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Abstract Run-time analysis is a type of empirical tool that studies the time con-
sumed by running an algorithm. This type of analysis has beensuccessfully used in
some Artificial Intelligence (AI) fields, in paticular in Metaheuristics. This paper is
an attempt to bring this tool to the path-planning community. To this end the paper
reports a run-time analysis of some AI classical algorithmsapplied to solve the path-
planning problem. In particular, we analyse the statistical properties of the run-time
of the A*, Theta* and S-Theta* algorithms with a variety of problems of different
degrees of complexity. We conclude that the time required bythese three algorithms
follows a lognormal distribution. In low complexity problems, the lognormal distri-
bution looses some accuracy to describe the algorithm run-times. The lognormality
of the run-times opens the use of powerful parametric statistics to compare execu-
tion times, which could lead to stronger empirical methods.

1 Introduction

Path-planning is a well known problem in Artificial Intelligence (AI) with many
practical applications. Several classical AI algorithms,such as A* [12], have been
applied to solve the path-planning problem as the notable literature about this topic
shows. Nonetheless, despite the research interest that this issue has attracted, the
statistical properties of the run-time of these algorithmshas not been, to the authors’
knowledge, studied before.
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The study of the run-time from a statistical perspective is known asrun-time
analysis. The common practice in the literature is to report the run-time of the algo-
rithm with means and, sometimes, some dispersion measure. However, this practice
has several drawbacks, mainly due to the loose of valuable information that this re-
porting practice involves such as asymmetries in the run-time, or the shape of its
distribution.

Run-time analysis overcomes this limitation by considering all the data with its
focus on the statistical properties of the algorithm run-time. The main tool of run-
time analysis is theRun-Time Distribution(RTD) which is the empirical statistical
distribution of the run-time; in this way, the RTD is fully characterized. Other statis-
tics such as the mean can be obtained from the RTD, and it opensexciting parametric
statistical analysis tools. For instance, once the run-time distribution of an algorithm
is identified, parametric hypothesis tests can be used to compare the run-time of two
algorithms, providing a more rigorous comparison methodology.

This paper is an attempt to provide a first run-time analysis of some classical
path-planning algorithms (A* [12] and Theta* [18]), and a new path-planning algo-
rithm (S-Theta*) that we have developed. We follow an empirical approach, running
the algorithms in grid-maps of different difficulties and fitting the resulting run-time
distribution with some statistical distributions. We showthat, in the same line as the
related run-time literature in other fields, the run-time ofthe three algorithms under
study follow a lognormal distribution. We also observe a dependence between the
run-time distribution and the problem difficulty. Our experiments show that very
easy problems are not well characterized by a lognormal RTD.

The paper is structured as follows. First, we introduce the path-planning algo-
rithms that are object of study. Then we describe the RTD analysis, including some
related literature mainly from Metaheuristics. Next, in section 4 we perform the
run-time analysis. The paper finishes with some conclusions.

2 Path planning

Path-planning or pathfinding [19] is a widely discussed problem in robotics and
video games [11, 17]. In a simple manner, the path-planning problem aims to obtain
a feasible route between two points. Feasible means that theroute can not violate
constraints such as traversing obstacles. This is a classical problem that can be ad-
dressed with several search algorithms such as classical graph-search [19], Evolu-
tionary Algorithms [20] or multiagent systems [8], just to mention some of them.

In this work we have considered one classical algorithm, A* [12], and two vari-
ations. These algorithms use a grid of cells to discretize the terrain. And of course,
they work over nodes. A* is a simple and fast search algorithmthat can be used to
solve many AI problems, path-planning among them. It combines an heuristic and
a cost function to achieve optimal paths. However, it has an important limitation: it
typically uses 8 neighbours nodes, so it restricts the path headings to multiples of
π/4, causing that A* generates a sub-optimal path with zig-zagpatterns. Other ap-
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proximations use more adjacent nodes or use framed cells [1]to solve (or relax) this
limitation, and thus requiring, in most cases, more computational effort. For each
node, A* maintains three values: (i) the length of the shortest path from the start
node to actual node; (ii) the heuristic value for the node, anestimation of the dis-
tance from the actual node to the goal; and (iii) the parent ofthe node. The heading
changes limitation makes that the best heuristic for A* is the octile distance.

