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ABSTRACT OF THE DISSERTATION

Reliability of performance measures in tree-based GeRetigramming:
A study on Koza'’s computational effort

by

David Fernandez Barrero

The measure of computational effort was first proposed by RatKoza in his boolGene-
tic Programming: On the Programming of Computers by MeanNaifiral Selectionas a
method to assess algorithm performance. This measureagssirthe minimum number of
individuals that have to be processed by a generationaluBgohry Algorithm in order to
achieve at least one success with a certain given prolab@ibmputational effort has had
a strong influence in the Genetic Programming community, lersdbeen widely used as a
performance measure.

Several researchers have shown some concerns, througmatfohannels, about the
behaviour of this measure, but there is little evidence @nlitierature to support this percep-
tion. This PhD thesis is an attempt to determine whether the coscalbout the reliability
of Koza’s computational effort are solahd therefore it is a unreliable measure, or, on the
contrary, these concerns have no sound support. In ordersteest whether computational
effort is reliable or not, the goal of the dissertation is todal the error associated to the
estimation of this measure. The developed model is esHgritiaorerical, but some parts
are based on empirical evidence.

The main conclusion of the thesis is tifa¢re are sound reasons to doubt the reliability of
Koza's computational effodnd should therefore no longer be used. Other simpler messur
such as the success probability or the average number afagieals to a solution should be
used instead.

Futher contributions include the proof that the successinaEvolutionary Computation
is binomially distributed; a characterization of some Ioima@l confidence interval methods; a
new method to estimate the success probability; and ammdnalysis of tree-based Genetic
Programming. In addition, some methods to solve real wortdblems in the domains of
language induction, RFID and logistics are developed.






RESUMEN AMPLIADO DE LA TESIS

Reliability of performance measures in tree-based GeRetigramming:
A study on Koza’'s computational effort

por

David Fernandez Barrero

El esfuerzo computational de Koza es una medida de rendionégoritmico ampliamente
utilizada en la Programacion Genética (PG). Dicha meditama el nUmero minimo de
evaluaciones que son necesarios para que un algoritmoregrew menos una solucién
con una cierta probabilidad. Esta medida, por diversosvuomtiha ejercido una notable
influencia en el desarrollo de la PG como disciplina. Sin egdaexiste una considerable
discrepancia entre la importancia del esfuerzo computatip el conocimiento disponible
sobre sus propiedades.

A través de canales informales, diversos investigadarasttostrado reticencias debido
a ciertas anomalias observadas en el comportamiento fdekzs computacional, aunque
dicha preocupacion no esta respaldada por evidenci@riemp’tebrica. Esta tesis en un in-
tento de aumentar el conocimiento sobre dicha media. M&se@mmentese plantea como
pregunta de investiga@n principal determinar hasta @upunto el esfuerzo computacional
es una medida de rendimiento fiabl€on el fin de poder perfilar una respuesta fundada,
se plantea como objetivo de la tesis obtener una caractiénizdel error asociado a la esti-
macion del esfuerzo computacional.

Se identifican dos fuentes de incertidumbre en la estimatgbesfuerzo computacional:
el operador de redondeo, y el error de estimacion. Se derawmliticamente, con respaldo
empirico, que ebperador de redondemtroduce un error absoluto maximo igual al producto
de la generacion y el tamafio de la poblacion. En cambi¢emninos relativos el error de
redondeo esta acotado por una funcion no lineal mon&toe@ente con la probabilidad de
éxito del algoritmo. El error inducido por el operador déaedeo tiene una forma trivial de
eliminarse consistente en no utilizarlo.

El error de estimadn es la Unica fuente de aletoriedad en el proceso de medida, y e
intrinseco al mismo. Su origen se sita en la estimaoiia grobabilidad de éxito, de la que
depende el esfuerzo computacional. Caracterizar el efieaticha estimacion en el esfuerzo
computacional no es trivial, y require un modelo analitigola probabilidad de éxito. El
modelo propuesto en la tesis se basa en la descomposiciapdabilidad de éxito en dos



terminos, que a su vez modelan aspectos distintos de |afgfiolad de éxito. Un primer
término modela la probabilidad de que el algoritmo obtangéxito al final de su ejecucion.
Dicho término no depende del tiempo y por lo tanto lo denamios estatico. El segundo
término modela la evolucién de la probabilidad de éxitoet tiempo, y por lo tanto es
dinamico. Deducir las propiedades estadisticas del lngutepuesto tiene dos dificultades,
la primera es que se necesita caracterizar el error de eghimde los parametros de una
distribucion binomial, y por otra parte obtener una camazacion estadistica del tiempo que
un algoritmo tarda en encontrar una solucion.

El término eshtico tiene una naturaleza binomjal por lo tanto la estadistica binomial
puede aplicarse. Siendo mas precisos, nos intersa gizacta incertidumbre asociada
a la estimacion de la probabilidad, y una forma de hacerlpoesnedio de intervalos de
confianza binomiales. Como resultado de estudiar cuattodog de calculo de intervalos
binomiales (aproximacion a normal, Agresti-Coull, Wiisp “exacto”), se comprueba que
el método de Wilson presenta un buen comportamiento megtior lo tanto es una opcion
razonable para caracterizar el error de estimacion delzapilidad estatica de éxito. Como
aplicacion directa del resultado, se obtiene una estimaie la calidad de la medicién de la
probabilidad en funcion de la probabilidad estimada yusharo de ejecuciones.

El termino diramiconecesario para modelar la probabilidad de éxito deperidiedgo
que tarda un algoritmo en encontrar una solucion, que esdesido. Afortunadamente es
un problema facil de solucionar utilizando una aproxiraaagxperimental. Utilizando una
serie de problemas clasicos en PG, se determina que ewssedistribuciones estadisticas
gue modelan adecuadamente el comportamiento dinamica pi@babilidad de éxito. La
distribucion que aparece en un mayor numero de casozadadi, incluyendo aquellos que
podemos considerar mas comunes, es la distribucion togao En ciertos casos extremos,
también aparecen las distribuciones exponencial y Weibalprimera aparece en problemas
booleanos dificiles, si no se consideran las ejecucionesgcuentran una solucion durante
la fase inicial. Por el contrario, la distribucion de Wdlilaparece asocida al tiempo que los
casos analizados tardan en encontrar la solucion en aagknpresion selectiva.

En base a estas observaciorss propone un nuevoétodo para modelar y estimar la
probabilidad deéxito de un algoritmo Si bien las pruebas experimentales no aportan evi-
dencia de que el nuevo método mejore la estimacion aacmaxima-verosimilitud, al
menos si la iguala en cuanto a la exactitud. Adicionalmesigapaz de interpolar y extrapo-
lar valores de probabilidad, lo que tiene como resultadofuneion de probabilidad menos
abrupta, especialmente cuando el nUmero de éxitos didpsrpara calcular la estimacion
es reducido. Por lo tanto, dicho modelo presenta unas plagés razonables para utilizarlo
en la caracterizacion del error de estimacion del esfuepmputacional.

En base al modelo elaborado, se determina analiticameast&agprecision del esfuerzo
computacional es poco sensible al tiempo de ejecuciongtalitmo, pero si aparece una de-
pendencia significativa con la varianza del mismo, tantoanayanto mayor es la varianza.
En todo caso, tanto el modelo analitico, como los resultadperimentales, muestran que
con el nUmero de ejecuciones habitualmente utilizadagran a50, el error de estimadin
del esfuerzo computacional suele ser apreciable

Complementariamente al objeto principal de estudio detests, de caracter basico, se
realiza una investigacion aplicada. En particular, séepde una plataforma de extraccion
e integracion de informacibn basada en agentes sermért@anada Searchy, para exten-



derla incorporandole la capacidad de evolucionar expnesiregulares. Como base para se-
leccionar el alfabeto del que se nutre un algoritmo gengsie propone un nuevo algoritmo
inspirado en la ley de Zipf. Por Gltimo, se han aplicadmi&gs evolutivas en planificacion
logistica y RFID.

Las operaciones no lineales a las que se somete a la prdadhile éxito en el calculo
del esfuerzo computacional induce comportamientos @gios. Por lo tanto se concluye
que, en determinadas circunstancigasgudéos errores de estimam de la probabilidad de
éxito, se traducen en errores considerables de la estibmadel esfuerzo computacional
Si se considera el escaso valor afladido que aporta el asfuemputacional en relacion
a otras medidas de naturaleza mas basica, que carecetogalefectos, concluimos que
la utilizacion del esfuerzo computacional defzede evitarse en la medida de lo posible
En caso de que el uso del esfuerzo computacional sea necesamconseja eliminar el
operador de redondeo, y ajustar el nUmero de ejecucionemeidn del error admisible en
la experimentacion.
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Chapter 1

Introduction

Aqu expondeé el por g trato primero de lo primero y segundo de lo segundo
y por gie lo tercero ha de ir antes de lo cuarto y degpuleéste lo quinto
Amor y Pedagogia. Miguel de Unamuno

This chapter motivates and overviews this dissertatiorstllfj we briefly overview Dar-
win’s Evolution Theory as the foundation of Evolutionary rGputation. Then, section 1.2
motivates the questions that are addressed later. Aftérithaection 1.3, Koza’'s perfor-
mance measures are briefly introduced in order to providese li@mework to state the
research questions, that are reported in section 1.4. itta main contributions and the
associated publications are described.

1.1 Darwinian motivation of Evolutionary Computation

The discovery of Evolution Theory is one of the most remal&kalshievements of humanity.
This theory shaked the dominant position that men had inreainhere they were in a
priviliged position in relation to the rest of living being® one much more humble, to be
just one more species subject to nature’s laws. It is diffitcufind a scientifical idea able to
change the world so deeply as Evolution Theory as stated layl€hDarwin in theOrigin

of the Specie§63]. In this book, Darwin made a huge step to increase thevigudge of
humanity about humanity. His book, published in 1859, actdea non comparable success
from an editorial an intelectual point of view, being one loé imost influential books ever
written.

Contrary to what is commonly believed, Darwin was not the fierson to postulate
that species evolve. The first evolutionary theories datk ba some thousands years, in
the pre-Socratic ancient Greece. Several centuries aftee elaborated evolution theories
emerged: Orthogenesis, Saltationism or Theistic Evalutaased as theories that postulated
the existence of forces able to modify the species, or inrotloeds, that species come from
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other species. However, all these theories lacked of atfaahground. In Darwin’s time,
evolution was not an strange theory, actually Darwin’s dfatiher, Erasmus Darwin among
other naturalists, envisioned the evolution years betoegpublication of therigin.

The great contribution of Darwin was not therefore the ¢osabf the concept of evolu-
tion, but rather a simpler one: natural selection [65]. Hentified natural selection as the
driving force in evolution, with other forces such as sexaedéction, and took it with all the
consequences claiming that human beings were also undierfltience of natural selection,
as the rest of the species. To some extent, if Copernicugieldahe idea of the human being
as the center of the Universe, Darwin changed the idea ofuheah being as the center of
nature. Darwinian view of the species represents one of & nmotable human achieve-
ments in history, one can hardly visualize an intellectwaistruction with a similar impact
in all orders of human existence. In this time of intelletarkness, it is good to remember
the essentials. Darwin gave an extremely simple and elegaot@nation that provided an
unified view of the position of humans in nature [65, 66], r@triention its central role in
several scientifical disciplines, from Geology to Biology,Psychology.

A surprising discipline where Evolution Theory has beenligdpwith outstanding suc-
cess is Computer Science. More than one century and a heifthft publication of the
Origin, Darwin’s theories motivated a new paradigm in computingsplred by Darwin’s
work, some early computer science researchers, includiag Furing [231], envisioned an
application of his theories to create a new paradigm to sateblems in computing. With
sime several algorithms were developed under the inspirati Evolution Theory, that later
became what now we call Evolutionary Computation (EC) [7SB@.

EC belongs to a paradigm in computation that takes naturenahdal processes as a
source of inspiration. These algorithms are consideredrgéy as general-purpose stochas-
tic search algorithms, and have excellent performancegimdiimensionality problems where
direct domain-specific algorithms fail [79]. In particyl&C takes the darwinian idea of nat-
ural selection as a basis to design algorithms, generatiyvkras Evolutionary Algorithms
(EAs). These algorithms, given a set of potential solutiongdify them, select those fittest
according to an evaluation function, and use these potestlations to generate a new
population, iterating this process until a feasible solutis found or a budget of resources
wasted. Probably, the most popular EA is Genetic Algoritli@as) [110, 95]. However,
the collection of evolution-inspired algorithms is extenscluding Genetic Programming
(GP) [136, 192], which plays a central role in this thesis.

GP involves a collection of algorithms whose search is peréal in the program search
space. More than a theoretically coherent collection obritigms, GP deals with the pro-
blem of program induction [158]. Many different approxinoats have been used in GP. In
particular, the most popular and widely known GP algoritisrthie one originally described
by John R. Koza in his seminal book [136]. Koza proposed usigs in order to represent
programs, without a difference between the phenotypic artypic spaces. Due to its
simplicity and good results [135], this form of EA has beed®&ly used in practice, and has
attracted much research interest, which is translatedaitdoge corpus of literature devoted
to this issue, specialized journals, congresses and @ébdissertations.
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1.2 Motivation of the dissertation

Despite the algorithmic simplicity of most EAs, their artadgl study is extremely diffi-
cult[193, 185]. Hence, in order to ease the problem and addréractable complexity, seve-
ral assumptions have to be made, limiting the practicaébility of theoretical results [25].
Therefore, research on EC has been heavily supported byimgueal approaches, where re-
search is driven by data collection and analysis in comtdodinvironments [59]. In this way,
an EA with a certain parameter setting is run to solve a giveblpm while the experimenter
observes the behaviour of the algorithm collecting datdddher analysis. Therefore, ob-
servation plays a central role, and in a scientifical con@x$ervation means measuring.

In order to understand the behaviour and the performancésf &veral measures have
been proposed and used. These measures capture someestsi@of the algorithm under
study, and, depending on the experimenter purposes, nesdsave to be determined within
the experimental design. There is a notable lack of conseaisout which measures should
be collected [23]. To some extent, itis a logical conseqaaidthe large number of different
purposes that the experimenter might have, and the conpleidhe EAs.

The lack of consensus when selecting measures has se\aexdlatiks. Comparability of
results among experiments reported in the literature fcdif, when not impossible. It also
difficulties the understanding and interpretation of thgoathm behaviour through a stan-
dard set of measures, that would eventually guide in therifthgo design process. Perhaps
more importantly, the lack of “standardized” measures t®aganied by a lack of interest in
understanding how the measure itself behaves. Some meausehave side effects whose
undertanding is needed in order not to introduce bias in dmelasions. Hooker clearly
described this issue, “the problem is one of distinguishtihmgphenomenon (here, the algo-
rithm) from the apparatus used to investigate it (here, #ta dtructures, code, etc)” [112].
A better knowledge about which tools are used to observe malgze algorithms behaviour
is needed to draw more solid conclusions.

Indeed, the lack of methodological concerns found in tlegdiure is surprising. Many
research is devoted to what Hooker named “algorithm racE2]jawith quite limited scien-
tifical added value, while these issues, which have a dirapict into research and prac-
tice, have attracted little interest [25]; but fortunatéhere is a change of tendency with
an increasing number of publications concerned by metlogitdl and experimental is-
sues [26, 25, 37, 76]. This PhD thesis is an attempt to prowigiep forward in this direc-
tion, towards a better knowledge about the tools neededdier@o improve research in EC.
In particular, we address the realiability of a performamssasure widely used in GRpza’s
computational effort

1.3 Problem statement

One important performance measure widely used by the GP cmiityns thecomputational
effort. This measure was originally proposed by John R. Koza indheti chapter of his first
book [136] among other measures, and was used by him to neealgirithm performance
through his books [134, 138, 137]. The impact of this meakasebeen notable in the GP
community. Nonetheless, we can observe that the use of #ésune has been decreasing
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Koza’s performance curves
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Figure 1.1: Example of Koza’s performance curves. Successapility (P(M, 1)) is repre-
sented in dotted line, whilé(M, i, z) is the solid line. Computational effort and generation
where it is found are also represented.

in the last years. Perhaps, the reason behind this fact clnubd in that the researchers are
loosing confidence in Koza’'s measure.

Several researchers have shown their concerns about idaligl of computational ef-
fort though informal channels, such as chats in confereandsdistribution lists. But sur-
prisingly, these concerns have little support in the liiema This work is an attempt to check
out whether concerns about Koza’s computational effortsemend or on the contrary it is
a reliable measure A detailed description of Koza’'s computational effort daefound in
chapter 6. In order to provide a background needed by theigtésn of the objectives and
research questions, we first need to introduce the measatris thhe object of our study.

Koza definedcomputational effor{£) as the minimum number of individuals that the
algorithm has to process to achieve, at least, one succéss\given probabilityz. Some-
times this probability is provided using a valaesuch as: = 1 — . If the population is
composed by individuals, and the probability of finding a feasible s@uatat generation
i=1,..,Gis P(M,1), then the computational effort is given by

B=min { M| S pr | -

Where].. .| stands for the ceiling operator. If the minimum operatorlot) is removed, the
remaining function is usually denoted ByM, i, z), SOF = min I(M, i, z). Itis clear that
7

E andI(M,i,z) are closely related.
Even though computational effort is a scalar value, Kozal wsgraphical method to
report its value. This method, which we name as Koza’'s perémice curves, plots the value
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of two related functions that are used to estimBten particular the accumulated success

probability, P(M, i), andI(M,1,z). These two functions are plotted overlapped, and the
minimum value ofl (M, i, z), which is E, is placed there, together with the generation in

which this value is found. An example of Koza’s performanuaeves is in Figure 1.1.

A number of non-trivial statistical issues arise when (islanalyzed in more detail.

In practice, the valugZ cannot be known exactly because it has to be measured, and all
measure has an associated measurement error. This clais $pecially for EAs, which
have an intrinsic stochastic nature.

Measures are random variables, and thus they are subjeati&bnity. In particular, a
closer look to (1.1) shows that all the values involved in ¢benputation ofE’ are known,
exceptP(M,i). The ceiling operator removes information, and, dependimghe context,
might introduce a deterministic bias in the computationFpfbut it is not random. So, in
practice, the definition off described by equation (1.1) is replaced by

E = min {M@ |V ln(li 2) —‘ } (1.2)
i In(1—P(M,1))

which is what can actually be measured, and in genétat, E.

Given that the only source of randomnessibis given by P(MM, i), the accuracy ofs
depends directly on the accuracyB(M,z'). The method to quantify this dependence is
well known, by using error propagation. Taking differenae$l.1) w.r.t. P(M, ), we can
deduce how an estimation error Bf M, i) would affectE,

OF
AE = ‘8_P AP (1.3)

However, a couple of problems are found when this expressiapplied. First, calculating
the differential is not trivial given that the analyticalrfio of P(M, ) is unknown. Sec-
ondly, it is not clear whichA P value should be used, since the estimation error associated
to P(M,1) is also unknown. Therefore, in order to understand the pediace of computa-
tional effort, it seems clear that we have to address the s (and general) problem of
understanding the statistical properties of estimatirggess probability.

The characterization of the probability functitﬁr(M, i) can be decomposed in two dif-
ferent problems. The maximum-likelihood estimatoif\, i) is k(i) /n, wherek(i) is the
number of successful runs in generatigrandn is the number of runs executed. Hence,
P (M, 1) provides information about two facts: How many runs wheesasfull and when
they achieved success. Subsequently, the statisticaéprepofP (), i) depend on whether
time is considered or not. For convenience, we referstaéic behaviorof P(M, i) as the
behaviour of the success probability at time i.e., P(M, ip) with iy € {1,...,G}. On
the other hand, thdynamic behaviourefers to the run-time behaviour (ﬁf(M,z’), which
takes a more complex form since success probability is ngeloa random variable, but a
discrete-time stochastic process.

The distinction between the static and dynamic behaviouh@fsuccess probability is
critical in the structure of the thesis. As will be explairiadletail in section 1.5, the disser-
tation core is composed by three chapters: one is dedicatstidy the static properties of
the estimation of success probability (chapter 4), anatheties the dynamic properties of
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the success probability (chapter 5) while the third one &sithe previous results to char-
acterize the error associated to the measurement of Koaaiputational effort With this
background, we can state the research questions.

1.4 Research questions
The mainresearch questiothat is faced in this PhD thesis can be described as follows.

Koza's computational effort has been widely used by the Githoonity. De-
spite the concerns shown by several authors about the strbelgaviour of this
measure, little research has been performed to analyzehghebmputational
effort is reliable or not. The main research question of tligsertation is to de-
termine whether Koza’s computational effort is a reliableasure of algorithm
performance.

In order to answer the main research question, we first nedddmmpose that question
into somespecific research questians

e Q1: Which factors influence the reliability of the computatibatiort?
e Q2: Which statistical properties the static estimation of thecgss probability has?

e Q3: Which statistical properties the dynamic estimation of siecess probability
has?

e Q4: Can the success probability be anatically modeled?

e Q5: Does the run-time behaviour provide information about tigerithm?
Based on the previous research questions, we can stateaihegoal
Characterize the estimation error of the computationabreff

Specific research questions are addressed in differentersaps it is described in the
following section.

