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David F. Barreroa∗, Maŕıa D. R-Morenoa and David Camachob
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Due to the complexity of theoretical approaches in Evolutionary Computation (EC), research
has being largely performed on experimental basis. One popular measure used by the EC
community is the success rate (SR), which is used alone or as part of more complex measures
such as Koza’s computational effort in Genetic Programming. A common practice in EC
is to report just a punctual estimation of the SR, without additional information about its
associated uncertainty. We aim to motivate EC researchers to adopt more rigorous practices
when working with SRs. In particular, we introduce the importance of correctly reporting
this measure and highlight its binomial nature. Unfortunately, this fact is usually overlooked
in the literature. Considering the binomiality of the SR opens the whole corpus of binomial
statistics to EA research and practice. In particular, we focus on studying several methods to
compute SR confidence intervals, the factors that determine their quality in terms of coverage
probability and interval length. Due to its practical interest, we also briefly discuss the number
of required runs to build confidence intervals with a certain quality, providing a sound method
to set the number of runs, one of the most important experimental settings in EC. Evidence
suggests that Wilson is, on average, a reliable and simple method to bound an estimation
of SR with confidence intervals, while the standard method, which is quite popular because
of its conceptual simplicity, should be avoided in any case. However, other methods can also
be of interest under certain circumstances. We encourage to report the number of trials and
successes, as well as the interval, to ease further comparability of the results.
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Evolutionary Computation; Performance measures

1. Introduction

Experimentation is a basic tool in science. In many fields, when a theoretical ap-
proach is too complex, experimentation becomes the only way to manage that
complexity. Although there are notable attempts to address Evolutionary Com-
putation (EC) from a theoretical approach (Holland 1992, Poli et al. 2010), its
research still relies heavily on empirical approaches (Bartz-Beielstein 2006, Birat-
tari 2009, Bartz-Beielstein et al. 2010) where experimentation plays the central
role. The target of any empirical study is to answer a research question by design-
ing and running a set of experiments (Barr et al. 1995, Rardin and Uzsoy 2001).
Some measures are gathered in these experiments and analyzed using statistical
methods (Wineberg and Christensen 2010a,b, Derrac et al. 2011) to provide some
light to the research question.
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Several measures have been used in EC research (Barreto et al. 2010). The se-
lection of one measure instead of another one depends on the object of study, the
algorithm and the goals of the experiment designer (Zitzler et al. 2000, Cruz et al.
2011). However, there are some common measures that are heavily used such as
mean best fitness or mean average fitness (Eiben and Smith 2009). One of the most
common ones is the success probability or success rate (SR). Due to the stochastic
nature of Evolutionary Algorithms (EAs), when an EA is run it might, or might
not, reach a solution that solves the problem it was designed for. SR is defined as
the probability of an EA to find such solution, which is determined by imposing
a success predicate, for instance, when an individual achieves a certain quality.
In other words, it is not possible to use SR if there is not a criteria to identify a
good enough solution (Eiben and Jelasity 2002, Bartz-Beielstein 2003). Some au-
thors have proposed measures similar to SR, for instance, (Chen et al. 2012, 2010)
proposed the solvable rate, which has a theoretical background.

SR should be used with caution. As Luke and Panait (Luke and Panait 2002)
noticed, fitness might not be correlated with SR, and consequently it should not
be used as a measure of the population quality. Nonetheless, finding literature that
reports SR as a quality measure of the population is not too hard. In any case, SR
provides an insight to the capabilities of the algorithm to find a solution. Sometimes
SR is not the measure of interest, but rather it is part of a complex measure such
as the computational effort (Koza 1992) in Genetic Programming (GP). In this
case the accuracy of the complex measure depends on the quality of the estimation
of SR.

One characteristic of SR as has been defined above is that it is defined as a
scalar, but the value of the scalar cannot be known in the general case. It has to
be estimated. Angeline (Angeline 1996) was the first person to observe this fact
when working with computational effort, and suggested that a measure about a
stochastic process should take into account its random nature. The same can be
said of SR, a single point is not enough to characterize the stochastic nature of
this metric, and some additional information about its statistical properties should
also be reported, for instance, confidence intervals (CIs).

In the context of GP and computational effort, the first author that used CIs
was Keijzer. He first noticed (Keijzer et al. 2001) that when the success probability
was low, the computational effort is highly volatile. Additionally, the CI width as-
sociated to the estimator is nearly as large as the estimated value. This observation
motivated Christensen (Christensen and Oppacher 2002) to study the reliability of
Koza’s computational effort. Walker (Walker et al. 2007a,b) studied several meth-
ods to construct computational effort CIs and concluded that Wilson’s method is
the most competitive one. Niehaus (Niehaus and Banzhaf 2003) studied systemati-
cally different factors that affect the precision of the measurement of computational
effort. So, the reliability of computational effort has been well studied, however,
these measures depends on the measure of SR, which is a more basic problem that,
to the authors’ knowledge, has not been addressed before in the context of EA.

Experimental methods and reporting practices in EC have been improving in
the last years. Probably, the increasing interest and number of publications written
about these topics is partially responsible of this fact. But despite this, there are still
some weak reporting practices when dealing with the SR that could be improved.
In this paper we try to call the attention of EC researchers and practitioners about
the statistical nature of the SR and review some statistical tools that can be used
to provide more rigorous empirical methods.

The contributions and significance of this paper are two-folded. First, we show
that the number of success runs in an EA (and therefore the SR) can be modeled
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using a binomial distribution, providing theoretical and empirical support as well
in the context of EC. Second, we review and characterize CIs computation methods
to report SR, validating theoretical models of their accuracy with data obtained
from EAs. With this result, it is possible to determine the fiability of the SR
estimation and exploit this knowledge to improve the experimental design in order
to get a more reliable estimation of the SR, leading to more robust experimental
practice. In particular, we show how to set the number of runs needed to get an
estimation of the SR with a given maximum error. A preliminary version of this
work was reported by Barrero et al. (Barrero et al. 2010). In this paper we provide
additional empirical evidence, theoretical evidence, a much detailed description of
the performance of binomial confidence intervals and a brief discussion about the
number of runs that an EA researcher/practitioner should run to generate CIs with
a certain quality.

The paper is structured as follows. First we introduce the basic problem of esti-
mating a probability such as SR in EC. Then we study the statistical distribution
that models SR and we continue with a description of several methods described
by Statistics literature to calculate confidence intervals of a binomial distribution.
Section 5 studies the performance of several CIs methods in relation to the num-
ber of samples of the experiment and SR. In section 6, we compare binomial CIs
applied to some classical GP problems with CIs applied to theoretical binomial
distribution. Section 7 briefly describes a method to estimate the number of runs
needed to build CIs of a given quality. Finally, some conclusions are presented and
future work lines are outlined.