There are some variations of A* that try to generate smootherheading changes.
Some proposals smooth the path using framed cells [1] while others post-process
the result of A* [4]. Another group of algorithms called “any-angle” allow heading
changes in any point of the environment. Most popular examples of this category
are Field D* [9]. Theta* [18] allows any node to be the parent of a node, not only
its predecessor like A*. An alternative to Theta* is our algorithm called S-Theta*,
which modifies the cost and heuristic functions to guide the search in order to obtain
similar paths to Theta*, but with less heading changes. An exhaustive comparison
over some path-planning algorithms can be found in [6].

Given its popularity and presence in the literature, we selected A*. It is a very
well studied algorithm and it is quite popular in path-planning research, so it seemed
reasonable to chose it. Additionally we have also included Theta* and S-Theta*,
which are two algorithms designed specifically to path-planning in order to solve the
heading changes problem. Before begining the RTD analysis of those algorithms,
we first introduce in more detail the RTD analysis and relatedliterature.

3 Introduction to run-time analysis

The basic tool used for run-time analysis is the RTD, term that was introduced by
Hoos and Sẗutzle [16]. Let us namert (i) the run-time of the ith successful run, and
n the number of runs executed in the experiment, then the RTD isdefined as the
empirical cumulative probabilitŷP(rt ≤ t) = #{i|rt (i) ≤ t}/n [15]. It is simply the
empirical probability of finishing the algorithm run beforet. There is an extensive
literature about RTDs, mainly in Metaheuristics, but thereare also several studies in
classical AI problems.

Hoos and Sẗutzle applied RTD analysis to different algorithms and problems.
They found that the RTD of WSAT algorithms applied to the 3SAT problem is expo-
nential when the parameters setting is optimal, shifted exponential or Weibull when
the parameters setting is not optimal [16]. Analogously, they studied in [13] the
RTD of some other stochastic local search algorithms, such as GWSAT, GSAT with
tabu-lists, TMCH and WMCH, to solve instances of SAT and CSPs,finding that,
again, when parameters are optimal, the RTD follows an exponential, and otherwise
RTD fits a Weibull distribution. Curiously, this result onlyholds for hard instances,
in easy instances they did not find statistical significance.In a later work [14], they
observed that the RTD of hard 3SAT instances solved with WalkSAT algorithm
also follows an exponential distribution, and more interestingly, the higher the dif-
ficulty of the problem, the higher the fit is found. In a more recent work, Hoos and
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Stützle [15] compared various versions of GSAT and WalkSAT algorithms to solve
some problems coded as 3SAT (random 3-SAT, graph coloring, block world and lo-
gistic planning), finding that these algorithms also have exponential RTDs for hard
problems and high values of noise parameter. More importantly, they found that
RTDs of easy problems are no exponential, despite their tails are still exponential.

Chiarandini and Stützle [5] studied the RTD of ILS, ACO, Random Restart Local
Search and two variants of SA applied to the course timetabling problem, finding
that the Weibull distribution approximates well the RTDs. They report, however,
that in SA, the RTD in hard problems can be approximated, at least partially, using
a shifted exponential distribution. On the contrary than Hoos, Sẗutzle and Chiaran-
dini, Frostet al. [10] studied the RTD using the same algorithm, backtracking, with
different problem instances of the CSP. The RTD of the algorithm running on solv-
able instances [7] follows a Weibull distribution, while unsolvable instances gen-
erate lognormal run-times. However, only the lognormal distribution for solvable
problems had statistical significance. In addition, Barrero et al.studied the RTDs in
tree-based Genetic Programming [3], finding lognormal RTDswhose goodness of
fit depends on the problem difficulty.

