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Abstract Run-time analysis is a type of empirical tool that studies tilme con-
sumed by running an algorithm. This type of analysis has aeoessfully used in
some Atrtificial Intelligence (Al) fields, in paticular in Maeuristics. This paper is
an attempt to bring this tool to the path-planning communitythis end the paper
reports a run-time analysis of some Al classical algorithpdied to solve the path-
planning problem. In particular, we analyse the statispeaperties of the run-time
of the A*, Theta* and S-Theta* algorithms with a variety obptems of different
degrees of complexity. We conclude that the time requirethbge three algorithms
follows a lognormal distribution. In low complexity prolmtes, the lognormal distri-
bution looses some accuracy to describe the algorithmins@st The lognormality
of the run-times opens the use of powerful parametric $izgiso compare execu-
tion times, which could lead to stronger empirical methods.

1 Introduction

Path-planning is a well known problem in Artificial Intelégce (Al) with many
practical applications. Several classical Al algorithsisch as A* [12], have been
applied to solve the path-planning problem as the notatdealiure about this topic
shows. Nonetheless, despite the research interest tsasthie has attracted, the
statistical properties of the run-time of these algorittivas not been, to the authors’
knowledge, studied before.
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The study of the run-time from a statistical perspectiverisvin asrun-time
analysis The common practice in the literature is to report the ioretof the algo-
rithm with means and, sometimes, some dispersion measavee\dr, this practice
has several drawbacks, mainly due to the loose of valuafdeniration that this re-
porting practice involves such as asymmetries in the nestior the shape of its
distribution.

Run-time analysis overcomes this limitation by considg@f the data with its
focus on the statistical properties of the algorithm rumeti The main tool of run-
time analysis is th&un-Time Distribution(RTD) which is the empirical statistical
distribution of the run-time; in this way, the RTD is fully afacterized. Other statis-
tics such as the mean can be obtained from the RTD, and it @geitgg parametric
statistical analysis tools. For instance, once the rue-tistribution of an algorithm
is identified, parametric hypothesis tests can be used tpawhe run-time of two
algorithms, providing a more rigorous comparison methogipl

This paper is an attempt to provide a first run-time analysisome classical
path-planning algorithms (A* [12] and Theta* [18]), and aangath-planning algo-
rithm (S-Theta*) that we have developed. We follow an encpirapproach, running
the algorithms in grid-maps of different difficulties andifig the resulting run-time
distribution with some statistical distributions. We shihat, in the same line as the
related run-time literature in other fields, the run-timetef three algorithms under
study follow a lognormal distribution. We also observe aatefence between the
run-time distribution and the problem difficulty. Our exjpeents show that very
easy problems are not well characterized by a lognormal RTD.

The paper is structured as follows. First, we introduce thilplanning algo-
rithms that are object of study. Then we describe the RTDyaislincluding some
related literature mainly from Metaheuristics. Next, irctsen 4 we perform the
run-time analysis. The paper finishes with some conclusions

2 Path planning

Path-planning or pathfinding [19] is a widely discussed faobin robotics and
video games [11, 17]. In a simple manner, the path-planniaglpm aims to obtain
a feasible route between two points. Feasible means thabthe can not violate
constraints such as traversing obstacles. This is a cigsicblem that can be ad-
dressed with several search algorithms such as classegaih-gearch [19], Evolu-
tionary Algorithms [20] or multiagent systems [8], just tention some of them.

In this work we have considered one classical algorithm, %[ and two vari-
ations. These algorithms use a grid of cells to discretieaehrain. And of course,
they work over nodes. A* is a simple and fast search algoritah can be used to
solve many Al problems, path-planning among them. It combian heuristic and
a cost function to achieve optimal paths. However, it hagrgortant limitation: it
typically uses 8 neighbours nodes, so it restricts the pa#udimgs to multiples of
11/4, causing that A* generates a sub-optimal path with ziggatterns. Other ap-
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proximations use more adjacent nodes or use framed celis §tjve (or relax) this

limitation, and thus requiring, in most cases, more contprial effort. For each

node, A* maintains three values: (i) the length of the shatrg@th from the start
node to actual node; (ii) the heuristic value for the nodegstimation of the dis-

tance from the actual node to the goal; and (iii) the pareth@hode. The heading
changes limitation makes that the best heuristic for A* esdbtile distance.