2. Measuring a probability

From the perspective of SR an EA experiment is just a Bernoulli trial: an EA
run is just an experiment whose outcome is a binary random variable X that can
take two values, let’s call them ‘success’ or ‘failure’. From the EC perspective, the
terms ‘success’ and ‘failure’ should be understood in a wide sense; the result of a
classification rule that, given a population at a given time, classifies the algorithm
execution as one of these two labels. For instance, in a regression problem to get a
solution within a an error ε. The rest of our discussion relies in one assumption: the
execution of the experiments are independent. This definition excludes some EAs
whose restarts are not independent, for instance, an adaptative restarting strategy.

SR is defined as the probability P (X = ‘success′) = p, and is described by the
Bernoulli distribution. The most common case in EC is that p is unknown, which
is precisely the parameter we want to estimate. The procedure to do it is well
known, the EA execution is repeated n times yielding a number k of successes
and n − k failures, then a probability p is computed as p = k

n . Actually, we have
described a Bernoulli process, a sequence Xi, i = 1, 2, ..., n of random variables that
are the outcome of a sequence of independent Bernoulli trials, and therefore they
are described by a Bernoulli distribution. Despite its simplicity, a number of trivial
and non-trivial issues arise when this experiment is analyzed in more detail.

Consider the next näıve experiment. We aim to empirically measure the proba-
bility of obtaining head when a coin is tossed, i.e., we have to estimate the value of
p, p̂. Of course, if the coin is equilibrated and the experiment is well implemented,
that probability is 1/2. But we want to study it empirically, so, we try the exper-
iment 3 times and count the number of successes. In this case there are only four
possible outcomes, k ∈ {0, 1, 2, 3}, and thus there are only four probabilities that
can be estimated, p̂ ∈ {0/3, 1/3, 2/3, 3/3}, which are not close to 1/2. We need to
approximate p using the law or large numbers, the higher is the number of n, the
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Table 1. Simulation of the estimation of the probability of getting heads when 1000 coins are tossed.

Experiment Successes p̂i

1 483 0.483
2 531 0.531
3 594 0.594
4 521 0.521
5 513 0.513
Total 2642 2642

5000 = 0.5284

lower is the error.
Five simulations of the experiment described above with n = 1000 is shown

in Table 1. It can be seen that even with a large number of experiments (1000
experiments), it is not possible to provide an exact estimation of p, each one of
the five experiments yields different values of p̂. Even if we average the probability
of the five experiments -in this case n = 5000-, p̂ = 0.5284. Thus, providing a
fixed value for p without any other information is a partial view of the estimator,
and one hardly can do sound claims in base of this estimation (Angeline 1996).
A reference is needed about how far or close p̂ is expected to be from p. In order
to obtain this information we previously have to study the statistical properties of
the estimation of a probability, which is a well known problem in Statistics.

3. Distribution of SR

Regardless of the particular nature of the EA under study, the estimation of the
success probability of an EA consists in running the experiment n times, use a
heuristic to identify whether a particular run has been successful, and then count
the number of successful runs in generation i ∈ N+, k(i). Finally, the estimation is
calculated as p̂(i) = k(i)/n.

We are usually interested in p(i) when the experiment has finished. So, for clarity
and without loss of generality, if the algorithm has been run for G generations, we
define SR as SR = p(G). How p(i) depends on time is a different topic that, for
the specific case of GP, is addressed by Barrero et al. (Barrero et al. 2011).

If we assume that the experiments are independent, which is not a very restrictive
assumption, measuring p̂ is equivalent to estimating the number of successes k in
n independent experiments. It is well known in statistics that the number k of
successes is a random variable described by a binomial distribution, and thus the
probability of getting k successes in n trials is given by:

Bin(k, n) =

(
n

k

)
pk(1− p)n−k

where p = k/n, C(n, k) = n!
k!(n−k)! and k ∈ {0, 1, 2, ..., n}.

It is straightforward to deduce the binomial distribution function. Given n ex-
periments, there will be k successes and n− k failures, if the success probability is
p then, by definition, the probability of failure is 1− p, the probability of getting k
successes is pk and the probability of getting n−k failures is (1−p)(n−k). Therefore
the probability of getting pk and n−k failures is pk(1−p)(n−k). Moreover, the order
in which successes appear is not a matter, they can appear in any combination of
successes and failures, and there are C(n, k) combinations, so we conclude that the
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probability of getting k successes in n experiments when the success probability is
p is given by C(n, k)pk(1−p)(n−k), which is the binomial probability mass function.

So it can be deduced that the probability of getting k successes from n runs in an
EA experiment is described by a binomial distribution. A binomial depends on two
parameters, k and n, and thus the properties of the estimator of p is independent of
the domain and the type of EA used. We can completely characterize the estimator
if the number of runs and number of successes are known, which is the common
situation in EC. More importantly, the properties of the estimator do not depend
on the algorithm internals, following that this is of general application to any EA.

3.1 Empirical study

In order to get empirical evidence to support our claim we have selected four
GP problems: artificial ant with the Santa Fe Trail, 6-multiplexer, 5-parity and a
symbolic regression problem with no ephemeral random constants (ERCs). These
are classical problems proposed by Koza (Koza 1992) and are widely used by GP
literature. We have run the experiments with a standard tree-based GP algorithm
using ECJ v18 and its default parameter settings1. The main parameters used in
the GP executions are shown in Table 2.

Experimentation without any trick would require a huge number of runs, so, we
used bootstrapping (Cohen 1995). A large number of 100, 000 runs were executed
(this number is reduced to 5, 000 for the 5-parity problem due to computational
resource limitations), and its result stored in a dataset. These datasets are used
later to bootstrap p̂ with different values of n. Since p is not known, we have
approximated it with a precise estimation p̂best, which used the whole datasets.
This precise estimation was used as the real p for comparison purposes. Table 3
shows p̂best, k, n and confidence intervals for α = 0.05 and α = 0.01 calculated
with different methods introduced in the section section.

We first aim to compare graphically experimental results and the binomial
distribution Bin(p̂best, n). The procedure is the following one. First, we simu-
late 2, 000 experiments bootstrapping 2, 000 values of k. Each one of these val-
ues is calculated resampling with replacement n runs contained in the dataset
and counting the number of successful runs. This procedure is repeated for each
n ∈ {30, 50, 100, 250, 500, 1000}. After that, there will be 2, 000 simulated experi-
ments with n runs each one, and a total number of 2, 000 values of k. These values
of k were represented in an histogram using n as a factor.