In summary, we conclude that despite the variety of algorithms and problems
studied using RTDs, the are three omnipresent distributions: Exponential, Weibull
and Lognormal. Curiously, these three distributions play acentral role in Reliability
Theory, suggesting a link. In the following section we studythe presence of these
three distributions in the RTD of A*, Theta* and S-Theta* forpath-planning prob-
lems of varying difficulty.

4 RTD analysis of path-planning algorithms

In order to carry out the run-time analysis, we need to gatherempirical data in a
controlled way. Given the need of a uncertainty source, experiments may vary two
factors, the random seed and the problem. The former is common in the Meta-
heuristics and random search literature, while the latter is used with deterministic
algorithms. Even though this distinction does not use to be clear in the literature, we
think that it is critical since it determines the comparability of the experiments and
their interpretation.

4.1 Experimental design

In order to assess the run-time behavior of the path-planning algorithms we have
performed an experimental approximation. These algorithms are deterministic, so,
on the contrary than other run-time analysis performed in Metaheuristics, there is
no variability due to the random seed. In this case, the variation comes from the
problem, to be more specific, we used a random map generator that can control the
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percentage of obstacles in the map, and therefore, we can setthe complexity of the
problem. It provides a mechanism to study how the problem difficulty influences the
run-time behavior of the algorithms1.

We have generated random maps with different ratio of randomobstacles, in par-
ticular we used 5%,10%,20%,30% and 40% of obstacles. For each ratio of obsta-
cles we generated 2,000 random maps of 500×500 nodes and solved the map with
each of the three algorithms under study. This procedure yields 2,000×5= 10,000
runs for each one of the three algorithms. The initial point in the map is always the
corner at the top left of the map, and the goal node is placed atthe right, locating
between the bottom corner and randomly 20% up nodes. The map generator was
implemented with guarantees to keep at least one path from the start node to the
goal node. To do this, when an obstacle is set, his periphery is protected to avoid
overlapping obstacles. Thus, it is always possible surround an obstacle to avoid it.

The algorithms were implemented in Java. In order to make a fair compari-
son, the implementation of the three algorithms use the samemethods and struc-
tures to manage the information grid2. To measure the runtime we have em-
ployedSystem.currentTimeMillis(). Reporting time in this way has sev-
eral drawbacks [2], but in this case we think it is justified because the algorithms
contains computations that are not well captured by machine-independent time mea-
sures, such us the number of expanded nodes. Of course, the price we have to pay is
an increased difficulty to repeat and compare these results,but given that our interest
is studying the statistical properties of the run-time rather than compare algorithms,
we think that in this case it is an acceptable drawback.

4.2 Experimental results

We have firstly performed an exploratory analysis of the results. To this end we de-
picted several histograms of the run-times, as can be seen inFig. 1. The histograms
were grouped by algorithm and problem hardness and they showsome interesting
facts.

We observe that the shape of the run-time histograms varies in function of the
algorithm and problem hardness. S-Theta* has a longer tail and its shape is more
asymmetrical in comparison to the rest of the algorithms, this fact is more clear in
hard problems than in easy ones. The run-time of A* presents asmaller variance
than the other two algorithms, and it increases with the problem hardness. The run-
time required to solve hard problems has more variance than easy problems. In any
case, the shape and range of values of Theta* and S-Theta* aresimilar, which seems
reasonable given that they are variations of the same algorithm.

