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Abstract—Randomness tests are a key tool to assess the
quality of pseudo-random and true random (physical) number
generators. They exploit some properties of random numbers
to quantify to what extent the observed behavior of the tested
sequence approximates the expected one. Given the many sides
of randomness, there is not an unique test providing the whole
picture, instead a suite of tests assessing different aspects random-
ness. A robust test suite must include independent tests, otherwise
tests would assess the same property, providing redundant
information. This paper addresses the independence assessment
of a popular test suite named Ent. To this end we generate a
large number of pseudo-random numbers with different degrees
of randomness by evolving them with a Genetic Algorithm. The
numbers are generated to maximize their diversity attending
different criteria based on Ent output, used as fitness. We
encourage diversity by maximizing and minimizing randomness
measures. Once a diverse set of pseudo-random numbers is
generated, the Ent test suite is run on them, and their statistics
studied by means of a classical correlation analysis. The results
show high correlation among some statistics used in the literature,
which could be overestimating the quality of their randomness
source.

Index Terms—Randomness, randomness test, Genetic Algo-
rithm, Ent, pseudo-random number generators, randomness
sources.

I. INTRODUCTION

Pseudo-random and real random number generation is a
though problem with many critical applications. For instance,
in Security almost any cryptographic system requires a reliable
source of randomness in order to operate properly, which is
a serious problem when dealing with deterministic machines
such as a computer or a small IoT device. A weak pseudo-
random number generator (PRNG) usually induces serious
security vulnerabilities. This is why assessing the quality of
those generators can have a major impact in Security. Any fail
in generating good pseudo-random sequences may introduce
weaknesses in a system.

Randomness tests are one of the best known tools to
assess PRNGs. These tests verify some statistical properties
of random numbers, and assess to which extend the sequence
being tested satisfies those properties. The result of applying
these tests is generally a quantitative evaluation, typically in
the form of a p-value, of the quality of the PRNG. Given the
importance of this topic, there is a number of well-known test
suites, some of them even commercial. Perhaps the most used
is the NIST test suite [1], [2], but others batteries such as
Ent [3] or Crypt-X [4] are also widely known.

Ideally, different tests should assess completely different
aspects of randomness. However, the complexity and subtle
nature of randomness makes this far from trivial. Two con-
ceptually different tests may well be, in essence, evaluating
the same randomness characteristics and therefore producing
correlated results. This is a serious threat for any test suite,
because it might overestimate the quality of the assessed
PRNG. In statistical terms, the independence of the evaluated
properties translates to the independence of the statistical tests.

In this work we study the independence of the Ent ran-
domness test suite. Ent is randomness test suite that includes
five, supposedly independent, tests. To this end, we generate
a sequence of pseudo-random numbers (PRN) with a strong
PRNG, then apply a Genetic Algorithm (GA) to increase or
decrease its randomness and then subject them the test battery.
In this way we get a collection of various sequences with
quite different statistical properties to avoid gaps. Once we got
the test suite statistics, we look for correlations with classical
statistical tools. Differently from previous studies, we generate
a range of input pseudo-random sequences and analyze the test
correlation based on their statistics, instead of the p-values. In
this way we expect to increase the power of our analysis, by
exploiting the extra information.

The paper is structured as follows. We first introduce
related concepts, followed by a brief description of the Ent
test battery. Section IV describes the research methodology
in detail. The evolutionary generation of randomness as a
maximization/minimization problem is described in section V.
Section VI describes the obtained results and the paper finishes
with some conclusions and future work.

II. RELATED WORK

To the best of our knowledge, there are no previous studies
on the independence of the Ent test suite. In general, the
independence of randomness tests is a topic that has attracted
little research interest so far, which contrasts with its remark-
able importance, both theoretically and practically. Most of
the existing studies on the independence of randomness tests
are focused on the NIST test battery, which is understandable
given its relevance, because the NIST suite is the most used
in areas such as Security and Simulation.

Some attention has been given to speeding-up NIST tests
implementations, because of their important practical implica-
tions. Approaches to improve NIST performance range from
the development of new optimized implementations [5] to



removing [6] or merging [7] tests after an independence
analysis.