1.5 Structure of the thesis

The dissertation is divided into seven chapters. The firsetichapters are introductory. The
first chapter is dedicated to introduce the main researchtigmeand thesis structure, while
the second chapter provides a conceptual framework thps hetating the contributions
of this dissertation in the context of EC. Chapter 3 takes @plied perspective and it is
dedicated to develop solutions based on EC to some real wooldems. This chapter
provided the necessary background that motivated the reagarch question. The chapters
that address the research questions are 4, 5 and 6. Folloavingre detailed description of
the dissertation structure is shown.
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e Chapter 1: Introduction. It provides a general background, context and motivations.
The main objectives and research questions are stated|las\ee dissertation struc-
ture, main contributions and publications.

e Chapter 2: Evolutionary Computation from an experimental perspective. This
chapter is devoted to contextualize the contributions @RhD thesis. It discusses the
role of experimental methods in EC research, and overviewsf the most impor-
tant issues regarding the experimental design. In paatictilis chapter identifies and
discusses four components of an experiment: algorithngnpeter setting, problem
and measures.

e Chapter 3: Evolutionary Computation from an applied perspective. It is an appli-
cation chapter dedicated to develop methods to evolve aegupressions using GA.
The solution proposed uses a semantically driven agemtdbagormation extraction
and integration platform named Searchy, which is also dhtced.

e Chapter 4: Estimation of the success rate in Evolutionary Cmputation. The
statistical properties of the static estimation of the sgscprobability are studied.
In particular, the binomial nature of the success rate isstigated. In addition, an
extensive study of binomial confidence intervals in the exnof EC is provided. This
chapter addresses the specific research question Q2. Tdémiblity of the success
rate is used in chapter 5 to characterize the estimation @rthe computational effort.

e Chapter 5. Run-Time analysis of tree-based Genetic Programing. The statistical
properties of the dynamic estimation of the success prbtyadie studied. To be more
specific, the time required by a canonical tree-based GRigdgoto find a solution is
investigated. As a result of this analysis, an analyticatlehof the success probability
is proposed. This model is used in chapter 5 to provide a @osaéytical form of the
computational effort. Questions Q3, Q4 and Q5 relate todhapter.

e Chapter 6: Reliability of Koza’s performance measures.The main research ques-
tion is addessed providing a characterization of the erseociated to the measure-
ment of the computational effort. Additionally, the measuent error off (M, i, z)
is also characterized. This chapter strongly depends oreshits obtained in chapter
3 and 4. The specific research question Q1 and the main rbsgaestion are both
addressed in this chapter.

e Chapter 7: Conclusions. Research questions are addressed again under the light of
the results obtained in the PhD thesis, the conclusionsegerted, and some open
research lines described.

1.6 Publications and contributions

Along the development of this work some publications wemsegated. In the following, we
report them, grouped by the chapter where they appear. litiaddhe main contributions
are briefly summarized.
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e Chapter 3: Evolutionary Computation from an applied perspective. This chapter
contains some preliminary investigation performed in tbetext of the dissertation.
Despite its objectives are far from the main ones, it sengtblacquire experience
using EAs, and more importantly, it motivated the main regeauestion the PhD
thesis. We have worked in several domains: a logistic agfidic that optimizes the
drivers routes [194, 195], generate routes inside a buldéngg RFID [196], language
induction [98] and data information extraction [49]. Foistlast application, we have
used an agent-based data extraction and integration iplatfamed Searchy [17, 22].
It was used to tune parameters of a GA [13, 17], and simulatzriabde-Length Gene-
tic Algorithm using an island model with immigrants [14].n&ily, evolutive methods
to automatically learn regular expresions from a set oftp@sand negative examples
were developed [18, 20].

— D. F. Barrero, M. D. R-Moreno, and D. Camacho, “Adapting skgrto ex-
tract data using evolved wrapper&xpert Systems with Applicatigrio appear,
2011.

— M. D. R-Moreno, B. Castafio, M. Carba}é, Moreno, D. F. Barrero, and P. Mufioz,
“Multi-agent intelligent planning architecture for peegbcation and orientation
using RFID”,Cybernetics and Systeml. 42, pp. 16—-32, Jan 2011.

— D. F. Barrero, A. Gonzalez-Pardo, D. Camacho, and M. D. Revlo, “Dis-
tributed parameter tuning for genetic algorithm&gmputer Science and Infor-
mation Systemwsol. 7, no. 3, pp. 661-677, 2010.

— D. F. Barrero, M. D. R-Moreno, D. Camacho and B. Castafio “Hardrivers
knowledge integration in a Logistic Decision Support Tedl Proceedings
of the 5th International Symposium on Intelligent Disttési Computing (IDC
2011) vol. 382/2012 ofintelligent Distributed ComputingDelft, The Nether-
lands), pp.227-236, Springer-Verlag. 5-7 October 2011.

— D. F. Barrero, M. D. R-Moreno, and D. R. Lopez, “Informatitmtegration in
Searchy: an Ontology and Web Services Approatfitgrnational Journal of
Computer Science and Applications (IJCS#). 7, no. 2, pp. 14-29, 2010.

— M. D. R-Moreno, D. Camacho, D. F. Barrero, and M. Gutiérré Decision
Support System for Logistics Operations”, Sioft Computing Models in Indus-
trial and Environmental Applications, 5th Internationabvkshop (SOCO 2010)
vol. 73, (Guimaraes, Portugal, June 2010), pp. 103-110n&gr-Verlag, 2010.

— D. F. Barrero, A. Gonzalez, M. D. R-Moreno, and D. Camachayriable Length-
Based Genetic Representation to Automatically Evolve \fWeag', in Proceed-
ings of 8th International Conference on Practical Applicats of Agents and
Multi-Agent Systems (PAAMS 201(Balamanca, Spain), pp. 371-379, Springer-
Verlag, April 2010.

— A. Gonzalez, D. F. Barrero, M. D. R-Moreno, and D. Camaclkocase study
on grammatical-based representation for regular exmgnessiolution”, inPro-
ceedings of 8th International Conference on Practical Aggtions of Agents and
Multi-Agent Systems (PAAMS 201(Balamanca, Spain), pp. 379-386, Springer-
Verlag, April 2010.
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— D. F. Barrero, D. Camacho, and M. D. R-Moreno. “A frameworkdgent-based
evaluation of genetic algorithms”, iRroceedings of the 3rd International Sym-
posium on Intelligent Distributed Computing (IDC 200@)yia Napa, Cyprus),
pp. 31-41, Springer-Verlag. 13-14 October 2009.

— D. F. Barrero, D. Camacho, and M. D. R-Morezata Mining and Multiagent
Integration ch. Automatic Web Data Extraction based on Genetic Alporg
and Regular Expressions, pp. 143—-154. University of TelcgyoSydney, Aus-
tralia, Springer-Verlag, July 2009.

— D. Camacho, M. D. R-Moreno, D. F. Barrero, and R. Akerkar,t@atic wrap-
pers for semi-structured dataZomputing Letters (Coleyol. 4, pp. 21-34, De-
cember 2008.

e Chapter 4. Estimation of the success rate in Evolutionary Cmputation. The
binomiality of the number of successful runs in EC is prowetth theoretical and
empirical support [21, 15]. The usage of confidence intsri@lestimate the success
rate is discussed [15], and the statistical propertieswflimomial confidence interval
methods are analyzed in detail [21]. A method to determiaanttimber of runs needed
to estimate the success rate with a certain error is profg@4¢d

— D. F. Barrero, M. D. R-Moreno, and D. Camacho. “Statisticatifaation of
Success Probability in Evolutionary ComputatioApplied Soft ComputingTo
appear. 2011.

— D. F. Barrero, D. Camacho, and M. D. R-Moreno. “Confidenceri#ls of
Success Rates in Evolutionary Computation”Phoceedings of the Genetic and
Evolutionary Computation Conference (GECCO-2Q01®ortland, OR, USA),
pp. 975-976, July 2010.

e Chapter 5: Run-Time Distribution analysis of tree-based Gaetic Programming.
The run-time behaviour of tree-based GP is analyced [1&Jjrfqnthat the time re-
quired by GP to find a solution is usually follows a lognormatibution. Based
on this observation, an analytical model of success prtibals proposed and vali-
dated [16]. In order to place this result in the framework tifieory and generalize it,
a theoretical model of EA based on Discrete-Time Markov has proposed. This
model is used to proof that exponentially distributed names are a consequence of a
memoryless algorithm.

— D. F. Barrero, B. Castafo, M. D. R-Moreno, and D. Camachtatf§ical dis-
tribution of generation-to-success in GP: Application todal accumulated suc-
cess probability”, InProceedings of the 14th European Conference on Genetic
Programming, EuroGP 2011vol. 6621 of LNCS (Turin, Italy), pp. 155-166,
Springer-Verlag, April 2011.
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e Chapter 6: Reliability of Koza’s performance measures.The two factors that de-
termine the reliability of theeomputational efforeire identified. Based on the results
of the chapters and4, the boundaries of the error associated to the measurerhent o
I(M,i, z) and the computational effort are deduced. An experimerzttédiation of
these results is also provided in [19]. It is proven that tkistence of memory in the
algorithm induces a non-constaht)M, i, z).

— D. F. Barrero, M. R-Moreno, B. Castafio, and D. Camacho, “Mpieical study
on the accuracy of computational effort in Genetic Programgih in Proceed-
ings of the 2011 IEEE Congress on Evolutionary Computat{blew Orleans,
LA, USA), pp. 1169-1176, IEEE Press, June 2011.



Chapter 2

Evolutionary Computation from an
experimental perspective

For to be possessed of a vigorous mind is not enough; the pemesite is rightly to apply
it. The greatest minds, as they are capable of the highesllerces, are open likewise to
the greatest aberrations; and those who travel very slovdy get make far greater
progress, provided they keep always to the straight roaah those who, while they run,
forsake it.

Discourse on the Method. René Descartes

This section is devoted to contextualize the contributiohshe core chapters of this
dissertation, providing a general perspective on the usigeofxperimentation in the context
of EC research. It is not our interest in this chapter to deeca full state-of-the-art on
experimental methods, but rather to offer a framework thighinhelp to place the work
developed in the core chapters. Indeed, one can hardly balkta state-of-the-art in this
field, as there are some research lines related with somesigenin experimental design,
and only a limited number of publications related to the miapic of the dissertation can be
found. Nonetheless, the dissertation involves some diffieresearch areas. A review of the
related literature is reported together, with the contidms.

The chapter begins discussing the role of experimentahrelseén Science in general, and
in Computer Science in particular. It motivates the needsuoigiexperimentation as a basic
tool in research. Then, a classification of the experimedealgns in EC is proposed with a
four-components framework to describe experiments: Aflgar, problem, parameters, and
measures. Then, each one of the components is briefly irteoldiinishing with measures,
the component more closely related to this PhD thesis. lyjrsime general conclusions are
presented.

11
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2.1 Experimental research

Basically, there are two approaches in Science to answeseaneh question: a theoretical
and an experimental approach [25]. These two approachebecaglated to the two main
philosophical approaches to Epistemology, a topic addeby philosophers for centuries,
from the first Greek philosophers, until Enmanuel Kant arel riise of modern philoso-
phy [123]. Roughly speaking, there were two opposed views Was initialized by Thales
of Miletus and the lonian school. Thales tried to explainurat phenomena using obser-
vation and rejecting any mythological explanation, indeed said to be the first attempt
to understand the word with a scientifical basis [209]. Marg+$ocratic philosophers be-
longed to this school of thought, including Anaximenes,atétus or Anaxagoras.

After Socrates, the position of many philosophers to theblera of how to acquire
knowledge changed radically. In particular, Plato’s Tlyeafrthe Ideas influenced the ongo-
ing philosophy for centuries. Plato saw a natural world astoded view of the real word,
which is the World of the Ideas, and thus he dismissed obsenvas a source of knowl-
edge. Following Plato, our senses deceive us from the trinds idlea is well represented
by the famous Allegory of the Cave [191]. Plato’s strong ieflae in Aristotle and through
him to the Schoolmen in the Middle Ages pushed away observats a source of knowl-
edge. Fortunately, this way of thinking changed in the Regaaice, thus emerging modern
Science.

The time dedicated by philosophers to meditate about this t@as necessary to the raise
of Science, which has proven to be most effective method nergee knowledge. From a
scientifical perspective, observation and abstractiomaréwo opposing forces, but instead
they are complementary. Observation motivates new theoaed new theories motivate
new observations. Additionally, observation is used irelscé as a test of theories, any
theory must be consistent with the observations in orderet@drepted by the scientific
community. In any case, to some extent, the dichotomy betvesiservation and theory
remains, and the exact role of each approximation still ggas debate. Computer Science
is not an exception [70].

2.1.1 The role of experimentation in Computer Science

In Computer Science and Atrtificial Intelligence (Al) resg@ers may use theoretical or expe-
rimental approaches [111, 11]. From an historical perspedhe first research in Computer
Science was almost purely theoretical, perhaps because afdademic backgroud of the
early Al researchers, most of them coming from MathematitsRhysics, and the hardware
limitations of the time. The theoretical origins of Compugzrience and Al had a strong
influence in these disciplines. In the context of algoritresearch, some key authors such
as Donald Knuth, in his classical and influential series afldsorhe Art of Computer Pro-
gramming encourage using analytical analysis of the algorithm2]1Zhis approach has
been so influential that has been the strategy generaligwietl in algorithm analysis until
recently.

Nowdays, the analytical study of algorithms has attractet@bie criticism due to its
difficulty [175, 25], among other less obvious -and more tat$al- drawbacks. Typically,
analytical analysis of algorithms use worst-case and gestase scenarios [201]. The worst-
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case study takes some assumptions that eases the probieevendy definition the worst-
case is a pathological case and therefore it does not rep@sealistic scenario [201]. From
another perspective, average-case studies are mordicehlig also more difficult, and thus
it forces to simplify the problem making it less realistic.

Additionally, these kind of theoretical approaches do motsider details concerning the
platform and/or the implementation, which might introdutav elements that potentially
can alter the behaviour of the algorithm. This idea was yiegpressed by Hooker, “study-
ing algorithms at a level of a formal system presupposesra fafrreductionism, which is
the view that one can and should explain a phenomenon byirediido its ultimate con-
stituents. Reductionism works in some contexts but failsenaibly in others, and | think it
often fails in algorithmic science” [111]. Experimentatis a way to overcome those lim-
itations. It is therefore not surprising that algorithmiadies have included experimental
methods in their toolbox [59].

Recently, stochastic search algorithms such as Metaliesrigave gained higher pop-
ularity. This type of algorithms are particularly difficuth analyze from a theoretical per-
spective [193, 9, 151]. Despite its algorithmic simplicittyeoretical models and results are
scarce and difficult to obtain. The stochastic nature of Metaistics introduce a new layer
of complexity to analytical studies of this class of algamiis. Actually, there are several
authors that complain about the few theoretical works thawige practical results [9], and
it is generally assumed that there is no theoretical basgpéain the good performance of
Metaheuristics.

Then, due to the challenging complexity and limitationshafdretical approaches, expe-
rimental methods have emerged as an alternative to studg #ilgorithms, attracting an in-
creasing research interest. There were several methodaldagoons in early research [31]
that motivated to some authors in mid-90s to complain alipahd encouraged using more
robust experimental methods. Probably, the most influenttak of these early warning
papers was written by Hooker [112]. Then, several paperg wencerned about the ex-
perimental methods [11, 236], tutorial-like papers [92} aven lists of tips to improve
experimentation [92, 182].

There are still many methodological concerns about expariation in EC that moti-
vated more recent publications with similar arguments.[TB]recent years, there has been
a considerable effort from several authors to improve erpartal methods used in EC re-
search. This increasing interest in experimental meth®dsaierialized in a series of tutori-
als about experimental methods in the main EC events [248,24, PhD thesis [206, 36]
and monographs [26, 25].

Experiments are undertaken when research questions damanswered by direct means
[165]. However, it should not be confused with observatiérperiments need observation,
but not every observation comes from an experiment. Thdiagdifference betweeax-
perimentaland empirical research. Data collection makes something empirical [F8]s
data is obtained by observing some phenomena, this appisagpkite common in some
disciplines such as Social Sciences [60, 199]. On the aonireexperimental researclihe
researcher manipulates the object of study to test it in steBaigable conditions, so, the basis
of experimentation is not observation, but manipulatior5]J1 We should mention that this
terminology is not generally used, and different terms withilar meanings have been pro-
posed. For instance, Cohen mention observation and matigukexperiments [59] to mean,
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respectively, empirical and experimental methods. ShigjldMcGeoch [165] distinguishes
application and simulation programs. In the following, wil wse the term experimental
to mean control over the object of study, while empiricall w#é used as any method that
involves observation.

The definition of experiment given by Barr underlines thecheé manipulation, “an
experiment is a set of tests run under controlled conditiona specific purpose: to demon-
strate a known truth, to check the validity of a hypothesigpaxamine the performance of
something new" [11]. But this definition also mentions an artpnt topic: an experiment is
just a piece in a more complex machinery that involves rebequestions, hypothesis, etc.
This machinery is named scientific method.

The importance of the method is a general concern in all tiemsfic disciplines. How-
ever, the role of the method in Computer Science in genendljraEC in particular does not
seem to generate much debate. Some authors in EC have beenmszhabout methodolog-
ical issues, emphasizing, for instance, the sequentiat@af experimentation, where an ex-
periment suggests new research questions that, agairesuggyv experiments [165]. These
methodological considerations are out of the scope of thiedation, however, some papers
about this topic in the context of Metaheuristics and EC @afolnd in [46, 92, 206, 11, 41].

Despite the lack of an extense literature in EC about thgaegoseveral publications re-
lated to Metaheuristics about experimental research céouoel. These publications lack a
common theoretical background, and they refer similar eptecwith different terminology;,
or use different conceptual framewaorks. In the followings survey the different perspec-
tives used in the literature to refer experimentation, argppse a general framework that
summarizes and unifies the terminology about experimeesalarch in EC.

2.1.2 Classification of experimental designs

The growing interest in experimental methods in computiag heen reflected in an in-
creasing number of publications addressing this topic. Asresequence, the experimental
methods reported by the literature in the last years have beleanced, and at least some of
the more obvious pitfalls are generally avoided [26]. Hoggwvhis topic has attracted little
interest from a purely research perspective, leading toladfa shared terminology. In this
section we survey this topic, trying to provide a unifyinggeective.

In general, we can identify four non-exclusive criteriadige the literature to classify
experimental designs, depending oroitgectivesproblemthat is addressed, tifigctor that is
studied, andther criteria that does not belong to any of the previous onesédridllowing,
we review the literature according to this classification. phrticular, this topic has been
studied with more intensity in Metaheuristics than in EG,tke following review involves
both fields.

A common criteria used by many authors to classify expertsienbased on thebjec-
tive that the experimenter wants to accomplish. It is closelgtel to the difference between
engineering and science. Rardin [201] distinguishes atwesearchand development
The objetive of research is to acquire new knowledge abautatborithm, its behaviour,
the relationship between the performance and its compsné&hts perspective is obviously
scientific. On the contrary, development relates to an @gging perspective, the goal is
to create or use an algorithm that solves a certain probleardiR and other authors [69]
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maintain the idea that many problems in EC are a consequdrbe tack of a clear dis-

tinction between research and development. This fact casbberved, for instance, in the
strong criticism made by several authors [112, 201] to tigea mumber of publications fo-
cused on algorithm comparison instead of understandingamhgigorithm performs better
than other. Hooker is in an extreme position claiming th&t #mphasis in competition is
“fundamentally antiintelectual” [112].

Eiben also implicitly assumes the difference between rebeand development in [76],
where he states that there agtimization experimentandunderstanding experiments$n
the same line, but seen from the perspective of parametgiuBiben [78] distinguish be-
tween optimization experiments, that set the parameteehi®eve the best solution, and
understanding experiments, that analyze the dependetwedreperformance and parame-
ters. This perspective is also very close to the one exposgtl] by Barr, who classifies
goals in experimentation @a®mparisoranddescription

The classification in base of the experimental design abgentade by Johnson in [122]
is more detailed. He assumes that each type of experimeriecassociated to one partic-
ular type of paper -and, to some extent, assuming that ewpatation only has interest for
researchers-. He identifies four types of papers (or exgeris). Theapplication papetis,
as its name suggests, a paper whose objective is to applgauitiain to solve a problem of
interest; thehorse race papetries to compare two or more algorithms as function of any of
their performance measures in a competitive way, the ejéito claim that algorithm A is
better than algorithm B; aexperimental analysis papewhich tries to better understand an
algorithm and finallyexperimental average-case pap@rhich performs experimentally an
average-case analysis of the algorithm when the analgmaloach is too complex.