The histograms of the four problems under study are depicted in Figure 1. The
black points in the figure shows the binomial distribution Bin(p̂best, n). It can be
seen that the empirical number of successes follows closely the theoretical binomial
distribution in the four problems and all values of n, even for the small ones, which
is an evidence of binomiality. In addition, we can observe that as n increases, both
the theoretical binomial and the empirical distribution of p̂ are closer to the normal,
which is consistent with the central limit theorem.

In order to provide additional graphic evidence to support our claim, Figure 2
shows a quantile plot of the four problems considered in this study. Quantile plots
represent the number of successes of 2, 000 bootstrapped values of k with n = 1000,
as was described above, against the theoretical number of successes obtained from
the binomial distribution Bin(p̂best, 1000). The plots show a linear relationship,

1Following the example of Daida (Daida et al. 1997) all the datasets, scripts and configuration files needed
to repeat the experiments shown in this article are freely available on http: // atc1. aut. uah. es/ ~ david/
jetai2016/ . No modifications were done to the ECJ default configuration, with the exception of the
Artificial Ant whose time steps were changed from 400 to 600.
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Table 2. Tableau for the problems under study: artificial Ant with the Santa Fe Trail, 6-multiplexer, even 5-parity

and symbolic regression without ERC.

Parameter Artificial ant 6-multiplex. 5-parity Regression

Population 500 500 4,000 500
Generations 50 50 50 50
Terminal Set Left, Right,

Move, If-
FoodAhead

A0, A1, A2,
D0, D1, D2,
D3, D4, D5

D0, D1, D2,
D3, D4

X

Function set Progn2,
Progn3,
Progn4

And, Or,
Not, If

And, Or,
Nand, Nor

Add, Mul,
Sub, Div,
Sin, Cos,
Exp, Log

Success predicate fitness = 0 fitness = 0 fitness = 0 fitness ≤
0.001

Initial depth 5 5 5 5
Max. depth 17 17 17 17
Selection Tournament

(size=7)
Tournament
(size=7)

Tournament
(size=7)

Tournament
(size=7)

Crossover 0.9 0.9 0.9 0.9
Reproduction 0.1 0.1 0.1 0.1
Elitism size 0 0 0 0
Terminals 0.1 0.1 0.1 0.1
Non terminals 0.9 0.9 0.9 0.9
Observations Timesteps=600 Even parity No ERC

y = x4 +x3 +
x2 + x
x ∈ [−1, 1]

which suggests the correctness of the binomial assumption. Quantile plots for other
values of n were depicted (not shown) with the same result.

We performed a fit-of-goodness study with a Pearson’s χ2 test. This test evaluates
whether a set of samples comes from a population with a given distribution, a
Bin(p̂best, n) in this case. Since the measure of Pearson’s χ2 test is random due to
the resampling, all the experiments have been repeated 100 times and the p-value
averaged. The test was performed for n ∈ {15, 30, 50, 100, 250, 500, 1000}.

The results of the experiments for the four study cases under study can be found
in in Table 4. It shows the mean p-value with its standard deviation and their
difference. We set the rejection criteria of the null hypothesis (population comes
from a Bin(p̂best, n) distribution) as p−value−sd < α, i.e., the difference between
the p-value and its standard deviation was higher than a certain significance level,
let us say α = 0.05. Looking at the results shown in Table 4 we can observe
that almost all the p-values are around 0.23, but it tends to get lower values
when n is higher. Similarly, standard deviations get higher as n increases. Two
facts can explain this behavior. First, the range of values that the random variable
Bin(p̂best, n) is wider when n is high, so it is logical that the dispersion of the p-value
was proportional to n. Secondly, effect size might have a role in the explanation
of the results. We should keep in mind that p̂best is just an estimation of the real
probability associated to the GP problem, this discrepancy is more apparent when
n is high, so it is logical that the p-value got lower values.

Looking at Table 4 we only find evidence to reject null hypothesis in four cases,
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Table 3. Best estimation of success probability (p̂best), number of successes (k) and number of runs (n) for the

four GP problems under study, and their confidence interval (CI) calculated with the standard (Std), Agresti-

Coull (AC) and Wilson (Wil) methods using confidence levels α = 0.05 and α = 0.01.

Artificial ant 6-multiplexer 5-parity Regression

p̂best 0.13168 0.95629 0.061 0.29462
k 13,168 95,629 305 29,462
n 100,000 100,000 5,000 100,000
CI Stdα=0.05 [0.129584, [0.955023, [0.054366, [0.291794,

0.133776] 0.957557] 0.067634] 0.297445]
CI Stdα=0.01 [0.128926, [0.954625, [0.052282, [0.290907,

0.134434] 0.957955] 0.069718] 0.298333]
CI ACα=0.05 [0.129598, [0.955005, [0.054688, [0.291802,

0.133790] 0.957540] 0.067985] 0.297453]
CI ACα=0.01 [0.128950, [0.954594, [0.052831, [0.290920,

0.134460] 0.957926] 0.070333] 0.298347]
CI Wilα=0.05 [0.129598, [0.955005, [0.054697, [0.291802,

0.133790] 0.957540] 0.067977] 0.297453]
CI Wilα=0.01 [0.128950, [0.954594, [0.052850, [0.290920,

0.134459] 0.957925] 0.070314] 0.298347]
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Figure 1. Histograms of p̂best for different simulated sample sizes for Santa Fe Trail (p̂best = 0.13168),
5-parity (p̂best = 0.061), 6-multiplexer (p̂best = 0.95629) and regression (p̂best = 0.29462). The binomial
density distribution Bin(p̂best, n) is shown overlapped with black points.

all of them with high values of n. The results of the testing in the rest of the cases
does not provide enough evidence to lead us to reject our initial hypothesis.

In conclusion, there are strong theoretical reasons to claim that success probabil-
ity in EAs is a random variable that can be modeled with a binomial distribution.
All the experiments carried out in four classical GP problems supports our claim
for GP, histograms, quantile plots and Pearson’s χ2 test for fit support the bino-
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Figure 2. Quantile plot of four classical GP problems (Santa Fe Trail, 5-parity, 6-multiplexer and regression
with no ERC) against a binomial distribution Bin(p̂best, 1000) (p̂best is, respectively, 0.13, 0.06, 0.96 and
0.29, see Table 3).

miality of the number of successful runs in an EA experiment. Therefore, it seems
to be reasonable to assume binomiality until section 6, where this issue is resumed
and additional evidence provided. One of the most notable consequences of the bi-
nomial nature of SR is that the statistical methods developed for binomial can be
applied to SR in the context of EA. One of these methods is confidence intervals.

4. Confidence intervals

Using a binomial distribution to model the SR of EAs entails several benefits,
one of them is that all the extense literature about binomials can be applied. In
particular, the problem of estimating the SR of an EA can be generalized to the
problem of estimating the parameters of a binomial distribution, which has been
a subject of intense research in Statistics. Any estimator has a certain associated
uncertainty, so, reporting only the value of the estimator provides only a part of
the story. It is necessary to provide additional information about that uncertainty.
A powerful tool to characterize it is CIs. Our goal is to get a basic understanding
of how to use binomial CIs in the context of EAs, with a focus on their properties.