Other authors have proposed more general frameworks to
assess the independence of statistical tests. Fan et al. proposed
a methodology to assess randomness tests correlation [8] and
applied that method to assess the independence of NIST SP
800-22, finding some interesting correlations. The proposed
method computes the difference between the p-values coming
from two tests and studies the resulting distribution. Liu and
Lai studied the independence of the NIST tests with short
sequences and employing conditional entropy [9].

Doğanaksoy et al. a systematically studied the NIST tests
independence in a set of related publications [10], [11], [12].
They generated all binary sequences of length 20 and 30 bits,
passed the NIST tests on them and measured the proportion of
rejections and the correlation among them. They tried to esti-
mate tests sensibility, defined as the variance of the tests when
the sequences are subject of mathematical transformations.

III. THE ENT TEST SUITE

The Ent randomness test suite was proposed and imple-
mented by John Walker, who developed the tests for different
platforms and released them with a free license. Ent contains
five tests, and has a verbose output which shows a number of
statistics and other related data, as can be seen in Fig. 1.

Ent has two operation modes: binary and byte, with the
latter one enabled by default. In binary mode, Ent considers
each bit in the sequence while in byte mode the sequence
is divided in bytes. Depending on the operation mode, Ent
computes and displays different statistics. The operation mode
also determines the expected value of the tests, so the tests
output must be interpreted accordingly. For instance, in binary
mode Ent considers binary symbols, represented by 0 and 1,
therefore the expected arithmetic mean for a binary sequence
is close to 0.5. On the contrary, in byte mode, each symbol
is composed by 8 bits, and Ent interprets them as integer
numbers, so a random sequence has an expected arithmetic
mean close to 127.5 (see Fig. 1). Given that byte mode is more
popular in the literature, and it is the Ent default operation
mode, in the following we restrict our discussion to this mode.

Ent implements a collection of five tests from different
origins. In the following we review them.

• Entropy. This test computes the entropy of the sequence
under examination, as defined in classical Information
Theory [13]. A random sequence should be rich in
entropy. In byte mode, the maximum theoretical entropy
of a long sequence is 8 bits per byte, while in binary
mode it is one bit per bit.

• Chi-square tests. This is a widely used test described by
Knuth in his classical book The Art of Programming [14].
The chi-square test computes the frequency of the sym-
bols, and compares it with the frequency expected in
a uniform distribution. To perform this comparison the
chisquare statistic is computed.

• Arithmetic mean. As the name suggests, this is just the
arithmetic mean of the symbols in the sequence. The

expected statistic value for a true random sequence is
0.5 in binary mode and 127.5 in byte mode.

• Monte Carlo Value for Pi. This test interprets the
sequence as coordinates in a square and counts the
number of points that fall into a circle inscribed within the
square. This number is used to estimate the value of pi.
A truly random sequence will approximate pi with good
accuracy, while a non-random number is not expected to
approximate pi well. The test uses the statistic pierror,
which measures the percentage error in estimating pi.

• Serial Correlation. [14]. The serial correlation test com-
putes the correlation between two consecutive symbols
(bits or bytes) in the sequence. A good random sequence
would have low correlation, very close to zero, while
a bad random sequence would lead to higher absolute
values.

Figure 1 shows a typical Ent output in byte mode. It can be
seen that Ent generates several output values. Along with the
statistics previously described, Ent outputs other values such
as the optimum compression, or excess of the chi-square test.
All these values are usually considered in the literature when
assessing a PRNG, so we will consider them in this study.

In summary, we consider seven statistics computed by Ent:
Entropy, excess, mean, pierror, chisquared, compression and
correlation.

IV. EXPERIMENTAL PROCEDURE

Our goal is to assess the independence of the Ent test suite.
To this end, we use an experimental approach divided in three
steps: First, we create a dataset of PRNs with different degrees
of randomness according to different criteria; secondly, we
run the Ent rest suite over the PRNs set previously generated,
storing the output statistics, and finally perform a correlation
analysis over the Ent statistics1.

The procedure followed to create the dataset is described
in detail in the next section. In few words we run a Genetic
Algorithm (GA) to maximize and minimize the randomness
of a population of numbers, storing all the individuals. In this
way we have a set of PRNs with different properties in an
attempt to reduce the probability of committing bias.