Other authors use the context (or scenario) where the Higois run to classify it, or,
in other words, the type of problem that the algorithm hasat®f Eiben in [79] identifies
three scenarios or problems, which are design problemstitigp problems, and online
control problems. This classification can be consideredrafimement of the development
scenario used by Rardin [201]. blesign problemsthe practitioner is interested in one
solution of the highest quality, once this objective hasnbsatisfied, the algorithm is no
needed anymore. For instance, we can identify as desigriepnsbclassical applications
of EAs in engineering, such as antenna design or productiamptimization. On the
contrary, repetitive problemsre those ones where the interest is a sequence of solutions,
usually drawn at different time intervals. A classical exdenof this type of scenario is the
optimization of routes of a logistics company [194]. As acakcase of a repetitive problem,
Eiben identifies then-line problemswhich have stronger time constrains, typically because
they are used in control tasks where the time dedicated tafsadution is limited. The route
selection of a rover might be another example of this typeppfieation. Finally, Eiben also
identifies research as an scenario for EAs, however, he dibekscuss this class of scenario
in his papers.

There are authors that use the factor of study as a criteciassify experimental designs.
Depending on the number of variables considered in the s@itigrandini in [52] identifies
univariable and multivariable experiments. With the same idea, but different terminalogy
Rardin uses the tuning method considering whether it usemibbDesign of Experiments
[201]. If it tunes one parameter each time, she defines therempnt assequential but if
parameters are tuned using Design of Experiments, she narfaesorial design On the
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Table 2.1: Summary of classification schemes proposed ilit¢hature.
Author Publication  Adjectives
C.C. McGeoch [165] Dependency study
Robustness study
Proving study

A. E. Eiben [79] Design
Repetitive
Control (particular case of repetitive)
J. Derrac [71] Single problem analysis
Multiprogram problem analysis
M. Chiarandini [52] Univariable
Multivariable
R.L.Rardin  [201] Scientifical/development

Design/planning/control
Sequential/factorial

P. R. Cohen [59] Exploratory / confirmatory
Manipulation / observation
Several [59, 165, 59] Pilot or exploratory

contrary, Derrac et al. [71] use the number of problems treairdroduced in the experimen-
tation, in this way if there is only one problem they name isixgle-problem analysiand
multiprogram analysi®therwise.

Finally, several authors use criteria that hardly can besdi@d in the previous categories.
McGeoch, in [165] classifies experimentation in three gsooiptypes of studies, depending
on the research question. The first one isdbpendency stugwhich is characterized by the
interest to discover the relationship between the algworigarameters and its performance.
The second one is threbustness studyvhich tries to characterize statistically the variation
of the algorithm properties. Basically, dependency studige central tendency measures
while robustness studies use variability measures. Kirthikre argroving studieswhere
the components of the algorithm are studied in relationéo impact in the performance. As
Ridge pointed out in [206], this classification has some Isirties with the one introduced
by Barr in [11], in particular, dependency studies are emeivt to average-case studies as
well as proving studies are equivalent to an analysis paper.

Finally, several authors identify pilot or exploratory eximents as a mean to gather a
basic understanding about the algorithm [59, 165, 59]. ERjgoratory experimentation
has a limited scope, since its goal is not to gather evidemaeder to support any claim.
Usually it is carried out in a preliminary stage of the expentation, and serves to gather
basic information needed to design and perform the expetatien. It serves to estimate
the computational resources needed by the experimentjfidéctors, get a basic under-
standing about the algorithm and its performance. Withhadl information, the experiment
can be planned and the research questions might be refradead exploratory experiments
should be limited, using few computational resources ane.ti

In order to be clear, Table 2.1 shows a summary of the termgyolised in the literature
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to describe experiments. It should be underlined that,eatlthors’ knowledge, there have
not been attempts to propose formal classification scheaméghe terms showed in the table
have been used in an informal way. As it can be seen, many teferso the same concept,
and different attributes of the experiments are used toresthem, which is confusing. In
order to try to clarify this situation, and provide a gendramework to contextualize the
contributions of the dissertation, the next section trizprovide a general framework to
describe experiments.

2.1.3 A framework to describe experiments

Given the lack of unified criteria to classify experimentss not surprising that this problem
is also present in the description of an experiment. Seweertélors have provided a theoret-
ical background about the components of an experiment, vewthere is still a lack of a
general framework able to describe the different elemdr@sdompose an experiment. In
this section we briefly review some literature and use it tppse a framework that system-
atize the description of an experiment.

In any case, the distinction between the classification aberiment and its descrip-
tion is far from being clear, and actually, the frameworkt tiva propose takes into account
elements from the classification schemes previously desitri The experimenter motiva-
tion, the type of research question, and the objectiveseoéiiperiment have a direct impact
in how the experiment is designed. And, on the contrary, éselt of the experiment might
motivate changes in the questions that drive the experinfdmre is an interdependence be-
tween objectives and design. So, it seems to us as reasdoabke into consideration these
motivations (to some extent already reviewed in the prevgection) and the elements that
build the experimental design. With these precedents, werapose that the description of
an experiment should consider the researcher perspeatideghe experiment design as well.

e Objective. Which is the objective that motivates the experiment? ghhberesearch
when the objective is to acquire knowledgeyvelopmenivhen there is an engineering
motivation, where the interest is not acquiring new knogkedbut to solve a given
problem;comparisorwhether the experimenter is interested to compare two oemor
algorithms, and finallyexploration if it is a preliminary experiment with a limited
scope carried out to gather data needed to design the finalisent.

e Experimental design An experimental design is the set of elements needed to plan
an experiment in the context of the objectives defined bydkearcher. In the context
of EC, the elements to define an experiment areatgerithm, the parameter setting
in very likely case that the algorithm is parametizable, #reprobleminstance. In
addition, in order to be able to observe the object of studyg, iecessary to measure
it, and thus, depending on the objective and research quettte experimenter has
to choose a set aheasuresThe proposed composition of the experimental design is
based on the work of some authors. Barr [11] identified thaetofs in an experiment:
the problem, the algorithm, and the test environment. @iyjlBartz-Beielstein states
that an experiment is composed of a problem, an algorithmaandlity criteria [24].

In the same line, Smit distinguishes three design layergsponding to an application
layer, an algorithm layer and a tuning layer [217].
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Figure 2.1: Framework for the description of the experiraetit involves two dimensions,

the objective that motivates the experimenter and the érpatal design, that includes all
the elements needed to plan an experiment. These two diomsnaie not independent but
actually they should be linked.

The objective and the experimental design are differenedsions of experimentation, but
they are not uncorrelated. Some objectives are linked miosely to some elements of
the experimental design than others. For instance, an egiginterested in solving a cer-
tain problem efficiently has a development objective andlvéllikely interested to find the

best algorithm for that class of problem, or, given an atgami he will try to find the best

parameters. A graphical representation of this framewssghown in Fig. 2.1.

In summary, the objectives that motivates the researcheanty out an experiment, as
well as its design are necessary in order to fully describexperiment. The experimenter
objectives might try to answer a research question, to firawdisn to a problem, compare
algorithms, or gather data in order to design the experim&dditionally, the experimental
design is composed by the elements needed in order to carth@experiment: an algo-
rithm, a parameter setting, a problem and measures. In tlwsviog sections we briefly
describe each of the elements that compose the experinuzsigh.

2.2 The first component of experimental designs: Algorithm

Metaheuristics are a set of stochastic search algorithriits awvide range of applications.
The exact definition of what is exactly a metaheuristic isffam being trivial, and the
name might be confusing, since it suggests a similar meawnimgetamodel or metaalgo-
rithm [158], which is not the case. Informally we can ideptfmetaheuristic as an algorithm
that sample the search space using some degree of randoamiesse the collected infor-
mation to place new samples, and repeat it until an end dondg satisfied. Metaheuristics
have been an intense research topic in Al and there is a largasof publications. Several
surveys are available in [236, 226, 158, 43, 7].

Metaheuristics is a term that involves a large set of algorst, and setting a complete
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classification is a complex task, due to their diversity aardé number of algorithms. Sean
Luke divides Metaheuristics in two branches, dependinghemumber of samples that the
algorithm draws on each iteration [158]. So, if only one sknip taken, the algorithm

is trajectory-based. This names comes because if the sgojpits are represented in the
search space, they trace a path. On the contrary, if theitgodraws several points in each
iteration, it is a population-based algorithms. A graphregresentation of a classification
of stochastic search algorithms, with emphasis in Metases, can be found in Figure 2.2.

It is possible to group population-based Metaheuristits two sets depending on how
new samples are located in the search space. When the latlggiaces each new samples
based on a limited number of previous samples, it is said tabEA [79], while if all the
samples in the previous iteration of the algorithm influetieeallocation of new ones, it is
said to be a Swarm Algorithm [42]. The first category is insgiby the Evolution Theory,
where natural selection forces an evolution in the poputaind new individuals inherit
their parents characteristics. Similarly, Swarm Algarithare inspired by natural processes,
many of them in swarms or flocks of animals, like social ins¢t64].

Curiously, from the perspective of the experimental desainthese algorithms can be
envisioned as a black box, where an evaluation functiondsqa, and the algorithm op-
timizes it with no need of domain knowledge. For this reas®ean Luke suggests that
black-box optimization would be a good name for MetahewsstThis reason motivates us
to provide in the following a broad (and brief) descriptiohMetaheuristics, although the
main contributions of this PhD thesis are placed in GP.

2.2.1 Trajectory search algorithms

Trajectory search algorithms are a type of Metaheuristim tsample a single point in the
search space in each iteration. Depending on how the pdiotased in each iteration we
can distinguish a large number of trajectory search algmst This class of algorithms are
generally for local search, they are good finding good locatima, but not so good finding
new promising regions in the search space [158]. For thisoreahis property has been
exploited mixing this type of Metaheuristic with more exgltive algorithms, usually based
on populations. Algorithms that take this hybrid approaakiehbeen denominatedemetic
algorithms The adjective memetic comes from the idea of meme, develbgeRichard
Dawkins in his booKThe selfish genfs5]. A meme is a unit of cultural transmission, that,
in the same way than genes, is able to replicate and trartsesiit i

The most simple trajectory search algorithmhif-climbing, which is indeed a well
known method in classical Al [210]. It begins by sampling &npat random, then takes an-
other point in the neighborhood of the first one, and, if the peint is fitter, it is selected and
the process is repeated, if not, another point in the neigidoa is selected and evaluated.
This is a well known local search algorithm, but since it osdarches in a limited region, it
easily suffers stagnation, which limits the performancthefalgorithm. We should point out
that hill-climbing is, with the gradient ascent, the modreme exploitative algorithm, since
it only moves to better solutions in the same region that isghexplored and the presence
of randomness is very restricted.

One of the oldest and best studied trajectory search digasitproposed in the eighties,
is Simulated Annealin¢SA) [131]. This algorithm is itself based on an even oldgoathm
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named Metropolis [167]. The idea behind SA is to simulateptteess of metal annealing,
which consists on controlled cycles of heating and coolingroduce more stable molecular
structures in the metal. In practical terms, from a Comp@&&ence perspective, SA is a
hill-climbing algorithm that can move towards worse salut with a certain probability that
depends on a parameter named, following its physical iaspir, temperature. The value
of the temperature is reduced with time, reducing also tlodadrility of moving to worse

solutions. The goal is to benefit exploration in the begigroenthe algorithm course, and to
reduce it to make the algorithm more exploitative in oldegss of the run. Depending on
how the temperature is modified, there are a number of vansif the basic SA algorithm.

Another strategy designed to benefit exploration withougaificant loose of exploita-
tion istabu searci{TS) [93]. To this extend, this algorithm includes memorfieTasic idea
of TS is to keep a list of the regions already visited withautcess to avoid visiting them
again in a near future, this list named tabu list. Again, delpgg on the length of the list
and how it is managed, there are a large number of variatibtteealgorithm. This is far
from being trivial, the size of the search space might predugge tabu lists, which requires
subconsequently to define a method to manage it.

It was shown that hill-climbing is prone to stagnation, whgeriously limits its perfor-
mance. A more intelligent version of hill-climbing thatesi to solve this problem iserated
Local Searchor simply ILS [32]. This algorithm is basically a hill-clibing with random
restarts, but these restarts do not begin at random, buj asiuired knowledge about the
search space. In this way, restarts are more intelligeattet) the starting points. In partic-
ular, it keeps the best region of the search space so far fedreh the algorithm is restarted,
ILS chooses a point in the vicinity of that region, not too tiatbe within the good region,
but not too close, where a local maxima would be reached agssna result, ILS mixes
two types of search, a global search to locate good regianal$m a local search to exploit
promising regions, for this reason ILS sometimes is mixeith wiher algorithms, such as a
TS of SA.

The list of algorithms belonging to this class of Metahdigssis extense, some other less
known trajectory based methods are Guided Local Search Y{z33], Variable Neighbor-
hood Search (VNS) [104] and Greedy Randomized AdaptivecBdznocedure (GRASP) [83],
among others. Trajectory search algorithms are closefta@lto the other great branch of
Metaheuristics, population-based algorithms, whose mogtlar family of algorithms are
EAs.

2.2.2 Evolutionary Algorithms

EAs are a class of population-based metaheuristic inspiyatie biological process of Dar-
winian evolution [79]. Probably, the most characterisgattire of EAs is their capability
to combine components of solution candidates though cvesstJnlike other population-
based methods, mainly Swarm Algorithms, EAs place new sapuihts in the search space
by combining the information contained in at least two poegi sample points selected us-
ing a mix of fitness assessment and randomness, simulatngettual reproduction found
in nature. Swarm Algorithms, on the contrary, use the whaoleutation to generate each
candidate solution.

Depending on how the candidate solutions are representedeatotypic level, the type
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of genetic operator used, and attending historical reaasnsell, there are four big fam-
ilies of EAs: Genetic Algorithms, Genetic Programming, Edonary Programming and
Evolution Strategies. Recently a new approach to EC namtch&son of Distribution Al-
gorithms (or EDAS) has emerged attracting notable intehestever, this approximation has
some particularities that make it hard to classify. In théofeing, we briefly introduce the
two algorithms more strongly linked to this dissertationd @numerate other EAs to better
contextualize this work.

It is important to point out that these branches were creagelbendently by different
research groups, and they evolved on their own with diffecdectives and backgrounds.
Only some time after their creation, along the ninetiesy thegun to be seen as algorithms
that share many characteristics, and EC was coined as a paefertto this field of Al.

2.2.2.1 Genetic Algorithms

Probably the most popular family of EAs is Genetic Algoriginor GAs, which was first
introduced by Holland [110] and then popularized by a setomids, beginning with the one
written by Goldberg [95]. A good, but outdated, introdunt&End survey on GA can be found
in [33, 34, 221]. GAs are inspired, like most EAs, in naturglestion, and particularly in
Genetics. Live beings code all the information needed tlallthem in form of a sequence of
nucleotids, the DNA or RNA. This genetic information is mioelil though sexual reproduc-
tion and/or mutations, which generate diverse individudlatural selection operates at an
individual layer, selecting the fittests ones. GAs imitdkes, coding the candidate solutions
in a linear string and simulating sexual reproduction andaten. Actually, much of the
vocabulary used by the GA community comes from this fieldntesuch as chromosome,
gene, locus or epistasis are commonly used in the GA litexatd formal description of
GAs can be found in [119].

At a genotypic layer, information is stored in strings nansbdomosomes. How the
chromosomes are coded depends on the particular GA at hiaiagy,integer and even float
codifications are common; more complex codifications [25bine with strong biological
influence [47], are also possible. The way in which the infation should be represented in
the chromosome generates some controversy [208]. The reaitig operators in GA are
mutation and crossover, and they have been also object tbeensy [220].

The canonical GA entails a fixed-length chromosome with anyircodification. The
reason of the canonical binary representation can be fauhtbiland’s Theorem [110], as
described in [9], however this issue is controversial [248]d many authors recommend
using the representation that better fits the problem. Hd¥aTheorem predicts that GAs
have an implicit parallelism that is maximized when the nemiif schemata is maximum,
and that happens in a binary codification.

The chromosome is usually divided into chunks or genes thatribe one particular
characteristic at phenotypic level; however, there is & laicagreement about the exact
meaning of gene in the GA community, and even among biole{#&], and this definition of
gene should be handled with care. A gene can take a set obyalaeh one of these is named
allele while the position where the gene is placed in therdmsome is named locus (plural
loci). We should underline that in biological systems thaction of a gene is not determined
by its position in the chromosome. Some proposed GAs imitsite characteristics, for
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instance, messy GA [96].

Mutation in the canonical GA is done by just flipping a randoitnifbthe chromosome
with a certain probability [110]. The standard crossovezsu® be one-point crossover,
however there is evidence suggesting that two-point cvessgenerally yields better perfor-
mance. Given two chromosomes, one-point crossover seecamdom one position in the
chromosomes, cuts them in that position and interchangesethaining chunks.

Of course, more complex codifications are feasible, some awe required. From the
perspective of this dissertation, the most important viaraof GAs arevariable-length ge-
netic algorithms or VLGASs [117, 147], which are used to evolve regular expim@ss. In
this type of GAs the chromosome length is a part of the evaiitand hence it can evolve.
The goal is to be able to evolve the complexity of the solutmself-adapt it to the problem,
ideally, in increasingly complexity.

2.2.2.2 Genetic Programming

Genetic Programming (GP) involves a wide range of algorsthwith diverse strategies and
representations, but with a common objective, programdtidn. As Sean Luke claimed
in [158], GP is more a community sharing a research interegirogram induction than a
coherent set of techniques or research background. The&iBroovers many techniques that
have little in common, and the research that would be coresideommon for all these tech-
niques is almost residual. A book about this topic with ane#igat review of the literature
can be found in [192].

The term GP usually refers to the canonical tree-based Gppped originally by John
R. Koza in his classical book [136]. In this approximation@®, the population contains a
collection of programs represented by trees, so, in GP terayy, individuals in the popu-
lation are usually named trees. Selective pressure in ¢zaldBP is introduced by a tourna-
ment selection, typically with size seven. As in GA, GP usuases two genetic operators,
crossover and mutation, however, similarly to GA, theieriol GP is not clear, and has been
an intense area of research for years [161, 121, 244, 140].

The basic tree-based GP algorithm uses unconstrainedwhies in many applications
might be a problem. Some programs cannot have any type of amdahildren of certain
nodes, and it would be desirable to introduce some kind o$tcaim. With this objective in
mind, some variations of the basic algorithm have been me@hdor instancestrongly typed
GP, where the nodes have a type and thus the consistency mighebked [172]. Another
approximation is using grammatical constrains [166]. Bhbiy the best known algorithm
based on this perspective is the one introduced by O’Neill84], namedGrammatical
Evolution or GE. This approach uses a variable-length integer lirgaresentation that is
used to select a derivation rules from a grammar providedhéyser, usually in a Backus-
Naur form.

One of the main problems in tree-based GP is its poor loca&litych yields a lack of cor-
relation between the genotypic and the fithess landscap8$ [2onsequently, it reduces the
capability of the algorithm to exploit the information pided by the landscape, increasing
the search difficulty. Another issue that has been crititimetree-based GP is the storage
and manipulation cost of the trees, which is from a companali point of view, high. So,
different alternatives have been proposed that do not ass to represent programs.
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One of the major alternative approaches to tree-based GRdka not use tree repre-
sentations idinear GP[10]. Linear GP is inspired by the linear nature of machindecor
assembler, where a program is a sequence of instructionsdhtain the operation and the
operators. In this way, linear GP uses a set of registers padhtions that are performed
with them. The communication among the operations are damggh registers, the input of
an operation is taken from them, and its output is also stioréfte registers.

Another major GP algorithm i€artesian GHF170, 169]. Cartesian GP represents pro-
grams as graphs, but at a genotypic layer the graph is codethiager linear chromosome.
Each element in the graph is represented in the chromosomaesetsof integers, one rep-
resenting the operation type and others representing $isiqguo within the graph forming a
coordinate, that is why this method is named Cartesian G&gréph oriented nature of the
Cartesian GP makes it easy to represent structures sucttaissci

The list of algorithms that can be classified as GP is exteargda exhaustive enumera-
tion of them is out of the scope of this chapter. In order to plate the review of algorithms
that can be used in the context of Metaheuristics, we inttedin the next section some other
major EAs with a looser relation to this dissertation.

2.2.2.3 Other evolutionary algorithms

Another major EC paradigm is Evolution Strategies (ES)ppsed by Reichenberg and
Schwefel. Curiously, they were working on a problem reldtederonautical Engineering,
wing design, which at first appearance seems far from Al. Witmotivation they proposed
a self-adapted stochastic optimization method that wasedaRvolution Strategies. The
focus of ES is the numerical optimization in the space of reahbers. The solution is
represented by a vector of float values and its main geneticatqr is mutation, that is
introduced as a gaussian noise. The parameters of the glaungsse (mean and variance) is
modified during the course of the evolution, making ES alseaty example of self-adapted
EA. A good intro to ES can be found in [35].

The last major EC paradigm, but the first historically spegkis Evolutionary Program-
ming (EP), proposed by Fogel [87] in the sixties to simulatahing using evolution. In EP,
the structure that is evolved is a finite automata, perhas @nsequence of EP roots in
what we could name “classical Al”. Traditionally EP has besed in prediction [79].