1 In case of acceptance, all the code, datasets and scripts neededto repeat the experiments reported
in this paper would be published on a web site under an open licence.
2 The execution was done on a 2 GHz Intel Core i7 with 4 GB of RAM under Ubuntu 10.10 (64
bits)
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Looking for a statistical distribution able to fit data is more interesting. With the
results reported in the literature we have tried to fit data tothe three distributions
that appear to play a more important role in RTD analysis, theExponential, Weibull
and Lognormal distribution. So, the histograms shown in Fig. 1 are depicted with
a set of overlapping distributions, which corresponds to the three statistical distri-
butions previously mentioned. The parameters of these distributions were fitted by
maximum likelihood. As the reader can observe in Fig. 1, the distribution that fits
better our data in most cases is the lognormal. The exceptions to this observation are
Theta* and S-Theta* solving maps with a very low number of obstacles; in that case
the exponential distribution seems to describe the run-time behavior better than the
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Fig. 1 Histogram of the run-time, measured in seconds, of the three path-planning algorithms un-
der study. Histograms have been grouped by algorithm and ratio of obstacles. The histograms have
been adducted with three distributions that appear overlapped: Lognormal (black), exponential
(blue) and Weibull (green)
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lognormal. Even in this case, the A* run-time is well described by the lognormal,
that is able to describe its peaks better than the exponential.

Table 1 Estimated parameters of the lognormal distribution fitted by maximum likelihood. Each
row corresponds to an experiment with 2,000 problems with the given rate of obstacles in the map

Algorithm Obstacles µ̂ σ̂

A* 5 6.690 0.567
A* 10 6.886 0.600
A* 20 7.131 0.542
A* 30 7.228 0.449
A* 40 7.176 0.361
Theta* 5 6.520 0.883
Theta* 10 6.989 0.887
Theta* 20 7.395 0.700
Theta* 30 7.515 0.534
Theta* 40 7.464 0.390
S-Theta* 5 6.202 0.975
S-Theta* 10 6.749 0.916
S-Theta* 20 7.220 0.744
S-Theta* 30 7.445 0.648
S-Theta* 40 7.601 0.589

Given the observations of the exploratory analysis, it seems reasonable to focus
the study on the lognormal distribution and hypothetise that the run-time of the
A*, Theta* and S-Theta* algorithms in path-planning problems follow a lognormal
distribution. The parameters of the lognormal distributions that we obtained using
maximum-likelihood are shown in Table 1. In order to evaluate the hypothesis about
the RTDs lognormality, it is desirable to provide additional evidences. One of the
most interesting properties of the lognormal distributionis its close relationship to
the normal distribution, actually, lognormal data can be converted to normal data
by simply taking logarithms. We can use this property to verify whether the RTD is
lognormal or not in a more formal way.

To verify the lognormality of the RTD, we first plotted a QQ-plot of the loga-
rithm of the run-time against a normal distribution, which is shown in Fig 2. If the
logarithm of the run-time is normal, we can conclude that therun-time is lognormal.
Fig. 2 confirms our initial suspicion about the lognormalityof the RTD. In addition,
the QQ-plots also show the relationship between the distribution and the problem
hardness. Theta* and S-Theta* algorithms produce less lognormal RTDs in very
easy problems. On the contrary, the influence of the problem hardness on A*, if it
has any, is not so evident, the QQ-plot is almost a line for allthe ratios of obstacles.
In summary, A* RTDs seem lognormal for any number of obstacles, while the run-
time of Theta* and S-Theta* algorithms seem to follow a lognormal distribution,
but easy problems fit worse.

A more rigorous analysis of the lognormality of the run-timeis desirable. For
this reason we have performed a Shapiro-Wilk test of normality of the logarithm of
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the run-time, whose result is shown in Table 2. In order to avoid undesirable effects
of the large number of samples, we have computed the test using 30 random runs.
Results shown in the table confirms our previous observations in the histograms and
the QQ-plot. The p-values in almost all the cases are quite high, which means that
the hypothesis of lognormality is compatible, with a high probability, with our data.
However, there are two exceptions, the p-value of Theta* andS-Theta* with a ratio
of 5% of obstacles is quite small, 0.0083 and 0.0003 respectively, which drives us
to reject the null hypothesis (i.e. the lognormality of the data) withα = 0.001.