CIs for binomial distribution is a well studied problem due to its wide range
of practical applications, so, it is not surprising that there are many methods to
calculate binomial CIs (Brown et al. 2001), and rigorous comparisons have been
published (Vollset 1993, Newcombe 1998, Brown et al. 2001, 2002, Ross 2003, Pires
and Amado 2008). A binomial distribution is fully described by two parameters:
the number of trials (n), and the number of successes (k). Alternately, the success
probability p can also be used, which can be directly calculated from n and k
simply as p = k/n. It is interesting from the perspective of EC because it decouples
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Table 4. Pearson’s χ2 goodness-of-fit against a binomial distribution with α = 0.05. 1, 000 p-values were cal-

culated, each one with 200 simulated experiments. Average p-values (p− val), standard deviation of p-values

(sd) and their difference (diff = p− val − sd) are shown. Data that drives to reject the null hypothesis

(p− val− sd < 0.05) is marked with bold letters.

N
Santa Fe 6-Multiplexer

p− val sd diff p− val sd diff

15 0.2275 0.0032 0.2243 0.2206 0.0789 0.1417
30 0.2303 0.0243 0.206 0.2242 0.0060 0.2182
50 0.2374 0.0197 0.2177 0.2293 0.0053 0.224
100 0.2355 0.0535 0.182 0.2342 0.0285 0.2057
250 0.2397 0.1155 0.1242 0.2420 0.0249 0.2171
500 0.1885 0.1479 0.0406 0.2326 0.0756 0.157
1000 0.1279 0.1813 -0.0534 0.2109 0.1301 0.0808

N
5-Parity Regression

p− val sd diff p− val sd diff

15 0.2211 0.0042 0.2169 0.2331 0.0152 0.2179
30 0.2279 0.0041 0.2238 0.2425 0.0203 0.2222
50 0.2327 0.0048 0.2279 0.2453 0.0382 0.2071
100 0.2383 0.0125 0.2258 0.2316 0.0809 0.1507
250 0.2300 0.0631 0.1669 0.2132 0.1535 0.0597
500 0.2348 0.1044 0.1304 0.1303 0.1629 -0.0326
1000 0.2041 0.1006 0.1035 0.0407 0.1006 -0.0599

its study from the particular EA used. Only these two parameters are needed in
order to fully describe the statistic properties of the CI, regardless of the internal
dynamics of the EA and its particularities. One of the parameters in the binomial
distribution, n, is usually known by the EA practitioner, while the SR, p, is usually
unknown and thus it is the parameter that we are usually interested to estimate.

4.1 Description of the CIs methods under study

There are numerous binomial CIs calculation methods, and including all in this
study would be unrealistic, so, we have selected those ones that we consider more
representative due to its wide use or its presence in the literature. We have selected
four methods: standard, ‘exact’, Agresti-Coull and Wilson. A brief introduction to
these methods follows.

Standard interval. Also known as asymptotic method, normal approximation or
Wald interval. It is the best known, oldest (Laplace 1812) and extended method,
even the name represents how extensive the usage is. It is well known that a
binomial Bin(p, n), when np is large enough (usually np > 30), approximates
a normal distribution N(np, np(1 − p)) (see Figure 1). Therefore if the binomial
approaches a normal, it is possible to generate intervals with the same method used
with the normal distribution (Wald 1943). Although this method has been widely
reported to suffer several flaws (Newcombe 1998, Brown et al. 2001, Walker et al.
2007a,b), it is widely used due to its simplicity and its presence in basic Statistics
books. The standard interval is given by

p± zα/2

√
p(1− p)

n
(1)
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where zα/2 is the upper-α/2 critical point from N(0, 1) and whose values can be
found tabulated in statistical tables as well as statistical packages. One drawback
that the standard interval presents is that this interval cannot be calculated when
p is 0 or 1.

Clopper-Pearson or ‘exact’ interval. This interval is described as ‘exact’,
with quotes, because it is deduced from the binomial distribution. Ironically, despite
its name, its discrete nature makes this method unnecessarily conservative, and
therefore far from being exact. The limits [L,U ] of the ‘exact’ interval (Clopper
and Pearson 1934) are given by the solution to p of the equations P (bin(n, pU ) ≤
X) ≥ α

2 and P (bin(n, pL) ≥ X) ≥ α
2 , which yields the following equations:

k∑
k=0

(
n

k

)
pkU (1− pU )n−k =

α

2

n∑
k=x

(
n

k

)
pkL(1− pL)n−k =

α

2

The solution of these equations is not trivial and can be expressed using the beta
distribution as follows.

LCP (k) = B(α/2; k, n− k + 1)

UCP (k) = B(1− α/2; k + 1, n− k)
(2)

where B(α; a, b) stands for the α quantile of a Beta(a, b) distribution. Sometimes
the ‘exact’ interval is expressed as a function of the F-distribution, due to its
relationship with the beta distribution:

LCP (k) =

[
1 +

n− k + 1

kF2k,2(n−k+1),1−α/2

]−1

UCP (k) =

[
1 +

n− k
(k + 1)F2(k+1),2(n−k),α/2

]−1

where Fa,b,c represents the 1 − c quantile from the F distribution with degrees of
freedom a and b.

Agresti-Coull interval. Also known as adjusted Wald, a term introduced by the
original paper of Agresti and Coull (Agresti and Coull 1998). This is a modification
of the standard interval where some pseudo-observations are added to (1). In this
way, instead of calculating the standard interval using n and p computed as p =
k/n, Agresti-Coull uses p̃ and ñ calculated as

p̃ =
(k + 1

2z
2
α/2)

(n+ z2
α/2)

(3)

and

ñ = (n+ z2
α/2) (4)

then, the standard interval is calculated as in (1), but using p̃ and ñ instead of p
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and n,

p̃± zα/2

√
p̃(1− p̃)

ñ
(5)

It should be pointed out that for a common case where α = 0.05, then z2
α/2 ≈ 2

and thus p̃ and ñ can be simplified to p̃ = (k + 2)/(n + 4) and ñ = (n + 4).
Consequently it is equivalent to adding two failures and two successes. In this way
the probability remains unchanged, and the calculus of the CI is the same than the
standard intervals, but their properties are significantly improved.

It is interesting to note that the center of the interval is not given by p̂ = k
n , as

usual, but rather by p̂ = (k+ 1
2z

2
α/2)(n+ z2

α/2)−1, which is not placed in the center

of the interval. Nevertheless, as n is increased (and indirectly also k), the center of
the interval tends to be closer to p̂ = k

n , so increasing the number of experiments
generates more symmetric intervals.