A relatively recent paradigm in EC that has emerged strorgBstimation of Distri-
bution Algorithms (EDAS) [146, 152]. Some authors clas&fpAs as a part of GP [192],
however they have some unique properties that make thera guigjular and difficult to
classify. EDAs, instead of keeping a population of solutiamdidates, take a completely
different approach trying to characterize the search spaderming a probabilistic estima-
tion of the search space, i.e., assigning probabilitiehéosearch space and sampling the
search space according to these probabilities. There amg diferent proposals of EDAs,
however the basic operation is the same. A population oftisolsl are sampled from the
search space according to some probability distributioen they are evaluated, and, as a re-
sult of this evaluation, the probability distribution isdated, providing higher probabilities
to the more promising regions. A strong point in pro of EDA#hist the resulting probability
distribution provides additional information that can bgleited.
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2.2.3 Swarm Intelligence

Swarm Intelligence is a recent branch of Metaheuristics, ths its name suggests, is in-
spired in the emerging intelligent behaviour found in someia insects [164] and animal
flocks, although not all the algorithms considered in thiggary are biologically inspired.

In Swarm Intelligence, on the contrary than EAs, individual the population exhibit a

collective behaviour, each individual affects the whol@udation and the global behaviour
influences individuals. In EAs, one individual only influescdirectly its offspring, actu-

ally, depending on the algorithm design, there would beviddals without offspring, and

therefore without influence in the next iteration of the aidon. The two best known swarm
algorithms are Ant Colony Optimization (ACQO) and ParticigeBm Optimization (PSO).

ACO was proposed by Dorigo [72] and exploits the ability o thiological ants to find
good paths between the anthill and the food without a cemitalligence or coordination.
When an ant finds food, it begins to deposit a trail of pheroesatmat can be detected by
other ants; in that case, the ant follows the trail of phenoasowith a certain probability.
Despite the ironic lack of ants in ACO [158], the algorithmidas to some extent this
strategy though a process of pheromones deposit and etiaporACO is just one of the
several ant-inspired algorithms such as the Ant System arlWax [206].

PSO, on the contrary than ACO, is not inspired in social inbebaviour, but in flocks
[128]. The idea behind PSO is to have a population of canelidatutions, or particles
using PSO terminology, moving across the search space. nidwement is influenced by
the position of the best particle so far, and to avoid prereatwnvergence particles have
an inertia. In this way a particle in PSO is characterizedt®yelocity and its position and
the resulting behaviour is similar to a flock. PSO is closelated to a recent EA named
Differential Evolution (DE) [223, 64].

There is a large amount of algorithms inspired in swarms atara, moreover, it is a hot
research topic and new algorithms are emerging continpo8sime of the latest swarm al-
gorithms are Atrtificial Bee Colony optimization (ABC) [124irefly Algorithm [252], Bac-
terial Foraging Optimization (BFO) [186], Glowworm Swarnpi®nization (GSO) [139]
and so on. Even though not strictly swarm algorithms, ottegune inspired algorithms
are emerging, for instance, Artificial Inmune Systems (Al&)], River Formation Dy-
namics (RFD) [197], Intelligent Water Drops algorithm (I\W[213] or Charged System
Search (CSS) [126], just to cite some of them. Another clasdgwrithms already men-
tioned are memetic and cultural algorithms, which uses bajglsearch algorithm (typically
a population-based algorithm) and a local search algorithm

So far, an incredibly large number of algorithms have beepgsed in Metaheuristics,
with very little in common among them. Regardless of the @digm at hand, all them are
run in order to solve a problem. Some metaheuristics were just to solve one type of
problem, others inspired by some natural phenomena. In asg, dhe relation between
algorithm and problem is very close, and an algorithm cabeatudied in isolation, it only
takes sense when it is used to solve a problem instance [94§.i95ue is addressed in the
next section.
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2.3 The second component of experimental designs: Problem

It is well known that the choice of the problem determinesalgwrithm performance [246,
94]. When the problem is the object of study it is not a greateon, but when other factors
are studied, problem selection becomes a key decision thptomas the results. Designing
a fair experimental plan depends on which problems are teele®espite the key role of
this issue and the general agreement about the importanitesabpic [111], with some
exceptions, not much research has been devoted to this topic

In this point, it is relevant to introduce two terms gengralked in this context. It is
necessary to distinguish problem, or problem class, andlgmoinstance [201]. Aroblem
classis a generic set of problems with the same statement, butevmaserical values are
not specific [201]. There are numerous examples of well knpneblem classes, for instance
the TSP, CSP, 3SAT and so on. Each element in the set of théepratiass is groblem
instance

In order to assess the performance of an algorithm with aiocgptoblem class, it is nec-
essary to run it with several problem instances, otherwisadsults cannot be generalized.
How many problem instances are required to be able to claimdsecesults is not clear, and
probably it is one of the weakest points of experimental aede [111]. This problem is
strongly related to dataset selection in Machine Learniogthis reason, Biratti proposed
a strategy inspired by Machine Learning that consists iRusging training sets and testing
sets [41]. He claims that the problems used for assessirgjgbdthm’s performance should
not be used in the algorithm’s development.

Problem choice is also a challenging problem from a themakperspective. Problem
characteristics traditionally used in algorithm analyaiswhen they are applied to EAs [192],
and therefore, it is needed a new framework able to captereldments of a problem that
can make it difficult to a EA. Modality, separability and réayity are probably more ade-
quate adjectives to describe problem classes in the cootd€C. Related to this problem,
once these characteristics were identified, how can weecprablem classes [76] specific
to EC that exploit those characteristics? This questionemakore sense under the light of
the No Free Lunch Theorem (NFL) [250], which theoreticaligtss that the performance
of any algorithm, when it is averaged to all the problems,ams constant. So, under the
NFL, an effort to find a superalgorithm with an outstanding@enance in all the problems
is destined to fail, following that research should be deddo understand which algorithms
perform well under which problem characteristics, and ®wesign guides [99]. Hooker,
years before the statement of the NFL, claimed the need aficalgorithm analysis to
problem characteristics [111].

Generally, there is a consensus among researchers in thisaeut how to classify
problem classes. Eiben [76] identifies useless, naturalaatificial classes of problems.
Rardin and Uzsoy [201] take a similar view when they identdyr classes of methods to
obtain problem instances associated to their datasetsweell datasets, random variants
of real datasets, published and online libraries and finathdomly generated instances.
Similarly, Bartz-Beielstein in [25] distinguish three g of problems: test functions, real-
world optimization problems and randomly generated tegblpms. Table 2.2 provides a
summary of these problem classes.

Following Bartz-Beielstein, we identify three groups obplems to test EAs: test suites,
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Table 2.2: Summary of problem classification schemata @®gm the literature.

Author Publication Classes of problem
A. E. Eiben [76] Useless
Natural
Artificial
R. L. Rardin [201] Real world datasets

Random variants of real datasets
Published libraries
Randomly generated instances
T. Bartz-Beielstein  [25] Test functions
Real-world problems
Randomly generated test problems

that contain a fixed number of problem instances; instanoergé#ors, that create randomly
problem instances and finally real world problems, thag itk name suggests, are problem
obtained from the real world. A good discusion about adygegaand disadvantages of
using synthetic or natural problems can be found in [94]. fide sections are dedicated to
describe some widely used problem suites. Due to its spetékst in the context of this
dissertation, we pay more attention to test suites used in GP

2.3.1 Test suites

Test suites are public collections of selected problemd ts@nalyze algorithms. Usually,
test suites are used to assess the performance of seveyathaigs and compare them in
order to determine which one has the best performance. Tiitg af test suites in EC is
double, on the one hand they provide a set of common problemadling the comparison of
the results among different studies. On the other handllydeat suites are designed in order
to assess some attributes of the algorithms under studyhandine-grained understanding
about their performance can be more easily achieved. Haowesgch properties should
have test suites in EC is still an open problem [193].

Usually, test suites have a strong bias to numerical optitiia, and these tests are stated
as a numerical maximization (or minimization) of a certaipression. One remarkable ad-
vantage of this approach is that the maximum (or minimumhefdroblem can be known in
advance, and therefore the performance of the algorithras#yeassessed. Another advan-
tage is the existence of parametriced test suites, so sampeny of the problem is tunable
in such a way that the experimenter can modify, for instatite)evel of difficulty or other
characteristic of the problem at will. This is a valuabletfiea in many experimental designs,
and can be an important help in order to understand and absealgorithm.

A good example of test suite is the first one in EC [23], that pragposed by De Jong
in his PhD dissertation [67]. He proposed five functionsrfalimensional real-number opti-
mization, each one of thes selected according to some $festiare that made it interesting
to evaluate. Their definition is shown in Table 2.3, whiledfg 2.3 shows the shape of De
Jong’s functions in the bidimensional case. It is intergstio underline that although De
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Sphere Step

Quartic function with noise Rosenbrock

X

Figure 2.3: Plots of the bidimensional version of four orfilke De Jong functions test suite:
Sphere, Rosenbrock, step, and quartic function with noise.

Table 2.3: Analytical definition of five De Jong functions.

Function Expression Domain Minimum
Sphere  fi(7) = >i_, 7 [z; <512  f(0,...,0)=0
Rosenbrock fo(T) = S0 (1 — 24)2 +100(zip1 — 22)%) | @ [<2.048  f(1,...,1) =0
Step f3(T) =254+ 30 @i | z; |<5.12 f({([-5.12,-5),...,
[~512,-5))) =0
Quartic  f4(T) = >0, (iz}) + N(0,1) |z |[<1.28  f(0,...,0)=0
Sheckel (2D) f(x1,x2) = NS e L | z; < 65.536 f(—32,-32)=1

Il ST (wi—ay;)
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Jong functions have had a strong influence in EC researctthagdave been widely used,
De Jong now advocates against his own test suite [158]. A thiseussion about these five
functions follows:

1. Sphere This is a simple and smooth unimodal function whose mininsinould be
easy to find.

2. Rosenbrock Also known as Rosenbrock’s banana due to its shape in tlaeidile
representation. In this case, it forms a valley around awtikre algorithms use to
stagnate in a local minima. So, this function evaluates #palbility of the algorithm
to reach the global optimum in presence of local minimal asthaoth landscape.

3. Step. This function is characterized by the presence of a highbaurnof plateaus
that difficulties the search process due to the lack of etqddte information in these
regions.

4. Quartic function with noise. This function represents a rather simple surface that is
roughed with a gaussian noise that makes difficult the sganmtess. This function
assesses the behaviour of the algorithms when it is usedawitisy fitness function.

5. Sheckel’'s FoxholesExtreme problem with a plateau that presents several ptess
with many local minima. The coefficients; shown in Table 2.3 are given by:

a;1 = {32,16,0,16,32,32,16,0, 16, 32, 32,16,0, 16, 32, 32, 16,0, 16, 32, 32, 16, 0, 16, 32}
ajs = {32,32,32,32,32,16,16,16,16, 16,0,0,0,0,0, 16, 16, 16, 16, 16, 32, 32, 32, 32, 32}

We should mention that many test suites have been propasddsfance, by Fogel [86],
Schwefel [212] and Eiben [74], which include some of De Jsrghctions. In addition to
these test suites, in the last years several test-suitesdmgrged under the shelter of com-
petitions holded in the two main EC events, CEC and GECCOsantt publications [106].

Probably the most used suite case [185] is the one used inE@2005 Competition
on Real-Parameter Optimization proposed by Sugan [225¢ther CEC competition is the
Competition on Large Scale Global Optimization; in the 2@tiition [227, 228] the test-
suites were composed 2p functions,5 unimodal and20 multimodal separated in several
categories: basic, expanded and hybrid functions. Moshed$d functions22, are non-
separable whil@ are completely separable and one is separable near theuoptiniang
defines a separable function as a function whose maximum mimum can be solved as
the sum of the minimum of several functions of one variablke Test-suites used by CEC
competitions are probably the most used ones by the reseamumunity. Similarly, GECCO
has also hold several competitions on real-number optiinizaamong others. GECCO
2009 Black Box Optimization Benchmarking, and subsequditioas, provided noisy and
noise-free functions. The noiseless functions contaidefdinctions [84, 103].

Test-suites so far described are focused in numerical ggttian. Nonetheless, some-
times the object of study is not the algorithm, but rather ghablem for its practical or
academic interest. Usually, these problem classes haeetet a large amount of research,
problems such as the TSP, Knapsack or 3SAT are good exaniples.dn order to achieve
comparable research results on this problems, severafispgest-suites have been devel-
oped. For instance, we can mention the TSPLIB [204], whiciinsost of universal usage
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in research related to the TSP, the UCI Machine Learning Biepg datasets for Machine
Learning applications, or the Tomita test-suite for largguanduction [229].

There are also specialized domains in EC where classiteduéss are not applicable. A
good example might be multiobjective optimization [1332,189]. Examples of specialized
test suites are constrained real-parameter optimizatié8,[162], dynamic optimization or
multiobjective evolutionary algorithms. Many of these lgism-specific test-suites are pro-
vided in form of instance generators.

2.3.2 Instance generators

Instances generators take another perspective. If téssstontain a collection of fixed
problem instances, instances generator create new pratéeamces that belong to a certain
problem class. Instance generators are not exclusive ofbECrather they have a long
tradition in Al, and there are available a long list of instamgenerator for almost all the most
important Al problems, such as the CSP, SAT, or DFA inducficgt®?]. A good repository of
test instances is kept by Spears in [219].

Using instance generators has several advantages. Faisttg an arbitrary number of
problem instances may be created, some problems assotmatesl limitation of the avail-
able problem instances are solved. As a result, the scaleeoéxperimentation can be
increased and open new experimental approaches. And $gcorachy instance generators
are parametizable, and thus they can generate problemaestavith different properties like
the problem size or difficulty. It allows to manipulate thg@ithm environment in order to
gain more control, and therefore, design better experisniiatt otherwise could be difficult,
if not impossible, to implement.

In the specific context of EC, instance generators have besalg related to the fitness
landscape [222, 208]. This concept involves a geometrerpnetation of the fithess space
associated to an idea of neighborhood. Fitness landscawesdttracted much research
interest because they have served as a basis to charagmllems and algorithms. A
hot research topic is the measurement of problem difficulbjch is close related to fithess
landscapes [233, 193]. A particular instance generatdritha had a notable impact on
EC research, or more specifically in GA, is the NK-landscdggsThis instance generator
creates problem instances with sizeandk epistatic interactions, which means that its size
and difficulty can be tunable.

So far, we have discussed the role of problem instances atanite generators. In
particular, they copy the characteristics of some type obl@m, such as numerical opti-
mization, or the TSP, to ease experimentation. We have batodrtain types of algorithms
require specific test-suites, multiobjective algorithfies,instance, require specific problem
instances suitable to exploit their special propertieserétare, however, some fields in EC
that, due to historical reasons rather than to technicas,dm&ve been using their own test
suites. One clear example of this is GP. Due to its importamtiee research reported in this
dissertation, we discuss this topic in more detail.



2.3. THE SECOND COMPONENT OF EXPERIMENTAL DESIGNS: PROBLEM 31

(I I
Il [0
Il {1 [
[ W] [
1 I 1]
I ([ ] L [ [ 1]
Il ] ]
| | 1]
Il I 1]
Il Il ]
[ Il I
| [ [
I Il ]
Il | I
] | [ [ |
| I ([ (]
| H I
| ] ]
W Il (1]
Il [ |
Il [ Il
Il [ W
Il Il |
N _ (W ]| |
1 | |
] [ |
] T |
| | O
I ]
O |
1 O O
[

Figure 2.4. The Santa Fe trail, which is used in the artifiai@l problem, one of the most
popular GP test problems proposed by Koza (source: Wikipedi

2.3.3 Test suites in Genetic Programming

GP, in relation to the rest suites used in EC, has, to somatexdeme particularities that
make it different. Many of the test suites used in the GPditee do not use the test suites
that are common in the rest of EAs, but rather it is common b $imme test problems that
are rarely found outside of the GP community. One possil@eae can be found in the type
of problem that is faced by this type of algorithms, but makely it is due to historical
reasons, and the influence of John Koza in this field.

There are a set of widely used test problems in GP, those gedploy Koza in his first
book [136]. Despite the lack of solid theoretical foundati@o choose those problems, Koza
tried to represent several types of problems solvable byf@Rnstance, path finding or
boolean problems. Traditionally, these problems have hadely used by the GP literature,
and some of them play a key role in this PhD thesis. The fourpieglems proposed by
Koza that play a major role in this dissertation are desdribehe following.

1. Artificial ant . This problem deals with the simulation of an ant placed onid g
The ant has to move collecting food lying along a trail. Thare some trails in the
literature with different grid sizes, however, the mostdisae is the Santa Fe trail,
which is a 32x32 toroidal grid witl89 food pellets, as depicted in Figure 2.4. The
fitness is the count of pieces of food found by the ant befgrerfiorms a given number
of steps. Koza reported in his book a timestep valu¢0of however, there is a strong
evidence suggesting that this value is a typo in the bookregldnaximum number of
timesteps used by Koza680 [215]. It is said that this problem is hard and the solution
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is constructed almost randomly [143], nonetheless Cimsstie was able to solve this
problem in20, 696 evaluations [55]. One interesting point about this probtdrserved
by Sean Luke [160], is that many different individuals frongenotypic perspective
may have the same fitness.

2. k-multiplexer. The goal of the k-multiplexer is the design of a boolean fiomcthat
implements a k-lines multiplexer. The interpretation of thoolean function might
vary from a program to a digital circuit. The difficulty of thproblem depends on k,
obviously, higher k values yields more difficult problemsypital values of k are
and11. Luke observed [155] that the 6-multiplexer generates miavigble code in
comparison to the 11-multiplexer and a high probability e@itnal crossover.

3. k-parity . This is, as the k-multiplexer, a boolean problem whose ¢go#& design
a boolean function. There are two versions of the k-paritgneand odd. An even-
parity function of k lines returns true if its argument hag®wnumber of bits. The
odd-parity function, on the contrary, return true if thesean odd number of bits. As
the k-multiplexer problem, difficulty increases with k.

4. Linear regression Regression is a classical problem in Mathematics, and btieeo
problem domains where GP is more popular. Basically, regrasdeals with, given
a set of n-dimensional points, finding a functigfiz) that fits well the given points.
Regression might deal with non-linear models, howevegdirregression is widely
used as a test problem for its simplicity. In particular, Kgroposed to fit a quartic
polynomialz* 4 x3 4 2 4 x + 1 given 20 points sampled in the domaija 1, 1]. Luke
observed that this problem generates more inviable codernmparison to the two
previous boolean problems. The explanation that he ofegg/en by the existence of
ratios or products with infinite numbers or NaNs, and dedimnmafa very big number
that masks another smaller one) [156, 160].

So far, we have described two elements needed in order tp @aran experiment. an
algorithm and a problem. However, almost any algorithm edelg on a set of parameters,
and its behaviour may rely strongly on them. Hence, it makasesto claim that any rigorous
experimental design must take into account this fact, andcansider the algorithm and
problem in isolation w.r.t. the algorithm parameters. Alwefined criteria should be defined
in order to select those parameters. This claim is true alhgddr Metaheuristics in general,
and EC in particular, since they tend to be algorithms witigh humber of parameters. The
next section is dedicated to discuss this important, arehdtirgotten, topic.

2.4 The third component of experimental designs: Parametey

Parameter selection is one of the most challenging andestyatioblems in experimental
evaluation of EAs, and probably it is also often ignored m éixperimental designs found in
the literature. It is rather common to find papers (includiegeral written by us) that report
in detail some algorithm A, and compare it to another alpaniB, claiming that A is better
than B. The number of methodological pitfalls with this pieg is large, and, despite the
extensive literature that warns us against this practié@,[11, 76, 41], is it still common
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practice. One of the most important pitfalls is that the gt parameters have been adt
hoc or the method used to tune the parameters is not reported.

It is well known that, depending on the parameter choice pérformance of an algo-
rithm may vary in orders of magnitude [8, 187, 78]. Quite off@pers only report details
about the algorithm, and not about how the algorithm was gardd. Due to the major
influence of parameter setting on the performance, it isiplest better tune algorithm A
than B, and as a consequence experiments will show that Adatms B. The experimenter
might be tempted to incorrectly conclude that A is bettentBaThis is, unfortunately quite
common. Much research have generated biased results byirdewaore effort to search
good parameters for one algorithm than another. This oglsliip between algorithms and
parameters has lead Biratti to claim that “the configuragimtedure becomes an insepara-
ble part of the algorithm” [41], consequently, a balanced fair amount of effort should be
dedicated to configure the algorithms under study [12].

Despite this methodological concern, there are some otbiable problems with the
configuration of parameters. A general practice is to logkilie optimum parameters and
then assess the algorithm, but the concept of optimum paeasrie questionable. First, what
does optimum parameters mean? The NFL theorem limits theesmfowhat we can expect
from an algorithm. An algorithm may achieve an outstandiagfggmance on a single pro-
blem instance, or an algorithm with a reasonable performamnca problem class or classes.
In other words, the same algorithm might be specialist oegaist [78] depending on the
algorithm configuration. But even in case that the configomatad been chosen to generate
an specialist or generalist algorithm, the optimum confian changes during the course
of the run [75], and depends on which performance measurseid [r8]. It is interesting
to note that automatically tuned parameters are usuaheratifferent from those selected
using the experience, rules-of-thumb, common sense, er athhocmethods [217].