There are some variations of A* that try to generate smodikading changes.
Some proposals smooth the path using framed cells [1] whiilers post-process
the result of A* [4]. Another group of algorithms called “aiaygle” allow heading
changes in any point of the environment. Most popular exampf this category
are Field D* [9]. Theta* [18] allows any node to be the parehdmode, not only
its predecessor like A*. An alternative to Theta* is our algon called S-Theta*,
which modifies the cost and heuristic functions to guide #ach in order to obtain
similar paths to Theta*, but with less heading changes. Araasgtive comparison
over some path-planning algorithms can be found in [6].

Given its popularity and presence in the literature, wecteteA*. It is a very
well studied algorithm and it is quite popular in path-plangresearch, so it seemed
reasonable to chose it. Additionally we have also includedtd* and S-Theta*,
which are two algorithms designed specifically to path-piag in order to solve the
heading changes problem. Before begining the RTD analydisose algorithms,
we first introduce in more detail the RTD analysis and relditechture.

3 Introduction to run-time analysis

The basic tool used for run-time analysis is the RTD, ternh Wes introduced by
Hoos and Sitzle [16]. Let us namet (i) the run-time of the ith successful run, and
n the number of runs executed in the experiment, then the RTd2fised as the
empirical cumulative probabilit(rt <t) = #{i|rt(i) <t}/n [15]. It is simply the
empirical probability of finishing the algorithm run befareThere is an extensive
literature about RTDs, mainly in Metaheuristics, but themealso several studies in
classical Al problems.

Hoos and Sitzle applied RTD analysis to different algorithms and peais.
They found that the RTD of WSAT algorithms applied to the 3SAdlplem is expo-
nential when the parameters setting is optimal, shiftedegptial or Weibull when
the parameters setting is not optimal [16]. AnalogouslgytBtudied in [13] the
RTD of some other stochastic local search algorithms, ss€BVESAT, GSAT with
tabu-lists, TMCH and WMCH, to solve instances of SAT and CSiRding that,
again, when parameters are optimal, the RTD follows an expkiel, and otherwise
RTD fits a Weibull distribution. Curiously, this result ortplds for hard instances,
in easy instances they did not find statistical significahte. later work [14], they
observed that the RTD of hard 3SAT instances solved with BAikalgorithm
also follows an exponential distribution, and more inténegy, the higher the dif-
ficulty of the problem, the higher the fit is found. In a moreamcwork, Hoos and
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Stiitzle [15] compared various versions of GSAT and WalkSAToetgms to solve
some problems coded as 3SAT (random 3-SAT, graph colorlogklwvorld and lo-
gistic planning), finding that these algorithms also haygoeential RTDs for hard
problems and high values of noise parameter. More impdytathiey found that
RTDs of easy problems are no exponential, despite thed dad still exponential.

Chiarandini and $itzle [5] studied the RTD of ILS, ACO, Random Restart Local
Search and two variants of SA applied to the course timetglgroblem, finding
that the Weibull distribution approximates well the RTD$iey report, however,
that in SA, the RTD in hard problems can be approximated,aet leartially, using
a shifted exponential distribution. On the contrary thars{@titzle and Chiaran-
dini, Frostet al.[10] studied the RTD using the same algorithm, backtrackivith
different problem instances of the CSP. The RTD of the algorirunning on solv-
able instances [7] follows a Weibull distribution, whileaatvable instances gen-
erate lognormal run-times. However, only the lognormatriation for solvable
problems had statistical significance. In addition, Baregral. studied the RTDs in
tree-based Genetic Programming [3], finding lognormal RWhsse goodness of
fit depends on the problem difficulty.

In summary, we conclude that despite the variety of algorétand problems
studied using RTDs, the are three omnipresent distribsitiBxponential, Weibull
and Lognormal. Curiously, these three distributions plagatral role in Reliability
Theory, suggesting a link. In the following section we sttldg presence of these
three distributions in the RTD of A*, Theta* and S-Theta* feath-planning prob-
lems of varying difficulty.