Wilson interval. Also known as the score method. Wilson interval (Wilson
1927) is derived from a normal approximation as the solutions to the equations

(p̃− p0)/
√
p0(1− p̃)/n = ±z2

α/2 which is given by

CIW =
k + 1

2z
2
α/2

n+ z2
α/2

±
z2
α/2

√
n

n+ z2
α/2

√
p(1− p) +

z2
α/2

4n
(6)

The center of the Wilson interval has the same form as Agresti-Coull, so we can
point out the same considerations about it. Actually, when α = 0.05 Wilson inter-
vals are quite similar to Agresti-Coull.

4.2 Discussion about CI methods

Many authors have studied the performance of CI methods using rigorous statistical
approaches (Vollset 1993, Newcombe 1998, Brown et al. 2001, 2002, Ross 2003,
Pires and Amado 2008). Brown (Brown et al. 2001) recommends, for small n (40 or
less), Wilson or Jeffreys (a variation of Bayes intervals, not covered here) methods,
while for large n values (more than 40) he recommends also Agresti-Coull. Similarly,
Piegorsch (Piegorsch 2004) remarks that while Wilson and Jeffreys perform better
when n < 40, the rest of methods are similar for higher values of n.

Some GP studies have been focused in the more specific problem of estimating
the computational effort, (Niehaus and Banzhaf 2003, Walker et al. 2007a,b), all
of them have noticed the poor performance of normal approximation, and recom-
mend the use of Wilson. These studies apply several CIs methods to computational
effort, nevertheless they use a pure experimental approach, without a theoretical
or statistical justification to support the methods used. It is not considered that
some of the CIs studied, such as Wilson, are supposed to be used with binomial
distributions.

We aim to study the performance of the most significant binomial CI methods
from a systematic, general and problem independent point of view, and how its
performance depends on p and n. Once the behavior of the CIs was understood in
terms of p and n, it is easy to extrapolate the results to a EC experimental context.
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5. Confidence intervals performance

This section, inspired by (Brown et al. 2001), analyzes the performance of some CI
methods. We are interested in showing the relationship between the two parameters
of a binomial distribution and how they influence the performance of the CI. We use
two related metrics to measure the performance of the CI methods, the coverage
probability and the interval width.

On the one hand coverage probability (or CP) is defined as the probability of
a CI to contain p, more formally, CP = P (L ≤ p ≤ U). It is worth noting that
increasing the CP of an interval is trivial, just by increasing its width. Furthermore,
the coverage of the CI [0, 1] is always 1 because p must be contained in that interval
by definition. On the other hand CI width (or CIW) is defined as the difference
between U and L, CIW = U − L. Of course, a tight interval is better than a wide
interval, given that both have the same CP.

CP and CIW are closely related. There is a trade-off between CP and CIW,
so CI methods have to find a balance between them. A good CI is not that one
with a CP next to 1, but rather a tight interval with a CP close to the nominal
coverage 1 − α, i.e., P (L ≤ p ≤ U) ≈ 1 − α. If an interval achieves a CP higher
than the nominal one is at a cost of a wider interval. In terms of EA experimen-
tation, such a conservative method would lead, for example, to a higher difficulty
to detect significant differences between the SR of two algorithms. Understanding
the properties of CP and CIW might lead to designing better experiments related
to SR and composed measures such as computational effort.

5.1 CIs performance overview

The performance of an interval depends on the binomial parameters, but these
parameters are not independent. In order to get an initial glimpse to this question
we need a huge set of EA experiments as well as a strict control on the SR, which is
quite difficult to achieve in real EAs. So, instead of running EAs, we have simulated
them.

Since parameters n and p fully describe the binomial CI of an EA, we do not have
to run the algorithm. From the SR point of view, the result of an EA experiment
is binary. Therefore we have characterized pseudo-EA runs with a set of labels,
”success” or ”failure”. For each probability p ∈ {i/2000∀i = 1, ..., 2000}, we gener-
ated a dataset with 100.000 labels ”success” with probability p and ”failure” with
probability 1 − p. Once the dataset was created, we took n pseudo-experiments
2, 000 times, with n = 5, 6, ..., 100, and calculated p̂i for each set of experiments.
In summary, we bootstrapped p̂ using 2, 000 resamples for several combinations of
p and n. The CI with α = 0.05 was calculated using each method under study and
each combination of p and n. Finally, CP and CIW were calculated. In this way we
simulated the execution of EAs varying number of runs and probabilities, yielding
a total of 95× 2, 000× 2, 000 = 380, 000, 000 simulated EA runs.

The relationship between CIW, p and n can be seen in Figure 3 (b), where the
CIW of standard CIs with α = 0.05 is depicted. The shape of the figure is the
same for the rest of the methods under study, so we only show the diagram of
one method. CIW is symmetric for the plane p = 0.5 due to the fact that these
methods are equivariant, their limits for (n − k)/n are complements of those for
k/n (Newcombe 1998). The plane p = 0.5 defines the symmetry of the figure as
well as the maximum of CIW. CIs are wider when SR is close to 0.5, alternatively
the closer is p to its boundaries 0 and 1, the tighter is the interval. It is explained
by the constraints that the boundaries introduces to the calculation of the interval.
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Figure 3. (a) CP and (b) CIW for various sample sizes (n) and SR (p) for standard CI with confidence
level α = 0.05. Similar shape and fluctuations are found in the rest of the methods.

Looking at the behavior of CIW with n, we can observe that CIW is monotonically
decreasing, whether the number of runs is increased there is additional information
that is used to build tighter intervals. Of course, the price of such improvement is
an increase of the number of runs and computational resources.

Figure 3 (a) depicts the coverage of standard CIs for several values of p and n. It
can be seen that Figure 3 depicts a rather chaotic behavior, with many peaks and
valleys without a clear pattern. We will show later that this behavior is not actually
chaotic but rather the low resolution of Figure 4 which hides some phenomena very
characteristic of binomial CIs. It will be analyzed in detail in the next section.

Some patterns can be found in Figure 3 (a). In particular, it is pretty clear that
low coverage is associated to a low number of trials or a SR close to 0 and 1.
This fact is also observed in the other methods and is intrinsic to the nature of
the binomial distribution. However, there are quantitative differences among the
methods. In the case of the standard interval the effects of low n values are dramatic
because the normal approximation is no longer valid. This behavior is consistent
with the one found in CIW: the wider is the CI, the less restrictive it is, and thus
it is more likely that the real p was contained in the interval.

The rest of the methods present the same high level behavior described above,
so all of them share some common properties which seem to be intrinsic to the
problem, however, their performance differs significantly when analyzed in detail.
It worths exploring this issue.