The issue of which output should be considered deserves
some attention. In statistical frequentist inference, tests are
performed first by computing a statistic from the data, and
then inferring a p-value which is interpreted. Therefore both,
statistic and p-value can be considered as output of the tests.
Previous studies have usually used p-values to perform the
analysis [8], [10]. This approach has the advantage of using
the same scale and interpretation of the variable under study,
however potentially useful information implicit in the statistic
is lost. In our opinion this potential loss of information justifies
using the statistic instead of the p-value, and for that reason in
the following we use directly the tests statistics without further
transformation.

1All the code, scripts and datasets needed to reproduce these experiments
are in https://atc1.aut.uah.es/∼david/cec2017



Ent ropy = 4 .385614 b i t s p e r b y t e .

Optimum c o m p r e s s i o n would r e d u c e t h e s i z e
o f t h i s 20180 b y t e f i l e by 45 p e r c e n t .

Chi s q u a r e d i s t r i b u t i o n f o r 20180 samples i s 1266758 .61 , and randomly
would exceed t h i s v a l u e l e s s t h a n 0 . 0 1 p e r c e n t o f t h e t i m e s .

A r i t h m e t i c mean v a l u e o f d a t a b y t e s i s 56 .5619 ( 1 2 7 . 5 = random ) .
Monte C a r l o v a l u e f o r P i i s 3 .611061552 ( e r r o r 14 .94 p e r c e n t ) .
S e r i a l c o r r e l a t i o n c o e f f i c i e n t i s 0 .568671 ( t o t a l l y u n c o r r e l a t e d = 0 . 0 ) .

Fig. 1. Example of Ent default output in byte mode.

Once there is a collection of PRNs along with their statistics,
we can perform a correlation analysis to find dependencies
among the tests. This analysis is done using basic statistical
tool such as correlation matrices and scatter plot matrices.
More sophisticated methods can be used, however this is a
preliminary study looking for basic relationships.

The procedure so far described is controlled by two vari-
ables: The sequence size and the direction of the evolution, i.e.
evolve the random sequence towards more or less randomness.
The sequence length is a basic factor to take into consideration
since some statistics directly depend on this, like the Monte-
Carlo method. To better describe the direction of evolution, we
first should introduce in more detail the evolutionary procedure
of generating the set of PRNs.

V. GENERATION AND DEGENERATION OF RANDOM
NUMBERS WITH A GA

How to construct the set of PRNs is a relevant aspect
which deserves some attention. Just generating a set of PRNs
to test Ent relying on the underlying PRNG may bias the
result. Randomness is a many-folded concept, far from being
something monolithic. The PRNG would be creating PRN
with some properties able to affect the tests. In order to tackle
that concern, and try to get more robust results, we relied on
a more sophisticated method to build the PRNs. In essence,
the intention is to “randomize” the dataset of pseudorandom
numbers.

In order to encourage diversity, we apply a GA codifying
a population of random sequences. Other methods, such us
using several PRNGs would be valid as well, but the proposed
method based on a GA seems better suited to generate PRNs
with diverse properties. The GA has a classical design, with
binary codification, tournament selection, one-point crossover
and bit flip mutation. Table I summarizes the most relevant GA
settings. The initial population is generated randomly with a
Twister-Mersenne PRNG, then the GA is run several times to
maximize a randomness measure based on the Ent statistics
used as fitness. All the individuals in the algorithm executions
are stored for further analysis.

Table II shows the Ent statistics used in the experiments,
along with the associated fitness function. For implementation

TABLE I
GENETIC ALGORITHM PARAMETERS TABLEAU.

Population 100

Length Fixed to several values

Codification Binary

Crossover One-point crossover

Mutation Bit flip mutation

Mutation probability 0.005

Selection Tournament selection, size two

Elitism 1

Fitness See Table II

TABLE II
STATISTICS OF THE ENT TEST SUITE AND THE FITNESS VALUES USED IN

THE GA.

Ent statistic Fitness value

Entropy fentropy = Entropy

Compression fcompression = 100− Compression

Chisquared fchisquared = 1
1+Chisquared

Excess fexcess = Excess

Average mean famean = 1
(1+|127.5−amean|) (byte)

famean = 1
(1+|0.5−amean|) (binary)

Pierror fpierror = 1
1+pierror

Correlation fcorrelation = 1
1+|correlation|

simplicity we needed to express the fitness as a maximization
problem, but some Ent statistics are inversely proportional
to randomness, therefore raw statistics were not suitable as
fitness. Table II shows the transformations done to the statistics
to introduce them in the fitness functions. Fitness associated to
entropy is the raw entropy, the same applies to excess. Com-
pression is just the difference with the maximum compression,
100. Chisquared, pierror and correlation are inverted with a
sum for safety. The interpretation of the fitness values is not



a concern, since we are only interested in creating PRNs with
some diversity.