Due to the importance of this topic, it is not surprising tloéaile extension of the liter-
ature about this issue despite the complains of some auwdborg the lack of interest in this
area [78]. Subsequently, many different methods to cordigur algorithm have been pro-
posed, and classifications of these methods. Examplestuwrauhat have proposed criteria
to classify those methods are Angeline [5] or Hinterdingg[L®-ollowing Eiben [75, 78], it
is possible to identify two strategies to address this goblparameter control and parame-
ter tuning.Parameter tuningleals with the selection of static values of the parametdrde
parameter controbeals with methods to self-adapt parameters during theseafrthe run.
We provide more details about these methods in the next stitse.

2.4.1 Parameter control

Parameter control deals with algorithms that are able fesskzlpt their parameters. The idea
behind parameter control is using feedback to adapt theitigoparameters. This is not
a new idea, actually it has been around EC from its beginnkay. instance, traditionally
ES has used the 1/5 rule to adapt the mutation rate [202],haikigself a self-adaptation
mechanism. This research line is still a hot topic, and tieam intense activity on it [97].
There are some solid reasons to use parameter control. As Bitites [75], an EA is
a dynamic adaptive process, and thus, using a fixed set ahptees contradicts this spirit.
Using an algorithm that dynamically adapts its parametensdre respectful with the nature
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of EAs. There are also more practical reasons to use paragmigol techniques. The
problem of finding good parameter values is itself a searoblpm in the parameter space,
which is usually much larger than the solution space, soirffindptimal parameter values is
rather unlikely. Fortunately, it seems that suboptimaltcdied parameters performs better
than suboptimal selection of fixed parameters [75]. In aalditit is well known that the
optimum equilibrium between explotation and exploratisrdynamic, and thus, the opti-
mal parameter configuration changes along the course outh@B, 34], so, using fixed
parameters seems clearly suboptimal.

Eibenin [75] proposed a bidimensional classification sahéanparameter control based
on what component of the algorithm is changed and the typ®wifal that is performed.
Despite the difficulty of enumerating all the components fE that can be controlled,
Eiben enumerates the followirmpmponentsRepresentation of individuals, fithess function,
variation operators and their probabilities, selectioerafors, replacement operators and
population. More interestingly, the criteria of type of tah deals with the method used to
decide how to change parameters. Eiben identifies thres tffg@ntrol methods

1. Deterministic parameter control. The control is performed by a set of heuristics
that take deterministic decisions. Given the same comditioith the exception of the
random seed, these techniques will take the same decisidrsse control methods
that use feedback from the algorithms are excluded froncdiisgory. It is interesting
to note that some Metaheuristics belong naturally to thiegmy. For instance, the
basic algorithm of SA modifies its main parameter, the tesipee, as a deterministic
function of time, which can be considered as a determingstiameter control.

2. Adaptive parameter control. It uses feedback from the algorithm and some heuristic
to set the parameters. This is the case, for instance, ofheite usually used in ES.

3. Self-adaptive parameter control The parameters of the algorithm are encoded within
the individuals, and therefore they evolve. In this case BA not only searches to op-
timize the fitness function, but also the parameter settimpss type of control method
is the one used in metaevolutionary algorithms, which isaiveresearch area.

In general, using parameter control techniques notoyonsprove the algorithm, even
when the control method could be better. The point that ifgges more used against pa-
rameter control is that these techniques provide little ameninformation about how the
parameters affect the algorithm behaviour. Itis a seriaueern in some scientific contexts
when the objective of the researcher is to acquire knowledhgeit the algorithm [24]. This
problem is solved, at least partially, by parameter tuning.

2.4.2 Parameter tuning

Parameter tuning deals with the problem of choosing thenpeters that are set before the
algorithm is run and remain fixed along the run. Usualithocmethods are used to tune
parameters. The most simple one is just using the defawdipeters found in the algorithm
or its implementation. This is the case, for instance, @-tvsased GP, where the parameters
proposed by Koza are widely used even when they can be mgikegitoved in many cases.
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Well based methods to tune parameters are needed, at [@astofreasons, one practical
and another theoretical.

Parameter tuning is important from a practical point of vielihe difference between
default parameters and customized ones can be of ordersgoiitnde. This result has been
widely reported by several authors, perhaps one of the nwaplete studies performed
by Pellegrini [188], who compared default and tuned paramseh five Metaheuristics (TS,
SA, GA, ITS and ACO), finding strong differences in the pemfance. Of course, it could be
argued that parameter tuning is a time-consuming task, @me simes this additional effort
is not worthy. Other authors counterargument that, duedathailability of several tuning
methods that are quite straightforward to implement, ang#rformance improvement, not
using parameter tuning does not admit any excuse [78, 25].

But there are also theoretical reasons to use parametagtunirst, parameter tuning is
intrinsic to EAs design, a fair comparison between two athor requires a description of
the algorithms, but the method used to tune the algorithrarpaters as well [41]. Secondly,
parameter tuning might provide valuable information alibatalgorithm internals. As Eiben
noticed [78], one might take two approaches: configure an gkmzing its parameters, or
analyze an EA studying the dependence between its perfesramd its parameters. This is
one strong point in favor of parameter tuning in comparismodntrol methods, it provides
valuable information about the algorithm that could be eitptl.

So far, it is not surprising that this issue has attractedbietresearch. Probably, the
most prolific author in this area is Agoston E. Eiben. He dfessparameter tuning methods
in three categories, depending on the strategy used to sagg#8]. It might try to reduce
the number of parameters to optimize (some authors refdridaas screening), reduce the
number of tests, or both. There is also a fourth categorye@lep reducing the number of
function evaluations, however, Eiben does not know anybaehad used this strategy so
far.

In the following, we will use a classification scheme insgitey the one proposed by
Ridge [206], and briefly summarize some relevant literatuinethis classification scheme,
we distinguish between analytical, automated and empaijgaroaches.

2.4.2.1 Analytical approach

Analytical approaches try to deduce formal models, andhesa to determine good parame-
ter settings. This approach has, however, some troublesngtance, Ridge [206] concludes
that the state-of-the-art of analytical approaches is eatly to address this problem. Ac-
tually, this is a general complain made by researchers dheatetical research, theoretical
results are rarely exploitable in practice [193]. A goodragée of this approach to the rep-
resentation problem [208] is given by Holland’s Theorem.isTtheorem predicts that the
implicit parallelism found in GA is maximized when the codétion contains the maximum
number of schemata, which is obtained with a binary reptatien. However, this approach
has been widely criticized since it depends on a large nurmbassumptions that are not
usually found in practice [203, 245].
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2.4.2.2 Automated approach

The second approach to parameter tuning is automated appr®arameter tuning is, ironi-
cally, a search problem in the parameter search space, hetserprisingly, classical search
methods, including stochastic and not stochastic methodght be used [78]. Automated
approaches are, following Ridge, composed by two subcagsyaself-tuning, which cor-
responds to Eiben’s control methods, and heuristic tunifgch use search techniques to
tune the parameters before the algorithm is run. Withindhtegory, several approaches can
be taken. For instance, a metaheuristic such as a GA, carebdledasearch the parameters.
Perhaps, the main drawback with this strategy is the diffyood interpreting the results in
order to achieve an understanding of the algorithm behaviadditionally, there is to some
extent a recursive problem. If we run a metaheuristic tocketire parameters, we need to
tune the metaheuristic as well. Other search techniquelti&also used [25, Chapter 6].

A radically different approach is taken by Birattari [37]hwapplied Machine Learning
techniques to tune parameters. He applies a Machine Legatgorithm family generally
known as race algorithms [163], that, given a limited setval@ations, try to obtain the best
parameters. All these algorithms share the same overalatipe. Given a set of candidate
parameter configuration, they are tested a given numbemnsti and those that are not
statistically significant in comparison with the best couafagion found, are removed and the
process is repeated. Depending on the type of statiststalsed, different racing algorithms
have been proposed. Probably, the most popular one is F{B&c86], which is based on a
nonparametric Friedman’s two-way analysis of variancednks. A survey about this topic
can be found in [40].

2.4.2.3 Empirical approach

The third subcategory proposed by Ridge are empirical @mbes, which are characterized
by the use of empirical models that relate the configuratimhthe algorithm performance.
The model itself is a valuable outcome of this approach singevides information about
how the algorithm performance is influenced by the parammefiguration. In this ap-
proach, the algorithm has to be run several times with a otedtk environment, then the
algorithm performance is statistically analyzed and medlel

The most simple, widely used, and perhaps also the most gredinethod, is what
Ridge namesne-factor-at-time(OFAT) [206]. This is usually arad-hocmethod due to
its lack of conceptual complexity. OFAT involves the repeti of the runs in unifactorial
experiments, where only one factor (parameter in EC terio@y), is changed each time.
The list of drawbacks is extense [174, Chapter 7]. Since onbyfactor is considered each
time, it is not possible to identify and model interactiortvireen the factors. Additionally,
the points in the parameter space are not optimally samplbith yields more runs than
the strictly needed; this method is time consuming and par@antonfiguration obtained are
rarely optimal [75].

This is actually a well studied problem in Statistics andipHy solved with theDesign
of Experimentsor DOE [173, 59]. It has been widely applied with notablecass in several
domains, such as civil and chemical engineering. DOE is #fiaxctbrial statistical technique
that places, using solid statistical criteria, sample foin the search space in order to be
able to identify iterations among the factors while lowgrihe number of samples needed to
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draw statically sound conclusions. Nonetheless, theren@able corpus of literature using
DOE to study numerous algorithms such as GA [177, 203], PSDPd2 ACO [206]. A
detailed discussion about the use of DOE in EC can be fouri@bij [

The main drawback of using DOE is its poor scalability whemrtbhmber of factors to an-
alyze is increased. Another serious problem with DOE isitlaily can, in general, analyze
a tiny region of the parameter space. Let us suppose, farost a standard GP algorithm
with, being conservative, ten factors and two levels foheactor. Then, a classicaf full
factorial designwould yield 2!° evaluation points. Due to the stochastical nature of the per
formance measure, it would require several runs for eaclia&an point. Let us suppose
that each point is evaluat@d times, then DOE would requir20480 runs. Even this conser-
vative example, we find a notable need of computational ressu For this reasons, there
are several alternatives to the basic full factorial desfgn instance, the*~? fractional
factorial design Probably, one of the strongest points in favor of DOE is ttatisgically
significant information provided about the influence of etatior and their iterations to the
algorithm performance. It is useful to select which parareshould be studied. Another
method related to DOE is the one proposed by Adenso-Diaz]jmfimed CALIBRA. He
applied Taguchi’'s DOE with a further local search.

One problem of DOE is that it places the sample points befareekperimentation be-
gins, so, information gathered during the experimentatorot used as feedback to improve
the search. Sequential experimental designs try to solgg@thblem using feedback during
the course of the experimentation. One of the best knowBeiguential Parameter Opti-
mization or SPO, proposed by Thomas Bartz-Beielstein [28] and implged in SPOT
(Sequential Parameter Optimization Toolbox) [27]. SPOnistarative method that builds
a metamodel based on the observations made so far, andtedloww sample points in the
parameter space in base of that metamodel. Then, a new setsodure carried out using the
new parameters and the metamodel is updated. This procesgested until the budget of
computational resources are exhausted. An hybrid algoritbtween SPO and F-Race was
proposed in [30].

Another tuning method name®elevance Estimation and VAlue CalibratiREVAC)
was introduced by Nannen and Eiben in [178]. A detailed disicun about this method can
be found in [216]. REVAC is related to EDAs to some extent,uids for each parameter
an utility distribution, giving higher probabilities toake values of the parameters that are
likely to increase the performance. There are two mayorlprob with REVAC. One is that
it cannot handle categorical parameters, i.e., it is lichttenumerical parameters in contrast
to SPO. The other problem is that it does not consider itamatamong the factors.

Once the algorithm, the problem, and the parameter configardave been set, the
experiment can be run. However, in order to be useful to teeareher, the course of the
experiment should be observed, in other words, it is necgdsacollect data about the
experiment. We have to measure the experiment and thens®oreed measures.

2.5 The fourth component of experimental designs: Measures

In order to be able to observe what is happening in the codseum, it is necessary to take
measures. One of the intrinsic characteristics of EC is twhplex dynamics, that generate
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large amounts of information, and therefore collectingtlad information would require

large storage and processing capabilities, which in praditinits seriously what information

can be stored. Subsequently, depending on the experimeivations, measures have to
be selected [165], which is not always a trivial task. In Bawords, “perhaps, the most
important decision one makes in an experimental study ofisteas is the definition, or

characterization, of algorithm performance” [11].

Due to the variability of potential research questions, dralintrinsic complexity of
EAs, itis difficult to find generally accepted measures [2, Rlonetheless, there are some
measures such as the fitness or success probability thaagyrecefind in the literature, and
some authors have proposed some guidelines to help witheitisiah of which measures
should be used. For instance, Hooker in [112] suggests megaanly those variables pre-
dicted by the model, given that there were a model of the dhgor which is not the general
situation in EC. In any case, it cannot be said that therelseesl criteria to select measures,
the decision usually depends on the personal experiente @xperiment designer.

Even in case that there were a consensus about which meabkoréd be used w.r.t. the
researcher motivations, there are some debate about hgwitbald be used [193]. Eiben et
al. [76, 79] defend that, depending on the goal, we shoulérobgpeak or average values. It
is interesting to observe this reasoning in the context@ktkperiment classification seen in
section 2.1.2. Design domains look for extreme behaviocauige they are interested in the
best solution, which is, by definition, an extreme case. @rctntrary, in repetitive domains,
average behaviors are more interesting since they invblravhole population, and thus it
is more likely to find a solution in successive runs. Birattan the contrary, claims that the
best fitness -an example of extreme behaviour discusseddeyEis a biased estimator, and
thus should not be used [38].

A common practice in EC is to execute an algorithitimes and keep the best individ-
ual. Birattari criticizes this practice by arguing thatstipractice is actually a restart, which
is a particular practice in Metaheuristics, and therefoqgeementation using this method is
no longer testing a given algorithm, but that algorithm wéhtarts [38]. In other words, the
evaluated algorithm is being changed by the experimenhodilgh the Birattari's argument
is convincing, one could counterargument that many tintesrdstart in the EA is introduced
not just to find the best solution, but rather to obtain mettiat require several samples, for
instance the success rate, or to determine the statistiga¢gies of the measure.

Due to the complex nature of EAs, it is not surprising thatelere many measures that
can be collected. The criteria that should be used to seteoe snstead of others is still
unclear. Having a general knowledge of which measures sxgitt help in this task, so it
is interesting to classify measures in EC, and at the sameertiight help to place the main
object of study of this dissertation. In the next section ewéaw some classification schemes
informally proposed by the literature.

2.5.1 Classification of measures

Despite there has not been, to the authors’ knowledge, &wpt to formally classify mea-
sures, several authors have informally introduced somesumes classification schemes,
most of them only consider performance measures. Almoghallauthors interested in
this topic mention the quality of the solution and the amafriiesources needed to reach a
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solution, indeed these are the two sides of performanceuresaghe quality of the solutions
and the cost of getting them. Nonetheless, terms used int¢énatlire are not uniform, and
sometimes they represent slightly different semanticsriey produce misunderstandings.
We should mention that, even tough performance measurdheraost widely used, there
are several ones that cannot be considered in this group.

Not surprising, all the reviewed authors identify the guyatif the solution as a class of
measures. However, the exact meaning of quality of theisalig sometimes unclear. Solu-
tion quality might be identified as a synonymous of individiitawhich would be incorrect.
As Rand advises [200], the solution quality is about the gesd of a solution, while the
fitness is used in the selection phase during the course &Ahé&o, solution quality and
fitness might use different elements. To illustrate thispdiet us consider two solutions
given by an EA with the same fit, but with different sizes. Uguamaller individuals are
preferred to larger ones because the resulting systemssier & implement and interpret,
so, the quality of the small solution is higher than the lavge, even when their fit is the
same. Nonetheless, the distinction between solution tgueatid fitness is rather tricky and
several times they are used interchangeably.

The most general classification scheme so far found in theatitre was proposed by
Burke [48], who, depending on which search space the me&sueated to, distinguishes
genotypic and phenotypic measuré3enotypic measureare those measures that consider
any characteristic at genotypic level, i.e., the strugtursed by the algorithm to represent
the individual; similarly,phenotypic measuremre those ones taken in the fithess space. So
genotypic measures are not affected by the fit of the indaliglbut rather by their represen-
tation within the algorithm and serve to know how the popatats. Examples of genotypic
measures are diversity [48], or individual size. On the @yt phenotypic measures are not
directly affected by the representation of the solutions dy their fit. For this reason, from
our point of view, phenotypic measures can be identified pétiormance measures.

So far, we can identify performance measures and genotypasures. In addition, we
will consider a third group of measures, that we will naspecialized measure$hese mea-
sures only make sense in the context of a certain problemganitams, due to its nature or
historical reasons, providing information about the altpon, problem or solution that typi-
cally do not make sense out of that scenario. For instancasunieig how fast an algorithm
can adapt its population to changes in the solution makesesardynamic optimization, but
not in more classical scenarios. A graphical represemtatidghis classification scheme can
be found in 2.5. Each category in the proposed classificagiontroduced and discussed in
more detail in the following subsections.

2.5.2 Performance measures

The most widely used measures are those that estimate tHaegsoof an algorithm in terms
of solution quality and resources consumed by the algoritBath terms, solution quality
and resources, should be understood in a broad sense. Nosswgly, this type of mea-
sures have been described more in detail in the literatumek same classification schemes
have been proposed. In general, most of the consulted autignee in distinguishing be-
tween solution quality and the resources consumed to geioliéon. But there is a lack of
agreement in the terminology, sometimes with slightlyedi#ht meanings.
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Figure 2.5: Classification of measures in EC with three categ: Genotypic measures,
performance measures and specialized measures.

We first mention the work of Rardin and Barr [201, 11], bothnitify two types of per-
formance measures: solution quality and computation tibhey implicitly assume that the
run-time can only be measured in time, but for several regsoeasuring run-time in time
units generates several troubles [11]. Another term ofsaddo describe the amount of re-
sources needed to achieve a solution is computationat,effbich should not be understood
as the measure introduced by Koza in [136], which is the keysbf this dissertation, was
introduced in the first chapter, and is discussed in detathmpter 6. Generally speaking,
computational effort is understood in this context in a widense. Computational effort
refers to a set of measures that estimate the amount of oesoneeded to achieve the so-
lution. To avoid ambiguity, along this section we will usengautational effort in a broad
sense, and to refer the measure proposed by Koza we will egerth Koza’s computational
effort.

Bartz-Beielstein, Barr and other authors use the term tabss, however, its meaning
strongly changes in function of the context and the authariZ2Beielstein uses robustness
as a synonym of effectivity [25], as it will be defined later.n @he contrary, for Smit et
al. [217], the term robustness is used to refer the variafitteeautput of a certain algorithm.
Barr and Eiben use robustness to mean the variation of tlegithign performance when a
factor (parameters, problem instance or random seed) isfieb @78, 11]. Eiben, on the
other hand, emphasizes the generality of the term. In a braahse, the term robustness is
generally used in EC literature to mean the capability of Antdfind efficiently solutions
to different problem classes, i.e., a robust algorithm igmegalist algorithm, and thus it is
able to continue performing well in case of changes in itsrenment [200].
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Function value

Efficiency

Function evaluations

Figure 2.6: Visual representation of effectivity and e#finty measures (source: [25]).

Probably the most common classification scheme of perfoceareasures was proposed
by Schwefel in [212], and widely advocated and popularizgdBhrtz-Beielstein [25] and
Eiben [79]. Schwefel’s classification scheme of perforneameasures distinguishes effec-
tivity and efficiency measures. When gatheréifgctivity measureshe amount of resources
that this algorithm is allowed to waste is limited, and theasmee estimates the quality of the
solution that the algorithm is able to find. On the contramgfficiency measurdle solution
quality is fixed in advance, and then it estimates how muatrtetie algorithm needs to find
a solution with the given quality. Here, the terms effort aesources should be understood
in a broad sense: it might be time, function evaluations,nyr @her measure able to pro-
vide information about how hard is finding a solution. Fig@ré represents graphically the
difference between effectivity and efficiency. We can idgrd third type of performance
measure that is not effectivity neither efficiency, but eath combination of both. These
measures are typically a composition of effectivity andcegficy measures, so we will name
themmixed performance measurdsgure 2.6 represents graphically the difference between
effectivity and efficiency .

Effectivity measures are generally related to fithess nreasent, we can mention two:
Mean Best Fitness and Mean Average Fitness. Miaan Best Fitnes@vIBF) is calculated as
the average of the fittest individual in different runs. lhetwords, the MBF reflects the fit
of the best solution that is found. This measure is partiguianportant in design domains,
where this type of extreme individuals and high variancedasrable [79]. Similarly, the
Mean Average Fitnes@VAF) is the average fitness calculated for several runs.bébiy,
MAF is one of the most used and well known measures. Normasgumption about the
distribution of MAF is generally done, however it is not aj@aormal [160] and Rand [200]
proposed to express MAF as a ratio between the individualsttas best individual so far
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obtained. A third way to measure the effectivity of an altori is the performance profiles,
proposed by Barreto in [23], which relates the algorithmfgrenance to a set of problems.
Flemming warns about some statistical issues that arise wfiectivity measures are nor-
malized and compared [85].