5.2 Coverage of CIs

An analysis of CP shows some remarkable facts. Figure 4 represents the cover-
age surface of the methods under study for n between 20 and 200 in steps of 1
and p takes 2, 000 values between 0 and 1. CP was calculated using R’s function
binom::binom.coverage().

Figure 4 shows that the chaotic behavior of CP seen in Figure 3 (a) actually
follows a pattern with symmetry in the axis p = 0.5. The low resolution and
sampling noise of Figure 3 hid this pattern. As was previously seen, regardless
of the used method, there are some areas with poor performance in terms of CP
placed on the boundaries of p and low values of n. Coverage is particularly low in
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Figure 4. Dependence between coverage, n and p for CI methods under study: standard, ‘exact’, Agresti-
Coull and Wilson, all calculated with α = 0.05. X-axis represents success probability, p, while y-axis
represents the number of runs, n. Coverage values lower than 0.92 have been represented in black, while
coverage that equals the nominal value 0.95 is plotted in white.

the bottom corners of the graph, where both, n and p have negative influence on CP.
This is a low coverage area, where simply there is not enough information to define
reliable intervals. However, the coverage of the standard interval is dramatically
poor in these corners in relation to the rest of the methods. Coverage of standard
intervals achieves extremely low values when n < 15 and p < 0.1.

A new and striking phenomenon that was not observed previously in Figure 3 (a)
is the presence of oscillations in the coverage regardless the CI method used. These
oscillations are a well known phenomena (Agresti and Coull 1998, Brown et al.
2001) and they are generated by the discreteness of the binomial distribution. The
magnitude of the oscillations has a great impact in the overall performance of the
CI method. Oscillations appear in Figure 4 as waves whose magnitude is inversely
proportional to the value of n. The magnitude of the oscillations also depends on
p, and it is, like CP and CIW, symmetrical with respect p = 0.5.

Despite the fact that CP presents oscillations regardless the method being used,
their magnitude changes. It is clear that, for instance, standard intervals coverage
oscillates strongly when n is low in comparison to the rest of the methods. Wilson
and ‘exact’ methods contains coverage oscillations less pronounced than those in
the standard method.

It is important to verify how close is CP to the nominal coverage. This point
can be appreciated more clearly in Figure 5, which shows several ‘cuts’ of the
coverage surfaces at some values of n. In this way we obtain a detailed view of the
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Figure 5. Comparison of CP for different CI methods (Wilson, ‘exact’, standardand Agresti-Coull) and
number of samples (20, 50, 100 and 500). The nominal coverage, α = 0.95, is represented with an horizontal
grey line.

oscillations. An ideal CI method would generate intervals with a CP equal to the
nominal one, nevertheless it is clear looking at Figure 5 that the real coverage is
far from being equal to the nominal one, 0.95 in this case.

There are some common characteristics of the oscillations for all the methods
under study. The magnitude of the oscillations and its shape is directly related
to n. When n is large, for instance 500, CP gets a rather flat shape with small
oscillations and CP gets pretty close to the nominal coverage. Looking at Figure 5
we conclude that, in the same line than the ones reported by (Brown et al. 2001),
when n is large enough the differences of coverage properties of the CI methods
under study are not significant.

Each method exhibits some particularities in the behavior of their coverage.
‘Exact’ intervals coverage is always higher than the nominal one. This conservatism
produces wider intervals, as will be shown later. On the contrary, standard intervals
coverage is lower than the nominal coverage, indeed when n is low, the coverage
is much lower. Even when n = 100, which is a relatively high number of trials,
its performance in the boundaries of p is poor compared to the other methods.
Agresti-Coull interval does not exhibit such a clear behavior. It has areas where
CP is higher than the nominal one, and other areas where CP is lower, however
it tends to be more conservative in the boundaries of p. Finally, Wilson intervals
show good coverage properties close to 1 − α and it is neither conservative nor
liberal.

It is worth comparing the exact CP with those obtained in the simulated ex-
ecutions of GP. Figure 6 depicts coverage diagrams obtained by the experiment
described in the beginning of the section for n = 20. It can be seen that Figure 6
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Figure 6. Empirical CP measured for simulated GP experiments when n = 20 and α = 0.05. Coverage
shows the same shape than the exact coverage shown in Figure 5 with some noise.

fits nicely with the analytical coverage represented in Figure 5, with the only ex-
ception of a high frequency noise produced by the sampling. Given that the CP
diagram shown in Figure 6 is itself the estimation of a probability, the existence
of this noise is now surprising. In any case, it seems clear that the shapes of both
diagrams follow the same pattern, and thus the underlying probability distribution
is likely to be the same, i.e., a binomial distribution, providing additional support
to our hypothesis.

5.3 Average CP

Some characteristics of the coverage properties can be better viewed using average
values of CP, as they are shown in Figure 7. It shows the CP averaged for 1, 000
values of p between 0 and 1 (top) and values of n between 5 and 49 (bottom). We
used the binom::binom.coverage() function from the R binom package.

Figure 7 (top) shows how for low number of runs average coverage is degradated
in all the methods, nevertheless, it does not affect equally to all. The standard
method has very poor average performance when n is low. On the contrary, ‘exact’
method presents a rather high average CP for small number of runs, which is con-
sistent with the conservative behavior of this method previously observed. Agresti-
Coull method is also quite conservative, however less than the ‘exact’ method, its
average CP is close to the nominal one. Finally, Wilson CIs have an outstanding
performance with a low number of runs. When n is very low, around 5, its average
CP is close to the one in the ‘exact’ method, nonetheless it dramatically decreases
for higher number of runs, achieving an average CP very close to the nominal one.

It is interesting to observe the average CP when the number of runs is high. Fig-
ure 7 (top) shows that increasing the number of runs tends to reduce the difference
among the methods, but not to the point of diluting all the differences. Even for a
relative high number of runs (n ≈ 100), the standard method has a disappointing
performance with an average CP much lower than the nominal one. A glance to
Figure 5 shows that the low average CP is due to its poor performance in the
boundaries of p. In opposition to the standard method, the ‘exact’ method tends
to generate conservative intervals even with high number of runs. Agresti-Coull
and Wilson are the methods that are closest to the nominal coverage when n is
high, with a small advantage to Wilson.