The PRNG used to populate the first generation of the
GA is pretty good. If the GA only maximizes randomness,
then the set of PRNs will only contain high randomness, with
individuals in a tight range of fitness values. This is against
the policy of encouraging diversity. This potential problem is
easy to overcome, in addition to maximizing the randomness,
we also degenerated it in a controlled way. This can be
achieved changing the tournament selection to pick up the
worse individuals instead of the best one, transforming the
maximization problem into a minimization one.

VI. EXPERIMENTAL RESULTS

A. PRNs generation

We generated a dataset of PRNs with the method described
controlling with two variables: Sequence length and fitness
minimization (randomness generation)/minimization (random-
ness minimization). Each configuration was run five times
for 50 generations. The result of randomness generation is
depicted in Fig. 2 while the result of degenerating randomness
is depicted in Fig. 3, both figures depict the average fitness
versus the generation.

Figure 2 shows that regardless of the statistic used in the
fitness function, the GA is able to increase the fitness. This is
not an obvious result. The initial population was created with
Twister-Mersenne, which is a cryptographycal-quality PRNG.
It means that the initial population contains high quality PRNs,
therefore their randomness should be difficult to improve. The
increase of the average fitness (which also can be observed
in the best fitness, not shown here) suggests that the GA is
able to find even better PSNs. This can be observed for all the
fitness functions and at least the smaller chromosome lengths.

Not all the fitness functions are equally successful increas-
ing randomness, there are notable differences among them. For
instance, when fitness is based on the chisquare, evolution is
faster than compression. This is something we could expected,
since compression is given by Ent as an integer number while
the rest of statistics are floats with more precision. In other
words, some statistics show more sensibility to changes in the
individuals, yielding a more friendly fitness landscape which
helps evolution.

Chromosome length has a strong influence in the evolution
of randomness. As usual in GAs, longer chromosomes means
larger search spaces, inducing more difficult searches. This
can be seen in Fig. 2, where the fitness slope is smaller
as the chromosome length increases. More interesting is the
asymptotic behavior that the fitness seems to have, it is
particularly clear looking at the entropy-based fitness in Fig. 2,
where it seems to be bounded. As the chromosome length
increases, the difference tends to dilute. This only happens in
byte mode (data in binary mode not shown), and is related with
the frequencies distribution, when the chromosome length is
short, the frequencies distribution is unbalanced, and therefore
some tests will interpret that like lack of randomness, affecting
the statistic value.

Fig. 3 depicts the evolution of the average fitness with the
number of generations when minimizing the fitness. Compared
to maximization, reducing the randomness is easier than
increasing it; fitness values evolve faster in minimization than
in maximization in all the cases. This is not surprising, since
we initialized the population with high quality PRNs. The
notable influence of the chromosome length is also clear in
minimization, with asymptotic behaviors dependent on the
length.

Fitness values are more widely distributed in minimization
(see Figs. 3) than maximization (Fig. 2), which is our objec-
tive. Altogether, maximizing and minimizing GAs, provide a
wide range of PRN based on their fitness, ranging from high
quality PRNs to non-random numbers.

The final dataset used for the correlation analysis was con-
structed by massively running the GA previously described.
Given the relevance of the chromosome length, we generated
numbers with different lengths. The fitness function attempted
to maximize entropy, compression, chisquared, excess, average
mean, pierror and correlation, as expressed in Table II. The GA
was configurated to maximize or minimize the fitness function
just manipulating the tournament selector.

B. Ent statistics analysis

We run Ent on the dataset generated by the GA in byte
mode and collected its output to perform a correlation analysis.
We divided this analysis into three steps: First we analyzed
the effect of the chromosome length and then computed
correlation matrices for the Ent tests statistics.