4 RTD analysis of path-planning algorithms

In order to carry out the run-time analysis, we need to gathepirical data in a
controlled way. Given the need of a uncertainty source, exy@ants may vary two
factors, the random seed and the problem. The former is camimthe Meta-

heuristics and random search literature, while the lagtersied with deterministic
algorithms. Even though this distinction does not use tddardn the literature, we
think that it is critical since it determines the comparipibf the experiments and
their interpretation.

4.1 Experimental design

In order to assess the run-time behavior of the path-planaigorithms we have
performed an experimental approximation. These algostane deterministic, so,
on the contrary than other run-time analysis performed inakeuristics, there is
no variability due to the random seed. In this case, the tlaniacomes from the
problem, to be more specific, we used a random map generatarah control the
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percentage of obstacles in the map, and therefore, we céimesedmplexity of the
problem. It provides a mechanism to study how the probleficdlfy influences the
run-time behavior of the algorithrhs

We have generated random maps with different ratio of ranclostacles, in par-
ticular we used 5%4.0%, 20% 30% and 40% of obstacles. For each ratio of obsta-
cles we generated @00 random maps of 500500 nodes and solved the map with
each of the three algorithms under study. This proceduids/2000x 5= 10,000
runs for each one of the three algorithms. The initial pairthie map is always the
corner at the top left of the map, and the goal node is placédkeatight, locating
between the bottom corner and randomly 20% up nodes. The sragraor was
implemented with guarantees to keep at least one path frenstdrt node to the
goal node. To do this, when an obstacle is set, his periplsepyatected to avoid
overlapping obstacles. Thus, it is always possible sud@mobstacle to avoid it.

The algorithms were implemented in Java. In order to makeiractanpari-
son, the implementation of the three algorithms use the sasthods and struc-
tures to manage the information gfidTo measure the runtime we have em-
ployedSyst em current Ti meM | | i s() . Reporting time in this way has sev-
eral drawbacks [2], but in this case we think it is justifiectdnese the algorithms
contains computations that are not well captured by maehitependent time mea-
sures, such us the number of expanded nodes. Of coursejdbaeverhave to pay is
an increased difficulty to repeat and compare these rebultgjven that our interest
is studying the statistical properties of the run-time eatihan compare algorithms,
we think that in this case it is an acceptable drawback.

4.2 Experimental results

We have firstly performed an exploratory analysis of theltestio this end we de-
picted several histograms of the run-times, as can be sddg.ii. The histograms
were grouped by algorithm and problem hardness and they sbowe interesting
facts.

We observe that the shape of the run-time histograms varigsition of the
algorithm and problem hardness. S-Theta* has a longerndilits shape is more
asymmetrical in comparison to the rest of the algorithmis, fédrct is more clear in
hard problems than in easy ones. The run-time of A* presestaaller variance
than the other two algorithms, and it increases with the lprathardness. The run-
time required to solve hard problems has more variance tasy@oblems. In any
case, the shape and range of values of Theta* and S-Thetaingitar, which seems
reasonable given that they are variations of the same #igori

1n case of acceptance, all the code, datasets and scripts rtegdpdat the experiments reported
in this paper would be published on a web site under an operckcen

2 The execution was done on a 2 GHz Intel Core i7 with 4 GB of RAMemUbuntu 10.10 (64
bits)



Pablo Muioz, David F. Barrero and M&r D. R-Moreno

Looking for a statistical distribution able to fit data is radnteresting. With the
results reported in the literature we have tried to fit dattheothree distributions
that appear to play a more important role in RTD analysisEt@onential, Weibull
and Lognormal distribution. So, the histograms shown in Eigre depicted with
a set of overlapping distributions, which corresponds tottiree statistical distri-
butions previously mentioned. The parameters of thesahiifbns were fitted by
maximum likelihood. As the reader can observe in Fig. 1, tils&ridution that fits
better our data in most cases is the lognormal. The exceytiathis observation are
Theta* and S-Theta* solving maps with a very low number oftatles; in that case
the exponential distribution seems to describe the rue-tiehavior better than the