We were curious about the different RTDs reported by the literature and the rea-
son of those differences. In order to obtain some clue for itsanswer, we performed
a simple experiment. Instead of plotting run-time histograms grouped by algorithm
and problem hardness, we tried to plot histograms joining all the runs belonging to
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Fig. 2 Quantile plot that assesses the normality of the logarithm of the run-time of the three algo-
rithms under study: A*, Theta* and S-Theta*. Given the relationship between the lognormal and
normal distributions, the logarithm of lognormal data must transform it into normal data
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Table 2 Shapiro-Wilk test of normality of the logarithm of the run-time. With these p-values we
cannot reject the hypothesis of normality of the logarithm of the run-time, which means that we
cannot reject the lognormality of the run-time. Only Theta* and S-Theta* with a ratio of 5% of
obstacles provide evidence to let us reject the normality of the RTD

Algorithm Obstacles W p-value Significance

A* 5 0.9772 0.7473
A* 10 0.9579 0.2743
A* 20 0.9808 0.8475
A* 30 0.9378 0.0792
A* 40 0.9546 0.2237
Theta* 5 0.8998 0.0083 α = 0.001
Theta* 10 0.9437 0.1142
Theta* 20 0.9479 0.1487
Theta* 30 0.9343 0.0641
Theta* 40 0.9444 0.1194
S-Theta* 5 0.8322 0.0003 α = 0.001
S-Theta* 10 0.9409 0.0965
S-Theta* 20 0.9771 0.7428
S-Theta* 30 0.9829 0.8968
S-Theta* 40 0.9876 0.9725

the same algorithms, in this way, problems of different hardness were merged. As
in the exploratory analysis, we plotted the three main distributions in RTD literature
to check rapidly whether data fits or not that distribution. The result can be seen in
Fig. 3. We have to consider that this figure shows in fact an overlapping of several
distributions, it can be seen as the sum of each column in Fig.3.

Fig. 3 is a quite interesting result. The lognormal distribution still seems to fit
very well the A* run-time, however, the Theta* algorithms are not so clear. The
left tails of their histogram seems to have disappeared, or at least it is sufficiently
small to not appear clearly in the histogram. This fact introduces the exponential
distribution in the discussion, it can be seen that this distribution is able to fit data
quite well, nonetheless, the lognormal distribution stillprovides a excellent fit. So,
it makes us conjecture that depending on how the run-time is visualized the statis-
tical model that fit the RTD may change. In particular, it is well known that joining
random variables of a certain distribution may produce a random variable of another
distribution. This fact could explain, in part, the diversity of RTDs found in the liter-
ature, and it is an additional motivation to take care about how experimentation and
data processing are done.

With this evidence, it seems reasonable to assume the lognormality of the RTD
in problems with a ratio of obstacles higher than 5% of the three algorithms under
study.
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three distributions that appear overlapped: Lognormal (black), Weibull (green) and exponential
(blue)

5 Conclusions

Along this paper we have performed a run-time analysis of A*,Theta* and S-Theta*
to study their RTD statistical properties and the influence of the problem hardness.
The RTD of those algorithms, when applied to a set of non-trivial path-planning
problems of similar hardness, follows a lognormal distribution. The evidence we
have found in this line is strong. However, we also observed that the goodness-of-fit
is weaker for the Theta* algorithms when the problem is easy.

This observation leads to a better knowledge about A*, Theta* and S-Theta algo-
rithms, but it also has a practical implications. The commonprocedure to compare
run-times followed in the literature is a naı̈ve comparison of means, which is a
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weak method from a statistical point of view. If the RTD of thealgorithm is known,
strong parametric methods could be used, and in particular lognormal RTDs open
the use of well-known (and easy) statistics to enhance the experimetal methods used
to study path-planning algorithms. So, in order to compare the run-time of two al-
gorithms with a sound statistical basis we can -and should- use hypothesis testing
(Student’s t-test with the logarithm of the run-time) or ANOVA if several algorithms
are involved.

From a more general perspective, our results are clearly aligned with previous
results reported in the literature. Very different algorithms applied to different prob-
lems have shown a similar run-time behaviour, which turns out an intriguing fact.
So, a natural question that raises at this point is whether this behaviour is as general
as it seems to be and, more importantly, why RTDs are so well described by only
three distributions. These are questions that we think deserve some research.
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