1) Effect of the length: Figure 4 shows the scatter matrix
of the statistics for different chromosome sizes. For clarity,
we only depicted small chromosome lengths; longer lengths
follow the same pattern observed. The scatter plot matrix is
quite interesting, showing a number of facts. .

The statistics present different degrees of sensibility towards
the length. A good tool to visualize this sensibility is the
density plots included in the diagonal of the scatter plot matrix
in Fig. 4. These plots depict the empirical distribution of the
statistics values grouped by the length. The distribution of
entropy and compression is highly determined by the length,
depending on it, means of entropy and compression take
different values with very small variance. This behavior is
observed when plotting these two statistics against any other.
It is clear that sequence length changes the mean entropy and
compression values, not affecting their variance. We should
mention that the dataset does not contain very low quality
PRN, otherwise the variance of entropy should be higher.

Arithmetic mean has the opposite behavior to entropy and
compression. The mean of the arithmetic mean does not
seem to change with the length, but its variance does, being
smaller as the length increases. This behavior has an statistical
explanation. This density plot shows the sampling distribution
of a mean, and thus, by the Central Limit Theorem we must
expect the distribution of the mean sample to have the same
mean and standard deviation inversely proportional to the
square root of the sample size (i.e. the length). The correlation
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Fig. 2. Average fitness of the GA maximizing randomness according to different statistics for with different chromosome lengths. Length is expressed in bits.
Corresponding fitness functions are in Table II.

Generation

M
e

a
n

 f
it
n

e
s
s

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0 10 20 30 40 50

pierror

0
.0

0
1
0

0
.0

0
1
5

0
.0

0
2
0

0
.0

0
2
5

0
.0

0
3
0

0
.0

0
3
5

0
.0

0
4
0

0 10 20 30 40 50

chisquared

4
0

6
0

8
0

1
0
0

0 10 20 30 40 50

compression

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

0 10 20 30 40 50

correlation

3
4

5
6

7
8

0 10 20 30 40 50

entropy

0
1
0

2
0

3
0

4
0

5
0

0 10 20 30 40 50

excess

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0 10 20 30 40 50

mean Length
128
256
512
1024
8192
16384
32768

Fig. 3. Average fitness of the GA minimizing randomness according to different statistics for with different chromosome lengths. Length is expressed in bits.
Corresponding fitness functions are in Table II.
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Fig. 4. Scatterplot matrix relating pairs of statistics grouped by sequence lengths (128, 256, 512, 1.024 and 8.192 bits). 15 samples for each pair objective-
length. Longer chromosomes show the same pattern (data not shown). Dataset obtained with a GA maximizing the statistics, the same pattern is observed
with minimization (data not shown).

seems to have a similar behavior, as it is computed as the
average of several correlation coefficients. Pierror and excess
do not exhibit a clear pattern when controlled by the length,
while chisquared is affected by the length in a not evident
way.

In any case, the inspection of Fig. 4 clearly shows that the
length is a factor that must be taken into account. The lack
of control of the length would rise to higher variance in the
data, and that might hide correlation. This is particularly clear
when the lengths are small; its influence seems to dilute as
the length increases.

2) Correlation analysis: An inspection of Fig. 4 identifies
some pretty clear correlations. In particular, the scatter plot of
entropy and compression shows an almost perfect line, sug-
gesting a strong relationship between them. Checking out the

source code of Ent we can verify that compression is directly
computed from the entropy, with a linear relationship broken
by a ceiling operator. This is an important observation because
some studies use entropy and compression as independent
statistics while they are not.

A superficial analysis of the correlations suggested by
Fig. 4 may be deceptive. Entropy and compression seem to
by highly correlated with all the other statistics, at least the
points on the plane follow a linear pattern. If we consider
the length, we appreciate that there is a scale effect, more
significant with large values of length. This is pretty clear,
for instance, in the entropy-mean scatter plot. The variance
of the mean is affected by the length, while the entropy
variance is not; as a consequence, the ratio width-height tends



to one as chromosome length increases. In few words, the
correlation in this case decreases with the length. This fact is
consistent with the way in which randomness tests are used,
they are typically applied to long sequences. However, many
independence studies use small lengths; out results suggest that
their conclusions may not generalizable to larger sequences.