Efficiency measures, instead of being related to fithesstause related to the measure-
ment of any resource, typically time. Some common efficiemg@asures are described in
the following.

¢ Run-time. One of the oldest, and most evident efficiency measurefgisun-time
of the algorithm, i.e., the time, whatever it was measurbdt the algorithm takes.
Run-time is also a measure that has generated some debat® ttheeconcerns that
emerge when it is analyzed in detail. To be specific, severthions have been con-
cerned about the repeatability of this measure [12, 112h-fRune, measured in time,
is highly dependent on architectural considerations, dso @depends on issues re-
lated to the operating system, such as multitasking, pagesfand so on. Barr [12]
suggests removing these times from the measurement. Baretson run-time mea-
sured in one machine is rarely reproducible in other macfég@g even if both had
the same hardware and software. Additionally, even in tBe taat all these problems
were solved, we find facts that may bias the results: difteppagramming skills,
the amount of time devoted to optimize the code, etc. Foretmeasons, run-time
units reported in the literature moved forward machineepehdent measures, such as
number of evaluations. Sound measurement of run-time tecpkarly difficult in par-
allel algorithms, with several specific difficulties [12]eBpite all these disadvantages,
Gent still recommends measuring computation times becdaiseseful to compare
different versions of the same algorithm during its deveiept [92].

e Average Evaluations to a Solution (AES)It is the number of individual evaluations
needed, in average, to find an individual of the desired tuf6]. This measure
is independent of the architecture since it is only influehbg the algorithm itself.
Despite this fact, AES is influenced by the random nature aialeuristics, and thus
it is a random variable.

e Run-time distributions (RTD). An RTD is defined as the probability of finding a
solution from the beginning of the run to a certain timeIf time is measured in
number of evaluations or any other specific algorithm-ddpatproperty, it is named
run-time length distribution (RLD). Perhaps, the most bigdeature about RTDs are
their ability to completely characterize the statisticedgerties of the run-time. This
feature is used by Hoos to study the run-time of several reetddtic algorithms to a
variety of classical problems such as the CSP and 3SAT [1148, 224, 115]. Other
authors also used this technique to study MetaheuriskesACO, among others [53],
or to characterize the CSP problem [205]. A detailed desoripof RTDs, and a
review of related literature can be found in chapter 5.

e Others. There are alternative efficiency measures, such as MTER [dOquality-
effort relationship [11].



2.5. THE FOURTH COMPONENT OF EXPERIMENTAL DESIGNS: MEASUBE 43

Among the mixed performance measures, probably the mosirtan one isSuccess
Rate(SR), or frequency of the optimum as Ridge names it [206].r& lesome doubts about
the classification of SR, some authors claim that it is anieffy measure, others claim that
it is a effectivity measure, while others argue that SR ispefficiency and effectivity. The
latter is based on the fact that to measure SR, the expeemssis a budget of computational
resources and a solution quality, then he verifies whetherathorithm was able to find
or not a solution. On the contrary than other measures, SRtialways defined since it
needs a criteria to identify the solution, so, in the absearfcthat criteria SR cannot be
defined [24, 76]. There are also other weakness, some authudsto interpret SR as a
measure of the solution quality, not taking into considerathe existence of evidence that
shows a lack of correlation between SR and fitness [156]. €hdps dedicated to study the
statistical properties of SR in EC.

The most important performance measure in the context sfdisisertation i&oza’'s
computational effort Koza, in [136, chapter 4] introduced a novel measure tonedé the
computational effort required by an algorithm to find a Solut Despite the generality of
the definition of Koza’s computational effort, that only poges a generational population-
based algorithm, its usage has been restricted to GP, wlsréden rather popular. The
main objectives of the thesis is to study the accuracy of egatnal effort, which is done
in chapter 6. Another example of mixed performance measutesuccess efforproposed
by Walter et al. in [242]. This measure is a simplification afzd’'s computational effort
and it is calculated as the ratio between the mean genenatien the algorithm finds the
solution and the proportion of runs finding a solution.

Performance measures tell a critical part of the story, ithaimply how well the algo-
rithm performs. However, it is only a part of the whole staapd thus performance mea-
sures alone cannot do all the job, specially when a deeparstachding of the algorithm is
required. In these circumstances, genotypic measuresaessary.

2.5.3 Genotypic measures

There are several issues concerning the structure of ttddnéls in the population that,
although might not have a direct influence in the quality ef slolution that they represent,
may provide valuable information about the algorithm intés. Probably the most popular
genotypic measure is the individual size. Many EAs use fieagth individuals, such as
canonical GAs or ES, but other branches of EC use variabkeisdividuals, moreover, there
are algorithms whose population of candidate solution @trinsically variable-size like in
tree-based GP. Other algorithms, such as GA, have varsatolet the population increase
the complexity of the solutions they encode [105, 47, 56].

The reason to use variable-length population is well suriredrby Harvey “the most
impressive feature of natural evolution if how over aeorgmoisms have evolved from sim-
ple organisms to ever more complex ones with associateedaerin genotype lengths” [105].
Variable-length algorithms may self-adapt the size of titividuals to the complexity of the
problem, which is an important feature in certain probletisderstanding how the popula-
tion varies its length is fundamental from a practical pectpe to fight against one serious
problems in variable-length EAspde bloat which is an increase of the size of the indivi-
duals without a correlation with fithess. Code bloat has lmgect of a intense research in



44 CHAPTER 2. EC FROM AN EXPERIMENTAL PERSPECTIVE

GP, and there is a large corpus of theories trying to exptaifiwo good reviews of the bloat
theories in the context of GP can be found in [215, 160]. Dedadliscussions about these
can be found in [144, 155, 157, 101, 160, 130].

EC literature uses to describe EAs as the action of two opgdsrces, exploration and
explotation [77]. In the context of Metaheuristics, sommets the terms intensificacion and
diversification are used instead of explotation and exfitamg43]. Explotation refers to the
capacity of an EA to find promising areas of the search spabie wxploration deals with
finding the best solution in a certain area of the search spaisegenerally recognized that
the success of an EA depends on a adequate balance betwbewlhich is determined by
how the population is located in the search space. It can lzsuned using diversity mea-
sures. Several diversity measures have been proposedutvitlotear winner. An important
point about diversity measures that should be underlingts$ islose relationship to repre-
sentation, because diversity is measured in the genotppices Nonetheless, some authors
have noticed a correlation between diversity at genotypitfanotypic levels [118]. A good
review about these metrics in GP can be found in [48].

2.5.4 Specialized measures

EC involves a wide range of algorithms and problems, thusuagirisingly there are a set of
measures that cannot be used in a general case, but instgamhti make sense in relation to
specific algorithms and problems. These measures mighttrefiene specific characteristic
of the algorithm or problem or, less likely, for cultural seas it has not being used outside
of a certain context. This is the case, for instance, of Kbzamputational effort and hits in
GP. In this section we briefly present some examples of dpsmlameasures.

One well known advantage of EAs is their intrinsic paradlelj which eases addressing
computationally complex problems in parallel architeeturlf the measurement of the time
response of sequential algorithms exhibit some non-trdiificulties, measuring time re-
sponse of parallel algorithms is more challenging. The saomeiderations made to run-time
measurement might be done to parallel EAs, but new considesadue to the parallelism
arise: there is a need to use new measurements [12]. Fondéesta measure that quanti-
fies the improvement of running an algorithm in parallel is §peedup, which is defined
as the ratio between the time required by a serial implertientaf the algorithm and the
time required by the same algorithm when is runpgprocessors. In this way, the speedup
measures the effect of using several processors in coropakigh using an alone processor.
Other measures of parallel algorithms can be found in [12].

All the EAs discussed up to this point have in common one atariastic, selection is
done attending only to one criteria. Even tough the fithegstfan might use several criteria
to evaluate an individual, selection is performed usin@itiput, which is a single value. It
turns out that in nature, survival of individuals is givendgeries of factors, such as how fast
a prey can run, how it mimics its environment and so on. Thesszan be said in many prob-
lems addressed by EAs, where evaluation of individuals thdgbend on several objectives
and each one has to be maximized or minimized. This behawbere the goal is given
by a set of objectives instead of a single one, is the ingpiraif multiobjective algorithms
(MOEAS) [254]. In multiobjective algorithms the fit of an imttlual is not given by a single
value, but by a vector whose elements describe the fit of theidual in each objetive under
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consideration. Many performance measures used by sifjgetive algorithms are not suit-
able for MOEAs. In addition, since the fit of an individual isen by a vector, comparison
between algorithms is more complex, and new measures adec§2b7, 88, 258].

Another context where many performance measures so farssisd are no longer suit-
able is dynamic optimization [61] (or nonstationaty funatioptimization [79]). Previous
discussions assumed that the problem and its context watiersiry, and therefore they
remained without changes over the course of the run. Howevenany applications this
assumption is not valid, the fitness function, or the comstranight change. Some survey
papers about this topic can be found in [120, 176]. Measysgrformance in this type of
scenarios is a challenging problem. The main problem is ngdofinding an optimum in
the search space, but instead is finding a sequence of optiralues over time [79], and
thus algorithm performance depends on more factors thaatic sptimization. Wiecker in
[243] analyzed several measures of EAs in dynamic enviromsnéentifying three charac-
teristics that describe the particularities of measuradyimamic optimization. The first one
is accuracy which is the ability of the algorithm to find candidate sa@us close to the the
optimum. Closely related to accuracy is the second charsiite stability, which relates
how the accuracy changes when the environment is modifigwhllfi thereactivity is the
ability of the algorithm to react quickly to changes in th@iesznment.

2.6 Conclusions

There are several reasons why experimental research isth@e8C. The algorithmic sim-
plicity of EAs contrasts to the notable difficulty of theiraytical analysis, that make the-
oretical results scarce, and rarely useful in practice. e8perimental methods have been
widely used in EC research. Despite the importance of exygerial methods, there is a lack
of research on methodological issues. Much literature kas levoted to describe how to
perform experimental research, and how to design soundiegrs. However, much of
these literature is in form of tutorials or lists of tips, amdfortunately there is a lack of at-
tempts to systematize it. It is interesting to note that mbgte papers published around this
topic come from Metaheuristics, only recently authors vaithEC background have begun
to publish on this topic.

In an attempt to provide a systematic approximation to éxpantation in EC, we have
proposed a framework that eases description of experim&h&sproposed framework iden-
tifies three intrinsic components of an experiment: alhamitparameter setting and problem,
and an extrinsic component, measures. A solid experimdatafjn requires a rational choice
of each one of these components, that should be done acgdodine research question that
motivates the experiment. In order to be able to observexperenent, we also need mea-
sures. They are used to collect data, which is the base ofrapirieal study. We distinguish
three types of measures: genotypic measures, specialgaurpeasures and finally perfor-
mance measures. Performance measures can be dividedrggactiegories. The first one
provides information about the quality of the solution ttre algorithm is able to find. The
second one informs about the cost of finding a solution of tairequality. The third cat-
egory of performance measures mixes the two previous césgproviding an aggregate
value. One of the best known mixed performance measure® indhtext of GP is Koza’'s
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computational effort.

Computational effort, as defined by John Koza, is the minimmumber of individuals
that have to be processed to achieve a solution of the desgiadidy with a given probability.
This is a mixed measure that includes the population sizetlaaduccess probability of
the algorithm. Despite its popularity in GP, several reslears have shown some concerns
about this measure, mostly in informal contexts, but theeeadack of documental evidence
supporting these claims. In order to gather data suppodirgjecting these concerns, we
first need a deeper knowledge about the statistical pregesfithe success rate, which is a
basic component in Koza’s computational effort. In patdcuwe need a characterization
of the error associated to the estimation of the succesapildlp. The statistical properties
of that estimation, when the time is fixed, is investigatedhapter 4. However, in the next
chapter we will introduce the early work that generated tlainmesearch question.



Chapter 3

Evolutionary Computation from an
applied perspective

The alchemist in their search for gold
discovered many other things of greater value
Arthur Schopenhauer

This chapter takes an applied perspective and tries to alevekthods for real applica-
tions. Several domains are analyzed, paying more attetaitime agent-based information
extraction and integration platform named Searchy, maulifit to extract data automatically
using evolved wrappers. The research summarized herefisshane to be performed in the
context of this PhD thesis, the goal was to use Evolutionamg@utation (EC) to solve some
real world applications. The value of this chapter is doubtstly, the research performed
to develop the chapter provided the necessary experieitg BEE, and secondly, it helped
to find the main research question that is addressed in ggedation.

We have worked in several problems: a logistic applicatioroptimize the drivers
routes [194, 195], generate routes inside a building usiR¢DR196], language induc-
tion [98] and data extraction from the Web [50]. In this cleapve mainly focus on data
extraction since it motivated the rest of the PhD thesis.

In order to automatically extract data from the Web, we hasedua platform named
Searchy. Through the use of a set of wrappers, it integratesmation from arbitrary
sources and semantically translates them according to sateddscheme. Searchy is ac-
tually a domain-independent wrapper container that eassspsr development, providing,
for example, semantic mapping. The extension of Searchyosed in this chapter intro-
duces an evolutionary wrapper that is able to evolve wrappsing regular expressions. To
achieve this, a Genetic Algorithm (GA) is used to learn axeg#e to extract a set of positive
samples while rejects a set of negative samples.

This chapter is structured as follows. Section 2 providesreetnl overview of the sys-
tem architecture. The information retrieval and informatintegration mechanism used in
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Searchy are briefly described in section 3.3. The evolveeiregapper is presented in sec-
tion 3.4 followed by a description of the alphabet constarcalgorithm. Some experiments
carried out by the regex wrapper are shown in section 3.6tid®e8.7 describes related
work. Finally, some conclussions are summarized.

3.1 Introduction

Organisations have to deal with increasing needs of praugssnation, yielding a grown of

the number and size of software applications. As a resulétisea fragmentation of informa-

tion: it is placed in different databases, documents okdiifit formats or applications that
hide valuable data. Thus, it originates the creation ofrimation islands within the organisa-
tion. This has a negative impact when users need a globalofilve information, increasing

the complexity and development costs of applications. Wsaad-hoc applications are de-
veloped despite their lack of generality and maintenansescinformation Integration [102]

is a research area that addresses the several problemsnitigeewhen dealing with such
scenario.

When a bunch of organizations are involved in an integrapi@tess, the problems as-
sociated with the integration are increased. Some traditimtegration problems, such as
information heterogeneity, are amplified and new probleoth ss the lack of centralized
control over the information systems arise. One of the nmistésting problems in such con-
text is how to ensure administrative autonomy, i.e., linsitauch as possible the constrains
that the integration might impose to data sources. We havelaged a data integration
solution called Searchy with the intention of addressiragéhconstrains.

Searchy [22] is a distributed mediator system that provaesrtual unified view of
heterogeneous sources. It receives a query and maps itrietoranore local queries, then
translates the responses from the local schema to a mediagedkfined by an ontology and
integrates them. It separates the integration issues fnerddta extraction mechanism, and
thus it can be seen as a wrapper container that eases wrapdmment. It is based on Web
Standards like RDF (Resource Description Framework) or GWéb Ontology Language).
Thanks to that, Searchy can be easily integrated in othéfoptas and systems based on
the Semantic Web or SOA (Service Oriented Architecture)us®dl for other tasks, such as
parameter tuning [17, 13].

Experience using Searchy in production environments hasrsithat some issues need
to be improved. One of the most successful wrappers in Sgavel the regex wrapper,
a wrapper that extracts data from unstructured documeiirtg a@sregular expression (or
simply regeX. Regex is a powerful tool able to extract strings that madiven pattern.
Two problems were found related to wrapper-based regexation: the need of an engineer
(or a specialized user, which we usually denoted as wrapmgneer) with specific skills in
regex programming, and the lack of automatic way to handt®im the extraction process.
These problems lead us to adapt the Searchy architectunppors evolved wrappers. That
is, wrappers based on regex that have been previously gedarsing Genetic Algorithms
(GAs). This wrapper uses supervised learning to generaggexrable to automatically
extract records from a set of positive and negative samples.
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3.2 Searchy architecture

Many Searchy properties are a direct consequence of twgrdegicisions: the MAS ap-
proach [3] and the Web standards compliance. Using MAS ddesschy a distributed and
decentralized nature well suited for the integration sdendescribed in the introduction.
Web Services are used by Searchy agents as an interfacedssatteir functionalities,
meanwhile the Semantic Web standards are used to providef@mation model for se-
mantic and structural integration [238]. From an architeadt point of view agents were
designed to maximize modularity decoupling integratiamnfrextraction issues, easing the
implementation of extraction algorithms.

In our architecture, each agent has four components, asecegdn in Figure 3.1. Some
of the key properties of Searchy are directly derived froia #nchitecture. These elements
are the communication layer, the core, the wrappers anchfbemation source. The next
paragraphs describe these components related to the FIBAt Adanagement Reference
Model.

Communication layer It provides features related to the communications suchG&PS
message processing, access control and message trafisgo@ommunication layer
is equivalent to the Message Transport System (MTS) in tRA Rhodel.

Core It contains the basic skills used by all the agents, inclgdionfiguration manage-
ment, mapping facilities or agent identification. Any featshared by all the agents is
contained in the core. It presents some of the features delin&IPA for the Agent
Management System (AMS), however they are not equivalelS Aare supposed
to control the access of the agents to the Agent Platform @kfel) their life cycle.
Meanwhile the agent core supports the operation of the verapp

Wrapper Awrapper is the interface between the core agent and a datees@xtracting in-
formation from the mediated data source. Wrappers are adiayip order to achieve
generality and extensibility. Agents in the FIPA model haeme similarities with
Searchy wrappers from an architectural point of view. An Akhie FIPA model may
contain several agents meanwhile each agent in Searchy omégirt several wrap-
pers. Both of them are containers for some software assetisa@ case of FIPA or
wrappers in case of Searchy.

Data source It is where information that is the object of the integratipmocess is stored.
Almost any digital information source might be used as datace. Due to the nature
of Searchy, data sources are usually some kind of informatystem such as a web
server or an index. However any source of digital informai®a potential Searchy
data source. There is no equivalent in the FIPA model to datecss.

Figure 3.1 shows the architecture of a Searchy agent wifbutscomponents. Agent in-
terfaces are published thought the HTTP server, one of thgystems of the communication
layer. It receives the HTTP request that has been sent byaheelSy client and extracts the
SOAP message. In order to provide a first layer of securigfHm TP subsystem filters the
request using the Access Control Module. This module is dvabd filter that enables ba-
sic access control. The HTTP server has responsibilitids tve SOAP messages transport,
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Figure 3.1: Searchy platform architecture, the four conapds of the architecture are iden-
tified in the figure: Communication layer, core, wrappers dath sources.

but the processing of these messages is done by their ownlendda SOAP Processing
Module. It processes SOAP messages and then transferdiopdmathe Control Module,
or returns an error message. Once the message has beerstigcpsocessed, the Control
Module starts.

The Control Module sets the flow of operations that the difficelements involved in the
integration must perform, including the wrappers, the MagModule, and the Integration
Module. The Mapping Module is composed of three subsystevith, different responsi-
bilities in the mapping process. The Query Mapping subsygierforms query rewriting,
translating the query from the mediated schema into thd kxi@ma, for example, SQL.
Meanwhile, the Response Mapping subsystem translategspense from a local schema
like SQL, into RDF, following a mediated schema defined by atlogy. Both, Query and
Response Mapping subsystems use the Mapping subsysteémrdbiges common services
related to mappings and rule management to the Query andREspMapping subsystems.
The way in which the integration and mapping processes tpieraescribed in section 3.3.
Responsibility for Information extraction, as well as coomitation among the agents, falls
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in the wrappers.

In our architecture, the coordination among agents is basesh organizational struc-
turing model with two different discovery mechanisms. le first mechanism, each agent
has a static knowledge about which agents it must query, evbean find them, and how
to access them. The result is a static hierarchical streictitris useful in order to adapt a
Searchy deployment to the hierarchy of a organisation, fiemiecannot take full advantage
of a MAS such as parallelism, the reliability of the wholetsys is reduced and it is difficult
to integrate in dynamic environments.

To overcome some of these disadvantages, a second coadinachanism has been
implemented. Using our previous organizational struomnnodel, relationships among
the agents are not stored within the agents, but externally WSDL document that can
be fetched by any agent from a HTTP or FTP server. This agsobdéry mechanism is
simpler than using an UDDI (Universal Description, Disagyand Integration) directory or
a Directory Facilitator (DF) in a FIPA platform. Agents arecassed as another data source,
and thus it is done by a set of wrappers responsible of thedisg and communication
between Searchy agents: the Searchy and WSDL wrapperse Wnappers implement the
coordination mechanism in Searchy, however wrappers’ paipose is to extract data from
data sources.