Figure 7 (bottom) adds a complementary perspective where CP has been aver-
aged for values of n between 5 and 49. The standard method has very poor coverage
properties, dramatically poor when p is close to 0 or 1. It should be pointed out
that n values used to average is rather low, just where its performance is worse.
The conservatism of the ‘exact’ method is evident observing the figure, this method
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Figure 7. Comparison of average CP for different CI methods with fixed success probability p (top) and
fixed number of runs n (bottom) (source: (Brown et al. 2001)).

generates the highest CP. This property makes it more difficult to find differences
among algorithms, however it minimizes finding false differences, which might be of
interest depending on the experimentation goals. Close to p = 0.5 all the methods
have similar average CP, with the only exception of the ‘exact’ method, again, with
a high CP in comparison with the rest of the methods. The method whose average
CP is closest to the nominal coverage is clearly Wilson’s method, achieving a quite
flat average coverage plot, even in extreme values of p, where the average CP is
slightly increased.

5.4 Average CIW

The overall picture of how CI methods perform should be completed looking at
CIW. Unlike CP, CIW has not a random nature, given a certain n and p, the exact
value of CIW can be determined. Average CIW values were calculated using n
(Figure 8 top) and p (Figure 8 bottom) as independent variable. Many properties
of the CI methods are equivalent or complementary to those observed for the
average CP because of the close relationship between CP and CIW. The most
notable differences among the CI methods are found when n is small and p is close
to its boundaries, just like CP. Similarly, when n is large, average CIW tends to
be rather similar in all the CI methods. The same happens when p is close to 0.5
between Wilson and Agresti-Coull.

Figure 8 (top) shows that there is a clear relationship between the average CIW
and the number of trials: the smaller n is, the wider the interval is. Indeed it
does not follow a linear relationship: when n is small adding few runs dramatically
reduces CIW, but the effect of increasing n is less notable when n is greater, until
a point where increasing n does not pay off due to the limited improvements in
CIW.

CIW graphs explain some facts about coverage properties. The high CP found
for the ‘exact’ method has its counterpart in CIW; high average CP is achieved at
a cost of wider average intervals. This fact can be observed for almost all the values
of p and n shown in Figure 8 (top and bottom). The normal approximation yields
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Figure 8. Comparison of average CIW for different CI methods with fixed success probability p (top) and
fixed number of runs n (bottom) (source: (Brown et al. 2001)).

slightly wider CIs, except in case of low p values, just where CP is much worse.
Wilson shows an excellent performance from the average CIW point of view with
tight intervals.

5.5 Discussion of the results

Looking at the results shown in this section, we suggest not using the standard
method in any case, its performance in terms of CP and CIW ranges from mediocre
(when np� 5), to very poor (np ≤ 5). The simplicity, availability and presence in
the literature is a point to take into account in favor of Wilson’s method. In any
case, there is not a method with better CP and CIW in absolute terms. In average
terms, Wilson seems to be a good election, but in order to be strict selecting the
method with the best performance for an EA, we suggest to analyze first the area
of the binomial parameter space in which SR would likely to be placed, and then
look at CP and CIW of the methods in that area to select the method with better
performance.

Another important subject to take into account when selecting a CI method, is
the particularities of the experimentation. It might be important, for instance, be-
ing able to detect differences of SR between two EAs with a high level of confidence,
avoiding type-II errors as much as possible. In this case using the ‘exact’ method
might be interesting, at the price of making it harder to find these differences.

In any case, when the SR is very low, and it is not possible to run a large number
of runs, the methods described in this paper are no longer recommended. When
this situation is found, it is better to approximate the binomial Bin(n, p) with a
Poisson distribution with expectation λ = np (Hodges and Le Cam 1960, Ehm
1991).

We have provided so far some theoretical and empirical evidences that support
the binomiality of SR, as well as a glance to the performance of CIs. A natural
question arises at this point: does the behavior of CI performance studied above
also describe CI performance in real EA experiments?. It is clear that in case SR
was binomial its CIs would have the same performance, suggesting an affirmative
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Figure 9. Empirical CP for the four domains (top) compared to CP of the binomial distribution (bottom)
with the same SR (α = 0.05).
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Figure 10. Experimental CIW for the four domains (top) compared to CIW of the binomial distribution
(bottom) with the same SR (α = 0.05).

answer, however a more direct evidence is actually desirable.

6. Binomial CIs in GP problems

We aim to test if the theoretical CP and CIW curves shown above are related to
those ones obtained from real GP problems. So, CP and CIW curves have been
generated using the experimental setup described in section 3.1 with its four GP
problems: artificial ant with the Santa Fe trail, 6-multiplexer, even 6-parity and
symbolic regression. CP and CIW were calculated using the same experimental
procedure described in section 5.2, however, instead of using a dataset composed
by pseudoexperiments, real GP experiments were used to generate 2, 000 intervals
and calculate CP.

Figures 9 and 10 compare, respectively, CP and CIW of the four problems under
study (first row) with the theoretical CP and CIW of a binomial Bin(n, p̂best)
(second row). Theoretical and empirical plots match pretty well, with similar shapes
and values. The only significant difference is the presence of statistical noise in
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empirical data, which is logical. It is interesting to note that both, theoretical and
empirical CP, contain almost the same oscilations, actually, empirical CP seems to
be the theoretical CP contaminated with noise. This result supports our hypothesis
that p fits actually a binomial distribution. An additional evidence supporting
the binomiality of SR in GP is provided by Barrero et al. (Barrero et al. 2014),
where the authors modeled the error in Koza’s computational effort assuming the
binomiality of SR. The theoretical model fitted quite well the error measured in
the experiments.

7. Sample size of confidence intervals

We are interested in getting precise estimates of SR. Such an objective is rather
simple to achieve: just by increasing the number of runs. However, the compu-
tational costs of running an EA might be high and so, increasing n without a
well founded criteria might not be practical. It would be desirable using a well
grounded mechanism to set a priori the number of runs needed to get intervals
of the desired quality. Such a mechanism would, on the one hand, avoid wasting
unnecessary computational resources running, and, on the other hand, provide a
solid methodology to set the number of runs.

When someone computes the CI, he usually knows the number of algorithm exe-
cutions and successes that have been achieved. However, we can state the problem
from another point of view. We could make an initial rough estimation of p with
a small number of runs, let us call it anticipated SR, or p̂0. Once p̂0 has been
estimated, it is possible to set a certain CIW for the CI, and then obtain n from
the equations of the CIs. In other words, we can try to set n using an initial esti-
mate of p and a desired CIW. This approach was proposed by Piegorsch (Piegorsch
2004) to estimate the number of samples needed to obtain intervals with a certain
CIW. In this section we summarize some of his results. There are other approaches,
especially from the bayesian perspective, and a number of studies have been pub-
lished (Sharma 1975, Rahme et al. 2000, M’Lan et al. 2008) addressing this topic
from a statistical point of view.

Piegorsch (Piegorsch 2004) describes a method to compute b for the standard,
Agresti-Coull, Wilson and Jeffreys methods. It is convenient to slightly change the
notation. Instead of using the CIW to measure the interval width, in this section
we follow Piegorsch adopting the half of the interval to represent the width. Let us
denote the half of the interval as ε; it is clear that, by definition, ε = CIW/2.

