we repeat the experiment a number of times for each value of k

Complexity measures

- Measures of overlaps:
 - F1: Maximum Fisher’s discriminant ratio
 - F2: Volume of overlap region
 - F3: Maximum feature efficiency
- Measures of class separability:
 - L1: Minimized sum of error distance by linear programming
 - L2: Error rate of linear classifier by LP
 - N1: Fraction of points on class boundary
 - N2: Ratio of average intra/inter class NN distance
 - N3: Error rate of 1NN classifier
- Measures of geometry, topology and density of manifolds:
 - L3: Nonlinearity of a linear classifier by LP
 - N4: Nonlinearity of 1NN classifier
 - T1: Fraction of points with associated adherence subsets retained
 - T2: Average number of points per dimension

Principal Component Analysis

- Inputs:
 - Data complexity measures obtained from the different folders
- Outputs:
 - Number of metrics required to determine the quality of the data
 - Number of components required to explain the variance according to the number of folders

A total of six components is required when k reaches its peak value of fifteen
- The smaller the dataset, the more components are required in order to explain the variance obtained
- Most of the variance can be explained using only the first component, independently of the number of folders
- Increasing the number of sample for a given value of k does not meaningfully change the form of the plot presented above
- The results obtained align with those described by Ho and Basu [TB02]

Correlation between complexity and quality

- Balance
- Overlap
- Linearity
- Dimensionality
- Separability
- Density

Conclusions

- The quality of a dataset has an impact on the quality of the resulting classifier
- The metrics defined to measure dataset quality can be reduced to a relatively small number of components

Acknowledgements

The work is co-funded by the European Social Fund, Comunidad de Madrid Garantía Juvenil (PEJD-2018-PRE/TIC-8176) and Junta de Comunidades de Castilla-La Mancha (SBPLY/18/180501/000019)

References