At the present moment, Searchy includes four ordinary weeppSQL, LDAP, Harvest
and regex. By means of SQL and LDAP wrappers, structuredidatatabases and LDAP
directories may be accessed. Using the Harvest wrapperct8eaan integrate resources
available in an intranet like HTMLAILEX, Word, PDF documents and other formats. The
support of new data sources is done by the development of nappers. There is no
restriction on the algorithm and data source that the wnappght implement, it may be a
direct access to a database, a data mining algorithm, oobtdaed from a sensor. Mapping
and integration issues are managed by the agent’s corehasdhe wrapper has not to be
concerned by these issues. Next section describes howttskseare performed.

3.3 Mapping and integration in Searchy

Integrating information means dealing with heterogenigitseveral dimensions [238]. Tech-
nical heterogeneity can be overcame by selecting the piog#gementation technology. In
our work, it has been done using Web Services (WS) as anactetb access to the ser-
vice. Addressing information heterogeneity requires tbfnition of a global information
model, the mediated schema, among all the entities invadlvede integration process, as
well as a mapping mechanism to perform a mapping betweeriffeeet local information
models and the global information model. Defining this madel critical challenge in an
information integration system.

Searchy uses semantic technologies standardized by the AR, RDFS and OWL-
to represent the integrated information. RDF is basicallyalstract data model that can be
represented using several syntaxes. Searchy uses RD#tzseriwith XML, to represent
information. This combination of RDF and XML grants inteepgbility in a structural level.
Semantic integration requires an agreement about the ngeahthe information to deal with
semantic heterogeneity. This agreement is performed Ingstiared ontologies expressed
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in RDFS or OWL. Then, there must be an explicit agreement gnadirthe actors involved
in a Searchy deployment to establish at least one globalamytoA set of mapping rules are
needed in order to map entities according to a local schetoahie global schema. Rules
are used to map queries to a local schema, and responsestedieted schema.

Query format is a tuple<attribute, query of strings, the Query Mapping subsystem
rewrites the query to obtain a valid query for the local datarse. The first element in the
tuple is an URI that represents the concept to which the gsemgferred, while the query
is a string with the content of the concept that is being aaeriTrhe query model is simple
but enough to fulfill the requirements of the application.eTranslation of the query to the
local schema is performed using the Mapping Module (seer€igLl). Mappings are done
by means of a string substitution mechanism, very simildhéatraditionalprintf() function
in C. This mechanism is enough to satisfy the needs in almiosases. Once a query has
been translated, the response of the local informationceomust be extracted, mapped to
a shared ontology and integrated, respectively, by the ddassgpMapping and Integration
subsystems.

Response mappings are done in two stages:

1. The response is mapped semantically, conforming to aghamtology. It is done
using the same mechanism than the Query Mapping subsysteaonitidal aspect is
to provide a URI identifier for each resource, just like RDEuiees to identify any
resource. There is no unified way to do this task: each typeapper and user policy
define a different way to name resources.

2. Every response of each wrapper is integrated in the latiegrModule. Integration is
based on the URI of the resource, returned by the wrappersn\Wo wrappers return
two resources identified by the same URI, the agent intexpinet they are referred to
the same object, and thus they are merged.

Figure 3.2 shows a simple example of an integration procéssnwSearchy. There are
two data sources: a relational database, and an LDAP diyess#ovice. In a first stage, the
wrappers retrieve the information from the local data seuand this is mapped into a RDF
model. The mapping is done by using the terms defined by arogyt@nd according to
some rules given by the system administrator. The ontadogged within the integration
process must be shared among all agents. In general, a one tmwespondence between a
data field and an ontology term will be defined. Several loeddi$i or fixed texts may com-
pose one value in RDF, this feature aids the administratdetime more accurate mappings.
The mapping rules defined in the example shown in Figure 3.théodatabase wrapper are
depicted in Example 1.

Example 1Query mapping rules example

rdf :about 1S "http://ww.exanple.org/" + name
dc:title IS nanme + " " + surname

foaf:fam |y_nanme | S surnanme

The first rule defines that the RDF attributi:about is built with the concatenation of
the string "http://www.example.org/” and the attributer§n as it is defined in the local
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Data sources Wrapper Core

Relational database

<rdf about="http://www.example.com/Homer">
<dc:title>Homer Simpson</dc:title>
<foaf:family_name>Simpson</foaf:family_name>
</rdf>

name |surname address

Homer | Simpson | 742 Evergreen Terrance

<rdf about="http://www.example.com/Homer">
N <dc:title>Homer Simpson</dc:title>
<foaf:family_name>

Simpson

</foaf:family_name>

<foaf:mbox
rdf:resource="mailto:homer@example.org"/>

Directory <foaf:homepage
rdf:resource="http://homer.example.org"/>
de= <rdf about="http://www.example.com/Homer"> </rdf>
C“;rg_ | <foaf:mbox
c—evzain:ip © N rdf:resource="mailto:homer@example.org"/>
e °m.|e_'h ' m <foaf:homepage
email=homer@example.org rdf:resource="http://homer.example.org"/>
web=http://homer.example.org </rdf:about>
Step 1 Step 2

Figure 3.2: Example of the integration process in Searclth two data sources, one rela-
tional database and a directory.

schema. The rest of rules are defined in a similar way. Medaythie mapping rules for the
directory wrapper can be seen in Example 2.

Example 2Response mapping rules example

rdf:about IS "http://ww. exanple.org/" + uid
rdf:type | S foaf: Person

foaf: nbox I'S emai l

f oaf : honepage IS web

The wrappers in the example use two vocabularies: Dublire @od FOAF. Each object
retrieved from the data source must be identified by an URL, itihthis case is built using
local data with a fixed text. The second stage integratesttitees returned by the wrappers.
The agent core identifies the two objects as the same objecbimparing their URI and
merges the attributes, providing a RDF object with attelutetrieved from two different
sources.

Mapping and Integration Modules decouple data integradioth mapping from the ex-
traction, and thus it is possible to develop wrappers in @gawithout any concern about
these issues. Next section shows an example of how a compégpper may be developed
using the infrastructure provided by Searchy.

The original architecture of Searchy [14] provided an eagyse extraction and integra-
tion platform. However, it required human supervision imgoparts of the process. One of
the most useful wrappers supported by Searchy is the regeper, which is able to extract
data from unstructured documents. One problem associatkdhis wrapper is the need of
a wrapper engineer skilled in regex programming. Anothebiem is error detection, that
is, detect when the wrapper is not correctly extracting dathsolve it.
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Figure 3.3: Example of a Searchy deployment with extraeias|utive and control agents.

Training set

It lead us to extend the original Searchy regex wrapper abdxtract data using a regex
created by the wrapper engineer with an evolved regex adpmt@generate a regex from
a set of positive and negative examples using a GA. Figurg@its the extended archi-
tecture, where the original architecture is extended wathtrol and evolutive agents. The
MAS contains three kind of agents: control, extractor arulwgive agents. The three types
of agents share the same agent architecture depicted ireR3dL they differ from an archi-
tectural point of view in the wrappers they use. Figure 3&susolid lines to represent the
iteration among the agents and resources with the excegpfiberations that involve regex,
which is represented with dotted lines.

There must be one control agent that receives queries frenuskr and forwards it
to the extractors, which are agents with a regex wrapper.eRegappers in the original
Searchy architecture obtained the regex from the wrapggneer, who manually generated
the regex. When the wrapper detected a failure in the dataatixin, i.e., when it was
unable to extract data from a source, the wrapper notifiedtit¢ wrapper engineer who had
to identify the problem and in case the regex was incorreailystructed, generates a new
one.

The new architecture aims to automate this approach, usiegautive agent that fulfills
some roles of the wrapper engineer. Extraction agentsrobitai regex from the evolutive
agents at start-up time, but also when they identify an etitma error. In this case, instead
of requesting a new regex to the wrapper engineer, it wowjdast it to the evolutive agent.
When an evolutive agent is required to generate a new regexecutes a GA as described
in the next section.

3.4 Wrapper based on evolved regular expressions

The implementation of the evolved regex was done as a Seanapper using the Searchy
wrapper APl. When an agent with the evolved regex wrappemisthe wrapper generates a
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Genotype Phenotype
1100 0001 1010 1101 0011 O111

(S S S *?TTTI

Figure 3.4: Example of chromosome encoding.

valid regex executing the described VLGA with a given tnagnset. Once a suitable regex
is generated, the wrapper can begin to extract records frgntext file accessible thought

HTTP or FTP. It does not have to manage any mapping-relage isince the Mapping

Module performs this task.

3.4.1 Codification

Any GA has to set a way to codify the solution into a chromosoriiee VLGA imple-
mented in the wrapper uses a binary genome divided in seyenas of fixed length. Each
gene codes a symbel from an alphabel composed by a set of valid regular expressions
constructions, as described in section 3.5.

Some words should be dedicated to how genes code regex. plmgbat is not com-
posed by single characters, but by any valid regex, in thistiva search space is restricted
leading to a easier search. These simple regular expresaierthe building blocks of all the
evolved regex and cannot be divided, thus, we will call théoméc regex. The position (or
locug of a gene determines the position of the atomic regex. Geosition: is mapped
in the chromosome to regex transformation as an atomic negise positioni. Figure 3.4
represents a simple example of how the regaftr] could be coded in the GA.

3.4.2 Evolution strategy

Genetic operators used in the evolution of regular exppassre the mutation and crossover.
Since the codifications rely in a binary representation niséation operator is the common
inverse operation, while the recombination is performethvai cut and splice crossover.
Given two chromosomes, this operator selects a random pogsich chromosome and use
it to divide it in two parts, then they are interchanged. @brgly, the resulting chromosomes
will likely be of different lengths. Selective pressurengroduced by a tournament selection
wheren individuals are randomly taken from the population and the that scores the
higher fitness is selected for reproduction. An elitisttsggt has also been used, where some
of the best individuals in the population are transferreitheut any modification to the new
generation. In this way it is assured that the best gendticriration is not lost.
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3.4.3 Fitness

How the goodness of any solution is measured is a key subjéioe iconstruction of a GA. In
our case, for each positive example, the proportion of etdthcharacters is calculated. Then
the fitness is calculated subtracting the average propodidalse positives in the negative
example set to the average of characters correctly exttalct¢his way, the maximum fitness
that a chromosome can achieve is one. This happens whendiveevegex has correctly
extracted all the elements of positive examples while ndiieeonegative examples has been
matched. An individual with a fitness value of one is calgehl individual

From a formal point of view, the fithess function that has badapted in the wrapper
uses a training set composed by a positive and a negativetsafbaxamples. LeP be the
set of positive samples ar@ the set of negative samples, suctfas- {p1, p2, ..., par } @and
Q={q1,q,...,qv}. Both,P andQ are subsets of the set of all stringsand they have no
common elements, 8 N Q = ¢.

Chromosomes are evaluated as follows: Given a chromosoéisdransformed into the
corresponding regex € R, then tries to match against the element$aiind Q. The set
of strings thatr extracts from a string is given by the functionp(p,r) : (S x R) —
R while the number of characters retrieved is representefloyy, r)|. The percentage of
extracted characters pfsuch as = 0, ..., M is averaged, and finally the fitness is calculated
subtracting the average proportion of false positivesémigative example set to the average
of characters correctly extracted, as expressed by:

|P| Z |()0 bi, T |Q| Z M QZ (31)

piEP |pl ¢;€Q

where|p;| is the number of characters pf, | P| the number of elements @&, |Q| the
number of elements a@ andM,.(¢;) is defined as

_ [ Uoaf felar) >0

3.5 Zipf's law based alphabet construction

3.5.1 Preliminary considerations

Section 3.4.1 has shown how a classical binary codificagarsed to select one symhol
from a predefined sef of symbols or atomic regex. The constructiondofs a critical task
since it determines the search space, its size and its tapaeixpress a correct solution. Of
course, the simplest approach is to manually select thebgihhowever this approach may
devaluate the added value of evolved regex: the automatiergton of regex.

We can state that the constructiondomust satisfy three constrains.

1. ¥ must besufficient i.e., it must exist at least an element ¥X* such as is an ideal
individual. In other words, it must be possible to constraickeast one valid solution
using the elements af.
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2. |X] must contain the minimum number of elements able to sati&stfficiency con-
strain. Of course, being able to satisfy this condition ihallenging task with deep
theoretical implications. From a practical point of viewist constrain can be refor-
muled as trying to keef¥:| as small as possible.

3. Symbol selection must be automatic, with minimal numldgrasameters and human
interaction.

3.5.2 Alphabet construction algorithm

To reduce the number of elementsXfand keep the search space as small as possible, we
aim to identify patterns in the positive samples and use tagiouilding blocks. In order to
satisfy the previous constrains we propose the followimgg@hm. X is built as the union

of 7, D and7, whereF, is the set of fixed symbol®) the set of delimiters and@ the set of
tokens.

Y ={oi}\ci e FUDUT (3.3)

Algorithm 1 Selection of alphabet tokens.

1 .- P := Set of positive examples

2 .- S := Set of candidate delimiters
3.-D:==T:={}

4 -

5.-foreachpinP

6.- foreachsin$S

7 .- tokens := split p using s

8 .- numberTokens := number of tokens
9

10.- for each token in tokens

11.- occurrence(token) := occurrence(token) + 1
12.- endfor

13.-

14.- if (numberTokens- 0) add sto D

15.-  endfor

16.- endfor

17.-

18.- sort occurrence
19.- add n first elements of occurrence to T

F contains manually created reusable symbols that are medn¢ tommon cross-
domain regex, and thus, once they have been defined they caseleo evolve different
regex. It should be noticed th&t may contain any valid regex, nevertheless it is supposed
to contain generic use regex such\ds or [1-9]+ . SinceF is supposed to include common
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used complex regex, it contributes to reduce the searcle gpatincrease individual fithess
by introducing high fitness building blocks.

The setsD and7 are constructed using a more complex mechanism based o3 Zipf
Law [256]. It states that occurrences of words in a text ateundormly distributed, rather
only a very limited number of words concentrates a high nuneb@ccurrences. This fact
can be used to identify patterns7t and use them to construct a partaf

Since the tokens do not contain delimiters, the sufficiermystrain cannot be satisfied,
so, each delimiter that appear in the examples is includextif?. The overall process is
described in Algorithm 1. Of courséy| must be equal to the number of elements of the
union of 7, D and7, as is expressed in equation (3.4).

Y| =[FUDUT]| (3.4)

given that
| FNDNT|=|FND|=|FNT|=DNT|=0 (3.5

3.5.3 Complexity analysis

A better understanding of the algorithm can be achieved lim@ ¢complexity analysis. As
can be seen in Algorithm 1, there are two main loops (see Algorl, lines 5 and 6) that
depend on the number of examplg3|, and the number of potential delimitefS|. The
complexity of the algorithm is given by these loops and therapons that are performed
inside.

Splitting a stringp; € P (line 7) is proportional to the length of the strityg |, so the
mean time required to perform this operation is proporfidaahe mean string lengtlp|.
Lines 19 to 21 include aloop that is repeated as many timexkans are in the string. A hash
table is accessed inside the loop (line 20), so it makes derssgpose that its complexity is
given by the computation of the key, a string, thereforetetcomplexity is:|p|, wheren is
the number of tokens. Finally sortingcurrence can be performed in,; log(ns,:) Where
nio 1S the number of tokens storeddncurence. The rest of operations in the algorithm can
be performed in negligible time. We can express these ceraidns in equation (3.6).

t o< |P[-[S] - [[pl + n[pl] + ntor log(r2s0t) (3.6)

Bothn andn,.; are unknown and we have to estimate them for the averageAasing

p € P of length|p| can contain approximate@ tokens. We have supposed there is one
delimiter for each token. The maximum number of tokens thatle stored inccurrences
are ZLISLEL Then

A

n= @ (3.7)

(3.8)

Ntot =

and 3.6 can be expressed as
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P P|-|S|-|p P|-|S|-|p
toc Pl 18] it + By 4 ISP (P51 39)
Some terms can be removed
Using Big O notation, it yields that the time complexity isgm by
O(klog(k)) (3.12)

wherek = |P||S||p| and hence we can conclude that the time complexity is litiearc.

3.6 Evaluation

Two phases have been used in the evaluation, a first phase tieebasic behaviour of the
GA is analyzed, and a second phase that uses the knowledgieeakcglong the first phase
to measure the extraction capabilities of the evolved regapper. Measures that have been
used are the well known precision, recall and F-measure sétseof experiments described
in this section are focused in the extraction of three tygemta: URLS, phone numbers and
email addresses.

3.6.1 Parameter tuning

Some initial experiments were carried out to acquire kndgéeabout the behaviour of the
regex evolution and select the GA parameters to use witkimtapper. Experiments showed
that despite the differences between phone, URL and enadlithe case studies have sim-
ilar behaviors. In this way it is possible to extrapolate éxperimental results and thus to
use the same GA parameters. Setup experiments showed shaeb®rmance is achieved
with a mutation probability of 0.003 and a tournament siz@ afdividuals. A population
composed by 50 individuals is a good trade-off between caatipmal resources and con-
vergence speed. Initial population has been randomly gegbwith chromosome lengths
that range from 4 to 40 bits, and elitism of size one has bepheap Table 3.1 summarizes
the parameter values used in the experiments.

3.6.2 Regex evolution

Once the main GA parameters have been set, the wrapper daa wregex. Experiments
have used three datasets to evolve regex able to extractissgadhe three case studies under
scrutiny. Figure 3.5 (left) depicts thdean Best Fitnes@MBF) andMean Average Fitness
(MAF) of 100 runs. The fitness evolution of the case studiievis a similar path. The best
MBF and MAF are achieved by the email regex, while the pogoesiormance is given by
the URL regex, with lower fitness values.
The dynamics of the chromosome length can be observed img=835i (right). It is clear

that there is a convergence of the chromosome length ancctirasmosome bloating does
not appear. It can be explained by the lack of non-coding asmdlapping regions in the
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Table 3.1: Summary of the GA parameters used to evolve regufaessions.

Parameter Value
Population 50
Mutation probability 0.003
Crossover probability 1
Tournament size 2
Elitism 1

Initial chromosome length 4 - 40
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Figure 3.5: Left: Best and average fitness of phone, URL argilesgex. Right: Average

chromosome length.
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Success rate (%)

Generations

Figure 3.6: Probability of finding an ideal regex able to @tcal the positive examples
while rejecting the negative ones.

chromosome, i.e, if the chromosome has achieved a maximiiandty can increase its size
without a penalty in its fitness. The longer is the chromosdheemore restrictive is the phe-
notype and it is closely related to the associated fitnesd. tdBex has a stronger tendency
to local maximum, this fact reflected in Figure 3.5 (rightherve lower MBF and MAF are
achieved. This fact also explains why URL chromosome ledgficted in Figure 3.5 (right)
is shorter than phone regex: the local maximum of URL regedgdo generate populations
with insufficient chromosome length. Those results are ngirssing since URLSs follow a
far more complex pattern than phone numbers or emails. Tine san be affirmed about
emails in comparison to phone numbers.

Figure 3.5 (right) shows another interesting behaviour. ties GA begins to run, the
average chromosome length is reduced until a point wheregink to increase, then the
chromosome length converges into a fixed value. In earlyrgépes individuals have not
suffered evolution and thus its genetic code has a strordpramature. Individuals with
longer genotype have longer phenotypes and thus morectestniegex that will likely have
smaller fitness values. So long chromosomes are discardmatgtstages of the evolutive
process until the population is composed by individualseggnting basic phenotypes, then
recombination leads to increased complexity in individuadtil they reach a length associ-
ated with a local or global maximum.

Some of the facts found previously are confirmed by Figure\8ttere the success rate
(SR) [15] is depicted versus the generation. SR is definetleaprobability of finding an
ideal individual in a given generation. It should be noteat thigure 3.6 depicts the average
success rate of 100 runs of the experiment. It can be seeartfail achieves a SR of 91%,
phone numbers 60% and URLs 46% by generation 70. Thesesesaltconsistent with
those in Figure 3.5 (right), and show that the hardest stadgsare URLS, phone numbers,
and emails, in that order. Here the term "hard” should notreustood in a strict absolute
way since the hardness of the search space is influenced &eenas factors, such as the
training set, the selection of negative samples, or thearhalphabet.
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Table 3.2: Extraction capacity of the evolved regex. Thdetahows the F-measure (F),
precision (P) and recall (R) achieved in the three datapbteng, URL and email addresses).

Phone regex URL regex Email regex

Ph. URL Emailfl F P R F P R F P R
Setl| 99 0 0 1 1 1 - - - - - -
Set2| 0 51 0 - - - 1024 014 084 - - -
Set3| 0 0 862 - - - [ 079 051 0.62

Set4| 20 77 0 1 1 1 027 016 1 - - -
Set5| 37 686 0 1 1 1 (020 011 097 - - -
Set6| 24 241 0 1 1 1 002 001 037 - - -
Set7| 83 0 88 1092 1 0.96] - - - 1092 1 0.96
Set8| O 51 0 - - - | 063 047 096 - - -
Avg. | - - - 098 1 0.99 027 0.18 0.830.85 0.79 0.79

3.6.3 Data extraction

Three regex with an ideal fithess of one have been selectdtelwrapper and its extraction
capabilities have been evaluated by means of the precigoall and F-measure. The expe-
riments used a dataset composed by eight sets of documemtsglififerent origins containing
URLSs, emails and/or phone numbers. Table 3.2 shows basiomiation about the datasets
and their average records and Table 3.3 contains some dvagex with their fitness value.
Sets one, two and three are composed by examples extrastedHe training set. The rest
of the sets are web pages retrieved from the Web classifieldaydontents. An extracted
string has been evaluated as correctly extracted if andibitlgnatches exactly the records,
otherwise it has been computed as a false positive.