Table III contains the Pearson’s correlation coefficients of
each pair of statistics, for sequences length equal to 8192
bits and PRNs generated by randomness maximization and
minimization. For clarity, those coefficients higher than 0.75
are marked in bold. This correlation matrix is representative
of larger sequence lengths. Both GA strategies, randomness
maximization and minimization achieve comparable results,
as can be seen in the table. Entropy gets correlations higher
than 0.75 with compression, chisquared and excess. All these
correlations are visually identified looking at Fig. 4.

It is perhaps surprising to find a correlation as low as 0.75
between entropy and compression when we know from the Ent
source code that they have a linear relationship, and it appears
almost linear in the scatter plot. A closer look to the plot may
explain this. Fig. 5 shows another scatter plot matrix restricted
to lengths equal to 8192 bits. The density plot of compression
reflects its discrete nature; compression is given by Ent as an
integer number, so compression only takes two values, two
and three. When the compression is paired with entropy to
draw the scatter plot, the result is a step function. This fact
may be degrading the correlation coefficient underestimating
their true correlation, which should be close to one.

Entropy is highly correlated with chisquared, which in
turn is also correlated with compression. This is a consistent
result, there is a chain of correlations. Entropy is also highly
correlated with excess, so we should expect that compression
should also be highly correlated with excess, however, it is
not clear. The correlation coefficient between compression and
excess is −0.616 (maximization) and −0.521 (minimization).
This is a notable correlation, but quite lower than expected.
The discrete values of compression (see Fig. 5) explains it.

VII. CONCLUSIONS

Independence of randomness statistical tests is a relevant
problem that has attracted little research interest. In this paper
we have analyzed the independence of a popular randomness
test suite implemented in a software package named Ent. On
the contrary that other studies, we based our analysis on the
tests statistics instead of the p-values, in this way we try
to maintain all the information that is lost in the p-values
computation.

In first place we generated a dataset of random sequences.
The straightforward way to do this is just using a PRNG, but
this might bias the result. We encouraged diversity by taking
the output of a PRNG and using a GA to increase and decrease
in a controlled way the quality of the randomness, understand-
ing by quality the statistics used by the Ent test suite. Then we
computed the Ent statistics for the dataset and applied a basic
correlation analysis to verify their independence. In total we
evaluated seven statistics (entropy, compression, chisquared,

arithmetic mean, pierror, excess and correlation) associated to
five tests.

The results show that the studied statistics are not com-
pletely independent. Entropy and compression are almost the
same measure, with a linear transformation and a ceilling
operation, which actually makes compression in Ent, in our
opinion, a bad choice to assess randomness, so we suggest
not using it. Chisquared and excess also show high correlation,
therefore their information is redundant, it should be safe to
only use one of them. In summary, the evidences shown here
suggest that the seven analyzed statistics could be reduced to
five without great loss of information.

The correlation analysis performed in this study used some
basic tools. A future research line is including more power-
ful methods to assess the tests independence. In this sense
Machine Learning provides tools, such as PCA or regression
analysis, that we expect to apply in a near future.
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TABLE III
PEARSON’S CORRELATION MATRIX RESTRICTED TO CHROMOSOMES WITH LENGTH 8192 BITS. THE LEFT VALUE IS FOR MAXIMIZATION WHILE THE

RIGHT VALUE IS FOR MINIMIZATION. VALUES LARGER THAN 0.7 ARE MARKED IN BOLD, VALUES BETWEEN 0.5 AND 0.7 ARE IN ITALICS.

Entropy Compression Chisquared Mean Pierror Excess Correlation

Entropy 1.0 -0.796 / -0.811 -0.979 / -0.976 0.111 / -0.119 0.060 / 0.069 0.902 / 0.835 -0.091 / -0.079

Compression - 1.0 0.784 / 0.800 -0.109 / 0.089 -0.052 / -0.071 -0.616 / -0.521 0.091 / 0.065

Chisquared - - 1.0 -0.109 / 0.115 -0.060 / -0.075 -0.925, -0.837 0.093 / 0.083

Mean - - - 1.0 -0.002 / 0.319 0.094 / -0.099 -0.011 / -0.021

Pierror - - - - 1.0 0.051 / 0.045 0.030 / -0.018

Excess - - - - - 1.0 -0.088 / -0.083

Correlation - - - - - - 1.0
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Fig. 5. Scatterplot matrix for randomness maximization and sequence lengths of 8192 bits.