0 2000 6000 10000
I I N I T Y I I S Y N I S H |

Obstacles Obstacles Obstacles
A* S-Theta* Theta*
| - 0.0010
— ‘ : ﬁ - 0.0005
- L - 0.0000
Obstacles Obstacles Obstacles
A* S-Theta* Theta*
0.0010 L
0.0005 ]h -
> 0.0000 — L— L -
[ | Obstacles | Obstacles | Obstacles
3 A* S-Theta* Theta*
| - 0.0010
— l l i - 0.0005
e - 0.0000
Obstacles Obstacles Obstacles
A* S-Theta* Theta*
0.0010 L
0.0005 -
0.0000 — -
T T T T T T T T T T T T T T T T T T
0 2000 6000 10000 0 2000 6000 10000

Run-time (seconds)

Fig. 1 Histogram of the run-time, measured in seconds, of the three pethipg algorithms un-
der study. Histograms have been grouped by algorithm and rfatiestacles. The histograms have
been adducted with three distributions that appear ovegldippognormal (black), exponential
(blue) and Weibull (green)
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lognormal. Even in this case, the A* run-time is well desedlby the lognormal,

that is able to describe its peaks better than the expohentia

Table 1 Estimated parameters of the lognormal distribution fitted by mamirtikelihood. Each
row corresponds to an experiment witf0R0 problems with the given rate of obstacles in the map

Algorithm Obstacles [i o

A* 5 6.690 0.567
A* 10 6.886 0.600
A* 20 7.131 0.542
A* 30 7.228 0.449
A* 40 7.176 0.361
Theta* 5 6.520 0.883
Theta* 10 6.989 0.887
Theta* 20 7.395 0.700
Theta* 30 7.515 0.534
Theta* 40 7.464 0.390
S-Theta* 5 6.202 0.975
S-Theta* 10 6.749 0.916
S-Theta* 20 7.220 0.744
S-Theta* 30 7.445 0.648
S-Theta* 40 7.601 0.589

Given the observations of the exploratory analysis, it sesasonable to focus
the study on the lognormal distribution and hypothetisé tha run-time of the
A*, Theta* and S-Theta* algorithms in path-planning prahkefollow a lognormal
distribution. The parameters of the lognormal distribogichat we obtained using
maximum-likelihood are shown in Table 1. In order to evaduae hypothesis about
the RTDs lognormality, it is desirable to provide additibegidences. One of the
most interesting properties of the lognormal distributigits close relationship to
the normal distribution, actually, lognormal data can bavested to normal data
by simply taking logarithms. We can use this property tofyesihether the RTD is
lognormal or not in a more formal way.

To verify the lognormality of the RTD, we first plotted a QQapbf the loga-
rithm of the run-time against a normal distribution, whishshown in Fig 2. If the
logarithm of the run-time is normal, we can conclude thatthretime is lognormal.
Fig. 2 confirms our initial suspicion about the lognormabfithe RTD. In addition,
the QQ-plots also show the relationship between the digtdb and the problem
hardness. Theta* and S-Theta* algorithms produce lessotogal RTDs in very
easy problems. On the contrary, the influence of the problerdrness on A*, if it
has any, is not so evident, the QQ-plot is almost a line fathallratios of obstacles.
In summary, A* RTDs seem lognormal for any number of obstgahhile the run-
time of Theta* and S-Theta* algorithms seem to follow a logmal distribution,
but easy problems fit worse.

A more rigorous analysis of the lognormality of the run-timedesirable. For
this reason we have performed a Shapiro-Wilk test of notynafithe logarithm of
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the run-time, whose result is shown in Table 2. In order tachuadesirable effects
of the large number of samples, we have computed the tegy @8imandom runs.
Results shown in the table confirms our previous obseratiothe histograms and
the QQ-plot. The p-values in almost all the cases are quifle, which means that
the hypothesis of lognormality is compatible, with a higbhpbility, with our data.
However, there are two exceptions, the p-value of Theta*@&Tdheta* with a ratio
of 5% of obstacles is quite small,@D83 and M003 respectively, which drives us
to reject the null hypothesis (i.e. the lognormality of tta¢a) witha = 0.001.