We can apply the method previously described to the different CIs. For the
Standard intervals we can state that the half of the interval is, using eq. (1),

ε = zα/2
√
p̂0(1− p̂0)/ns, solving that equation for the number of trials for the

standard method (ns) is straightforward, yielding

ns =
z2
α/2p̂0(1− p̂0)

ε2
(7)

We have used ns instead of n to explicit the CI method that the equation applies
to in an attempt to avoid notation ambiguity. The rest of the discussion follows
this criteria.

The same procedure can be used for Agresti-Coull, the half of the interval in this
case is given by eq. (5) as zα/2

√
p̃(1− p̃)/ñ, where p̃ and ñ are given by (3) and
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(4). Solving for the number of trials, nAC , we obtain eq. (8),

nAC =
z2
α/2p̂0(1− p̂0)

ε2
− z2

α/2 = ns − z2
α/2 (8)

It should be mentioned that Piegorsch does not recommend using (8) with less
than 40 samples.

Similarly to the standard and Agresti-Coull intervals, Wilson sample size (nW )
is determined by (6) when it equals ε, yielding the following expression:

nW = z2
α/2

p̂0(1− p̂0)− 2ε2 +
√
p̂2(1− p̂0)2 + 4ε2(p̂0 − 1

2)2

2ε2
(9)

In-depth discussion of the equations described above is out of the scope of this arti-
cle, but it can be found in (Piegorsch 2004). However, it is worth a brief discussion
to bring some interesting points to the EC community. Comparing (7) and (8) it is
clear that since z2

α/2 is positive, Agresti-Coull always requires less samples than the

standard method to achieve an interval of the same length. It is interesting to point
out that when p̂0 = 1/2, nW equals nAC , a fact consistent with the relationship
between Agresti-Coull and Wilson interval previously shown.

A major concern to calculate the sample size method described in this section is
the anticipated success probability, p̂0, which is, itself, the problem we face when
calculating binomial CIs. A conservative solution to deal with this problem without
estimating p̂0 is to use the fact that CIs are widest when p = 1/2. If we consider
the worst case scenario with p̂0 = 1/2, it is guaranteed that the resulting sample
size will generate intervals, at least, of the desired ε. It could be better understood
looking at Figure 11 (left), this figure represents the sample size as a function of
p̂0 when ε = 0.1, i.e., an interval of the form [p̂− 0.1, p̂+ 0.1]. The same behavior
is observed for different values of ε. Figure 11 (left) clearly shows that, no matter
which method is used, the value of p̂0 that originates the highest sample size is 1/2,
so it is a good conservative election when there is no information about its value.

Observing Figure 11 (left) with more detail is interesting. Agresti-Coull requires
always less samples than the standard CI, and this method takes the same sample
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size than Wilson next to p̂0 = 1/2. Figure 11 (left) could lead to mistakenly con-
clude that Agresti-Coull is the best choice to reduce the sample size if p̂0 < 0.3 and
ε = 0.1. To get a complete picture, CP should also be considered. From the CIW
point of view it is clear that Agresti-Coull would be the best choice, but looking at
CP we can see that the small sample size is at a cost of a bad CP performance. So
in this case Agresti-Coull needs fewer runs, but it generates less reliable intervals.
In the low coverage region (small p̂0) Wilson has a slightly better CP performance,
at a cost of a higher sample size, as can be seen in Figure 11 (left). In summary,
there is a trade-off between CP and CIW.

When p̂0 is unknown, a conservative value p̂0 = 1/2 might be a good choice.
Figure 11 (right) represents the sample size as function of ε in this situation. The
sample size dramatically increases with the inverse of ε. This behavior is explained
by the presence of ε in the denominator of (7), (8) and (9), and is logical, if we
desire a tighter CI, we would need more information to build it, which is translated
into more runs. As it was previously noticed, Agresti-Coull and Wilson intervals
generate exactly the same sample size because when p = 1/2 both intervals are
actually the same. Finally, it is interesting to notice that for wide intervals the
sample size is as low as 1. When ε . 0.5 the interval takes the form [L,U ] ≈ [0, 1],
and therefore it almost covers all the possible values of p. In other words, the
interval is so wide that it does not need much information to be constructed,
yielding extremely low sample sizes.

In conclusion, the selection of the sample size has to take into account several
criteria, some of them mutually exclusive, so a compromise is needed. Usually the
goal is to obtain an interval with a certain CIW (or ε) with the lowest number
of runs to save computational resources. Eqs. (7), (8) and (9) provide a mean to
calculate the number of runs required to achieve a CI with a given CIW regardless
of the associated CP. Figure 4 provides a mean to estimate the expected CP for
the calculated sample size for α = 0.05. In case that CP is not the expected one,
it is necessary to increase the number of samples until CP achieves an acceptable
value. So, n is determined by the maximum sample size between the desirable CP
and CIW.

8. Conclusions

In this article we have provided theoretical and empirical evidences suggesting that
SR in an EA can be modeled with a binomial distribution. Hence, the extensive lit-
erature about binomials can be applied, including CIs, determination of the sample
size, hypothesis test for difference between proportions and so on. An important
problem related to EC experimentation is the measurement of SR. Due to the bi-
nomial nature of SR, its estimation is the same problem that the estimation of
the parameters of a binomial distribution. Unfortunately, a common practice in
EC literature is to report SR without a measure of its uncertainty; the binomial
nature of SR gives us sound statistical methods, such as CIs, to report it.

CIs are a statistical tool with a potential role when studying the performance
of an EA. We have described some binomial CI methods with some of their main
properties, drawing a picture useful to generate more robust experimental designs
in EC. It was found that Wilson is the method that provides better average perfor-
mance, even for low number of samples and SR next to the boundaries, nonetheless
there is no method with the best CP for all the parameter space. Depending on
the nature of the experimentation, other methods might be interesting due to
their properties, such as Agresti-Coull or the ‘exact’ method when a conservative
method is needed. In any case, experiments shown in this paper and related lit-
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erature strongly discourage the use of the standard interval. Despite the method
chosen, we encourage EA researchers to report n and k, as well as the interval, to
ease further statistical manipulation and comparability of the results.

Finally, we reported some guidelines to select the number of runs to generate
SR intervals with a certain expected performance in terms of CIW and CP. A
straightforward method is summarized in Figure 11, which relates the number of
runs with an upper bound of the uncertainty for several CI methods. Of course,
SR is not usually the only measure that is taken from an EA, it only gives a partial
view of the algorithm performance, that, with other measures, helps to understand
the behavior of an EA. From this perspective, it would be interesting to study how
the algorithm parametrization -for instance, the population size- affects the SR.
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