We were curious about the different RTDs reported by theditee and the rea-
son of those differences. In order to obtain some clue farntswver, we performed
a simple experiment. Instead of plotting run-time histogsagrouped by algorithm
and problem hardness, we tried to plot histograms joinihthalruns belonging to
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Fig. 2 Quantile plot that assesses the normality of the logarithm ofitheéime of the three algo-
rithms under study: A*, Theta* and S-Theta*. Given the relasioip between the lognormal and
normal distributions, the logarithm of lognormal data must tramsfibinto normal data
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Table 2 Shapiro-Wilk test of normality of the logarithm of the run-tim#ith these p-values we
cannot reject the hypothesis of normality of the logarithmhef tun-time, which means that we
cannot reject the lognormality of the run-time. Only Thetatl&Theta* with a ratio of 5% of

obstacles provide evidence to let us reject the normality@RhD

Algorithm Obstacles W p-value Significance
A* 5 0.9772 0.7473

A* 10 0.9579 0.2743

A* 20 0.9808 0.8475

A* 30 0.9378 0.0792

A* 40 0.9546 0.2237

Theta* 5 0.8998 0.0083 a =0.001
Theta* 10 0.9437 0.1142

Theta* 20 0.9479 0.1487

Theta* 30 0.9343 0.0641

Theta* 40 0.9444 0.1194

S-Theta* 5 0.8322 0.0003 o =0.001
S-Theta* 10 0.9409 0.0965

S-Theta* 20 0.9771 0.7428

S-Theta* 30 0.9829 0.8968

S-Theta* 40 0.9876 0.9725

the same algorithms, in this way, problems of different hass were merged. As
in the exploratory analysis, we plotted the three main idhistions in RTD literature
to check rapidly whether data fits or not that distributioheTesult can be seen in
Fig. 3. We have to consider that this figure shows in fact amlapping of several
distributions, it can be seen as the sum of each column ir3Fig.

Fig. 3 is a quite interesting result. The lognormal disttidu still seems to fit
very well the A* run-time, however, the Theta* algorithmsearot so clear. The
left tails of their histogram seems to have disappearedt l@aat it is sufficiently
small to not appear clearly in the histogram. This fact idtrces the exponential
distribution in the discussion, it can be seen that thigidistion is able to fit data
quite well, nonetheless, the lognormal distribution gtitbvides a excellent fit. So,
it makes us conjecture that depending on how the run-timesisalized the statis-
tical model that fit the RTD may change. In particular, it idhkaeown that joining
random variables of a certain distribution may produce doanvariable of another
distribution. This fact could explain, in part, the diveéysif RTDs found in the liter-
ature, and it is an additional motivation to take care abow &xperimentation and
data processing are done.

With this evidence, it seems reasonable to assume the logtity of the RTD
in problems with a ratio of obstacles higher than 5% of theetalgorithms under
study.
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Fig. 3 Histogram of the run-time, measured in seconds, of the three pathipg algorithms
under study. Histograms have been grouped by algorithm, butynaitio of obstacles, so each
histogram contains runs of different problem hardness. Thedrats have been adjusted with
three distributions that appear overlapped: Lognormal klad/eibull (green) and exponential
(blue)

5 Conclusions

Along this paper we have performed a run-time analysis ofiAfeta* and S-Theta*
to study their RTD statistical properties and the influenicéhe problem hardness.
The RTD of those algorithms, when applied to a set of nonétripath-planning
problems of similar hardness, follows a lognormal disttitn. The evidence we
have found in this line is strong. However, we also obserkiatithe goodness-of-fit
is weaker for the Theta* algorithms when the problem is easy.

This observation leads to a better knowledge about A*, Preatd S-Theta algo-
rithms, but it also has a practical implications. The comrporcedure to compare
run-times followed in the literature is a‘ive comparison of means, which is a
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weak method from a statistical point of view. If the RTD of igorithm is known,
strong parametric methods could be used, and in particoggrormal RTDs open
the use of well-known (and easy) statistics to enhance theraretal methods used
to study path-planning algorithms. So, in order to compheertin-time of two al-
gorithms with a sound statistical basis we can -and showdd-hypothesis testing
(Student’s t-test with the logarithm of the run-time) or AM®If several algorithms
are involved.

From a more general perspective, our results are cleadyedi with previous
results reported in the literature. Very different algamits applied to different prob-
lems have shown a similar run-time behaviour, which turnsasuintriguing fact.
So, a natural question that raises at this point is whetlig@b#haviour is as general
as it seems to be and, more importantly, why RTDs are so wetirieed by only
three distributions. These are questions that we thinkrdesame research.
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