The results, as can be seen in Table 3.2, are quite satigfdorophone numbers and
testing sets, but measures get worse for real raw docunrspesially the ones containing
URL records. Phone regex has a perfect extraction with a &ure value close to 1. The
training set used to evolve regex contains phone numbersimge format 000)000—0000,
the same that can be found in the testing set, the reductioecafl in set 7 is due to the
presence of phone extensions that are not extracted.

On the contrary, measures achieved for URL extraction fraw documents are much
lower. It can be explained looking at the regex used in theaetion, http://\w+\.\w+\.com
Documents used in the test contain many URLSs with paths, esoetliex is able to partially
extract them, increasing the count of false positives. H®seilt is a poor precision. An
explanation of the poor recall measures in URLs extract®found in the fact that the
evolved regex only is able to extract URL whose first level domis.com so its recall in
documents with a high presence of first level domains of ahgrdorm is worse.

Finally, email regex achieves an average F-measufe85f Some of the factors that
limits the URL regex extraction capabilities are also lingtemail regex. However in this
case the effects are not so severe for a number of reasorissfance the lower percentage
of addresses with more than two levels.
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Table 3.3: Some examples of evolved regular expressiomstigir fitness values.

Evolved regex (Phone) Fitness
\w+ 0
\(\d+\) 0.33
\(\d+\)\d+ 0.58
\(\d+\)\d+-\d+ 1
Evolved regex (URL)  Fitness
http://-http://http:// 0
N\w+)\. 0.55
http:/Aw+\.\w+\ 0.8
http:/Aw+\.\w+\.com 1
Evolved regex (Email) Fitness
\WH\. 0.31
\w+\.\w+ 0.49
\w+@\w+\.\com 1

3.7 Other approaches to distributed Information Integration

The use of ontologies [100] has attracted the attention @fdidta integration community
over the last years. It has provided a tool to define mediatedrsas focused on knowledge
sharing and interoperability, in contrast with traditibkatabase centric schemas, whose
goal is to query single databases [232]. The adoption oflogis has lead to reuse results
achieved by two communities such as the database and thev#huaaities to solve similar
problems like schema mapping or entity resolution. A deegudision about the role of
ontologies in data integration can be found in [183].

We can define a collection of semantic solutions based oragytéechnologies prior to
the development of the SW. An introduction to this group dfisons can be found in [238].
We can highlight classical literature examples such aSiefiath [181] or SIMS [132]. From
these systems, we have to single out InfoSleuth, a soluti@nuises a MAS.

Semantic integration tools in the last years have adoptedstaigiards and technolo-
gies. One of the first ones can be found in [234]. Vdovjak psggoa semantic mediator
for querying heterogeneous information sources, but dichib XML documents; further-
more, this solution relies on a wrapper layer that translgte local entities into XML and
only then the RDF is generated. A step forward is achieved lmhdlowski with Building
Finder [168], a domain specific mediator system aimed aiexétg and integrating infor-
mation about streets and buildings from heterogeneousassupresented to the user within
satellite images. [253] describes an information intégretool that covers all the phases of
integration, such as assisted mapping definition and qesviite.

Another newcomer into the IT toolbox is the Web Services netdgy. WS provide a
means to access services in a loose coupling way. Despitend/$ha SW face different
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Table 3.4: Comparison of semantic information integratimols.

Platform Agent Semantic Web  Ser- Interdomain
support Web vices support
InfoSleuth Yes No No Yes
SIMS Yes No No Yes
Building Finder No Yes No No
SODIA No Yes Yes Yes
Knowledge Sifter Yes Yes Yes Limited
Searchy Yes Yes Yes Yes

problems -one models and represents knowledge while tlee otte is concerned with ser-
vice provision-, they are related by means of semantic gesmrs of WS throught Semantic
Web Services. In this way WS are enhanced with semanticigéeass, enabling dynamic
service composition and data integration [68].

A semantic integration solution based on SOA is SODIA (SErn@riented Data Integra-
tion Architecture) [255]. It supports some integration Eg@ehes such as federated searches
and datawarehouses. By using a SOA approach, SODIA has nidimg benefits of using
an agent technology. However, this is a process centridisoland has limited seman-
tic support. The most aligned solution to the one descrilbetthis chapter is Knowledge
Sifter [129]. It consists of an agent based approach that Q8L to describe ontologies
and WS as interface to the agents’ services. Despite theofasgmantic support, WS in-
tegration or distributed nature, we have to mention theesygiroposed by [211], able to
automate the full integration process by creating the ntedischema and schema mapping
on-the-fly. Another interesting integration suite relatedbioinformatics domain that could
be mentioned is INDUS [51].

Table 3.4 compares some representative federated ontdldggn search solutions. The
scope of table 3.4 is limited, however some relevant fagsshown. It depicts whether the
integration system is supported by agents, it uses any WS\oteShnology as well as the
degree of specialization of the tool.

3.8 Conclusions

We have described a semantically enabled extraction aadration agent-platform named
Searchy. This platform basically works as a wrapper coatdinat can be extended using
almost any extraction algorithm. Using its capabilitiesyeav evolutive wrapper based on
GAs was introduced. This wrapper, using a set of positive reeghtive examples tries to
generate aregex able to accept the positive examples wfeleting the negative ones. Then,
the wrapper is able to extract information using the regekiategrate it. Perhaps the most
relevant contribution of the chapter is an algorithm base@ipf’'s law used to build an
alphabet of symbols that are used in the regex.

However, the results of this chapter should be carefullgrpreted. There are some
concerns about the experimental design that should bedayesi. Firstly, there is a strong
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dependence between the capabilities of the algorithm amtraiming dataset that feeds it.
In order to make fair experimentation, the effect of the sietahould be taken into account.
For this reason, a common practice in Machine Learning isifieeof cross-validation, but
is has not been applied in the work reported in this chapier tlaerefore we cannot exclude
the possibility of biased results by the dataset compasitio

There are also more substantial concerns. This chapter bdrey engineering flavor
since it deals with the development of new methods, and itrally leads to an “algorithm
race” research [112], where the research question deaswdiich algorithm has better
performance. But this question is naturally evil: thereseBous issues about the posibility
to draw a scientifically solid answer to that question. Traeetoo many factors to take into
account, such as datasets or parameter settings, to makeanfgarison. Even in the case
that the experimental design was solid, the conclusiortswbald be obtained could not be
generalized.

In addition to these concerns, there are also some pitfals.inStance, Figure 3.6 de-
picted the success probability of several GAs as a way to eoenglgorithms. However,
this is not a sound comparison method. The figure shows theat&endency of the success
probability, but does not characterize the variability loé data. Only with the information
provided by the figure, we cannot know if the result if due te thndomness or, on the
contrary, if reflects well the reality. For this reasons,f&3.6 should be used with care in
order to support any claim of that nature. More robust steismethods, like the ones that
are described in chapter 4, are needed.

From the perspective of the algorithm, we have some additiooncerns. Despite the
success of this platform as wrapper container, severatssemerge from the use of EC to
evolve regex. Perhaps the most important has a very basicenahere are a whole set
of domain specific algorithms with good performance abledivesthis problem. These
algorithms exploit the underlying nature of regular express, which are DFAs. Due to
the No-Free Lunch theorem, it is difficult for a non-spesiahlgorithm such as an EA to
outperform good specialist algorithms, such as ESDM [142, 153, 57].

In particular, GAs are not well suited for this task. The #ineepresentation used in
GAs does not map naturally to regex. This observation migtiais to move forward to
tree-based Genetic Programming, which has a representzbser to regex. In order to
compare the standard algorithm and some variations thahimeduced, we begun using
Koza’s computational effort, and we observed a high valitghin the results. Given this
variability, we had difficulties to find differences in thegalithms that we were analyzing.
Intrigued by this fact, we begun to study what was happeriinding that there were several
problems with the measure. In this way, the main researchtigmeof the dissertation was
stated. The next chapter begins with the study of Koza’s etatipnal effort, focusing on
one of its fundamental components: the estimation of a fittya
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Chapter 4

Estimation of the success rate Iin
Evolutionary Computation

Oh, people can come up with statistics to prove anything.
14% of people know that
Homer J. Simpson

In this chapter we aim to characterize the statistical ptagseof the static estimation
of the success probability, which we namsgccess rat¢SR). Therefore, SR is the success
probability when the algorithm is run for a certain fixed timkn particular, and without
loss of generality, we consider that SR is the success pilapadt the end of the run of
an algorithm, when the finish condition is given by a time timrhe characterization of
the SR is interesting by its own, given that this is a measudely used in Evolutionary
Computation (EC). A better knowledge about the estimaticBRwould provide a basis to
introduce more robust statistical methods. In additiois, ¢haracterization is used by futher
chapters of this PhD thesis in order to develop a time-degr@nuodel of success probability
(chapter 5), and characterize the error associated to timagi®n of Koza’'s computational
effort (chapter 6).

Along the chapter we provide theoretical and empirical enagks strongly suggesting
that the number of success runs in an Evolutionary Algori(e#) (and therefore the SR)
can be modeled using a binomial distribution. BinomialifyS&R implies that all the sta-
tistical tools available for binomial distributions carsalbe used with SR. We review the
statistical literature about one of these tools, binoro@ifidence interval¢Cls) and char-
acterize the quality of several methods in the context of BAaddition, due to its practical
interest, we provide a brief discussion of a method thatrdetes the number of runs that
an EA should be run to generate Cls with a given quality.

The chapter is structured as follows. Firstly, we motivéie importance of SR in EC,
then we introduce the basic problem of estimating a proitabiih section 4.3, we study the
statistical distribution that models SR, and we continuthai description of several meth-

67



68 CHAPTER 4. ESTIMATION OF THE SUCCESS RATE IN EC

ods described by the literature to calculate binomial Céxti®n 4.5 studies the performance
of several Cls methods in relation to the number of sampleébefxperiment and SR. In
section 4.6, we compare binomial Cls applied to some clas&® problems with Cls ap-
plied to theoretical binomial distribution. Section 4.Telfly describes a method to estimate
the number of runs needed to build Cls of a given quality. Wisliithe chapter with some
conclusions.

4.1 The role of success rate

Several measures have been used in EC research [23]. Théweld one measure instead
of another one depends on the object of study, the algoritigritee goals of the experiment
designer [61, 257]. However, there are some common mea$atesre heavily used such as
mean best fitness or mean average fitness [79]. One of the prostan ones is the SR. Due
to the stochastic nature of EAs, when an EA is run it might, a@hinot, reach a solution
that solves the problem it was designed for. SR is definedeagrtibability of an EA to find
such a solution, which is determined by imposing a succestigate, for instance, when an
individual achieves a certain quality. In other words, ih possible to use SR if there is
not a criteria to identify an enough good solution [76, 24].

SR should be used with caution. As Luke and Panait [159] ed}ifitness might not be
correlated with SR, and consequently it should not be usedrasasure of the population
quality. Nonetheless, finding literature that reports SR gsality measure of the population
is not too hard. In any case, SR provides an insight to thelgli#pes of the algorithm to find
a solution. Some times SR is not the measure of interest,atiurrit is part of a complex
measure such as tleemputational efforf136] in Genetic Programming (GP). In this case
the accuracy of the complex measure depends on the quatite efstimation of SR.

One characteristic of SR as has been defined above is thdeiiied as a scalar, but the
value of the scalar cannot be known in the general case. IbHas estimated. Angeline [6]
was the first person to observe this fact when working with patational effort, and sug-
gested that a measure about a stochastic process shouldttakecount its random nature.
The same can be said of SR, a single point is not enough toatbdra the stochastic nature
of this metric, and some additional information about itgistical properties should also be
reported, for instance, Cls. A number of issues arise wherstbchastic nature of SR is
analyzed in detail.

4.2 Issues about the estimation of a probability

From the perspective of SR an EA experiment is just a Bernowdl: an EA run is just

an experiment whose outcome is a binary random variabthat can take two values, let's
call them “success” or “failure”. SR is defined as the prolighiP(X = “success”) = p,

and is described by the Bernoulli distribution. The most pwn case in EC is that is
unknown, which is precisely the parameter we want to eséma@he procedure to do it is
well known, the EA is repeated times yielding a numbek of successes and— k failures,

then a probabilityp is computed ap = % Actually, we have described a Bernoulli process,
a sequenceX;,i = 1,2,...,n of random variables that are the outcome of a sequence of
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Table 4.1 Simulation of the estimation of the probabilifygetting heads when 1000 coins
are tossed.

Experiment Successesp;

1 483 0.483
2 531 0.531
3 594 0.594
4 521 0.521
5 513 0.513
Total 2642 2642 _ (). 5284

5000

independent Bernoulli trials, and therefore they are diesdrby a Bernoulli distribution.
Despite its simplicity, a number of trivial and non-triviasues arise when this experiment
is analyzed in more detail.

Consider the next naive experiment. We aim to empiricaldasure the probability of
obtaining head when a coin is tossed. Of course, if the cagudibrated and the experiment
is well implemented, that probability is/2. But we want to study it empirically, so, we
try the experimens times and count the number of successes. In this case treemniyr
four possible outcomes; € {0, 1,2,3}, and thus there are only four probabilities that can
be estimatedp € {0/3,1/3,2/3,3/3}. All these estimated probabilities are far off the
expected probability of /2. This trivial example shows that the real probabijitgannot be
always known, actually being able to empirically obtain thal probability is an exception
rather than a rule. It is because the experiment only is abestimate a valug = k/n,
which is supposed to be close to the real

Five simulations of the experiment described above wite= 1000 is shown in Ta-
ble 4.1. It can be seen that even with a large number of expatsr 000 experiments), it
is not possible to provide an exact estimatiorppeach one of the five experiments yields
different values op. Even if we average the probability of the five experimentgliis case
n = 5000), p = 0.5284. Thus, providing a fixed value fgs without any other informa-
tion is a partial view of the estimator, and one hardly can alang claims in base of this
estimation [6]. A reference is needed about how far or cfoseexpected to be from. In
order to obtain this information we previously have to sttitly statistical properties of the
estimation of a probability, which is a well known problemStatistics.

4.3 Determination of the statistical distribution of SR

Regardless of the particular nature of the EA under study,estimation of the success
probability of an EA consists in running the experimentimes, use a heuristic to identify
whether a particular run has been successful, and then dwainumber of successful runs
in generation; € N*, k(7). Finally, the estimation is calculated A&8) = k(i) /n.

We are usually interested (i) when the experiment has finished. So, for clarity and
without loss of generality, if the algorithm has been run@bgenerations, we define SR as
SR = p(G). How p(i) depends on time is a different topic that, for the specifie cdsGP,
is addressed in [16].
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Figure 4.1: Histograms ofy.,; for different simulated sample sizes for Santa Fe Tralil
(Ppest = 0.13168), 5-parity @pess = 0.061), 6-multiplexer fp.; = 0.95629) and regres-
sion @pes: = 0.29462). The binomial density distribution Bifif.s¢, n) is shown overlapped
with black points.

If we assume that the experiments are independent, whicbtia mery restrictive as-
sumption, measuring is equivalent to estimating the number of succegsesn indepen-
dent experiments. It is well known in statistics that the benk of successes is a random
variable described by a binomial distribution, and thuspgtabability of gettingk successes
in n trials is given by:

Bin(k,n) = <Z>pk(1 —p)nk

wherep = k/n, C(n, k) = ﬁlk), andk € {0,1,2,...,n}.

It is straightforward to deduce the binomial distributiamétion. Givenn experiments,
there will bek successes and — k failures, if the success probability jsthen, by defini-
tion, the probability of failure id — p, the probability of getting: successes is® and the
probability of gettingn — & failures is(1 — p)(~*). Therefore the probability of gettirgf
andn — k failures isp* (1 — p)(”_k). Moreover, the order in which successes appear is not a
matter, they can appear in any combination of successesaduck$, and there a@(n, k)
combinations, so we conclude that the probability of ggtfirsuccesses in experiments
when the success probabilityjiss given byC (n, k)p*(1 — p)™—*), which is the binomial
probability mass function.

So it can be deduced that the probability of gettinguccesses from runs in an EA
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Table 4.2: Tableau for the problems under study: Artificialt Avith the Santa Fe trail, 6-
multiplexer, even 5-parity and symbolic regression withBRC.

Parameter Artificial ant  6-multiplexer  5-parity Regressio
Population 500 500 4,000 500
Generations 50 50 50 50
Terminal Set Left, Right, A0, Al, A2, DO, D1, D2, X
Move, If- DO, D1, D2, D3,D4
FoodAhead D3, D4, D5
Function set Progn2, And, Or, Not, And, Or, Add, Mul,
Progn3, If Nand, Nor Sub, Div,
Progn4 Sin, Cos,
Exp, Log
Success predicate fitness =0  fitness =0 fitness =0  fitness <
0.001
Initial depth 5 5 5 5
Max. depth 17 17 17 17
Selection Tournament Tournament Tournament Tournament
(size=7) (size=7) (size=7) (size=7)
Crossover 0.9 0.9 0.9 0.9
Reproduction 0.1 0.1 0.1 0.1
Elitism size 0 0 0 0
Terminals 0.1 0.1 0.1 0.1
Non terminals 0.9 0.9 0.9 0.9
Observations Timestep660 Even parity No ERC
Yy = xt +
24224z
z € [—1,1]

experiment is described by a binomial distribution. A binaindepends on two parameters,
k andn, and thus the properties of the estimatopa$ independent of the domain and the
type of EA used. We can completely characterize the estinifatbe number of runs and
number of successes are known, which is the common situeti&C. More importantly,
the properties of the estimator do not depend on the algoritibernals, following that this
is of general application to any EA.

In order to get empirical evidence to support our claim weehselected four GP prob-
lems: Artificial ant with the Santa Fe Trail, 6-multiplex&rparity and a symbolic regression
problem with no ephemeral random constants (ERCs). Theselassical problems pro-
posed by Koza [136] and are widely used by GP literature. We Inan the experiments

with a standard tree-based GP algorithm using ECJ v18 amtkftsilt parameter settings.
The main parameters used in the GP executions are shownlm4.2b
Experimentation without any trick would require a huge nembf runs, so, we used

bootstrapping [59]. A large number ©60, 000 runs were executed (this number is reduced
to 5,000 for the 5-parity problem due to computational resourcethtions), and its result
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Figure 4.2: Quantile plot of four classical GP problems (&aRe Trail, 5-parity, 6-
multiplexer and regression with no ERC) against a binomistribution Bin(ppes:, 1000)
(Prest IS, respectively).13, 0.06, 0.96 and0.29, see Table 4.3).

stored in a dataset. These datasets are used later to bpgtstith different values ofn.
Sincep is not known, we have approximated it with a precise estiongij.;, which used
the whole datasets. This precise estimation was used asahefor comparison purposes.
Table 4.3 showg..:, k, n and confidence intervals fer = 0.05 anda = 0.01 calculated
with different methods introduced in the section section.

We first aim to compare graphically experimental results #wedbinomial distribution
Bin(ppest,n). The procedure is the following one. First, we simul2t@00 experiments
bootstrapping2, 000 values ofk. Each one of these values is calculated resampling with
replacement: runs contained in the dataset and counting the number oéssist runs.
This procedure is repeated for eacke {30, 50, 100, 250, 500, 1000}. After that, there will
be 2,000 simulated experiments with runs each one, and a total numberof00 values
of k. These values of were represented in an histogram usings a factor.

The histograms of the four problems under study are depint&igure. 4.1. The black
points in the figure shows the binomial distributi®in (py.s:, 7). It can be seen that the em-
pirical number of successes follows closely the theorebgsomial distribution in the four
problems and all values af, even for the small ones, which is an evidence of binomiality

In order to provide additional graphic evidence to suppaortaaim, Figure 4.2 shows
a quantile plot of the four problems considered in this stu@uantile plots represent the
number of successes Bf000 bootstrapped values @&f with n» = 1000, as was described
above, against the theoretical number of successes obtaore the binomial distribution
Bin(prest, 1000). The plots show a linear relationship, which suggests thectmess of the



Table 4.3: Best estimation of success probabiliy ), number of successek)(and number of runsi() for the four GP problems under
study, and their confidence interval (Cl) calculated with standard (Std), Agresti-Coull (AC) and Wilson (Wil) medlsausing confidence

levelsa = 0.05 anda = 0.01.

Artificial ant 6-multiplexer 5-parity Regression
Dbest 0.13168 0.95629 0.061 0.29462
k 13,168 95,629 305 29,462
n 100,000 100,000 5,000 100,000
Cl Stda—0.05 [0.1295842, 0.1337758] [0.9550228, 0.9575572] [0.0522660.06763378] [0.2917945, 0.2974455]
Cl Stdy—0.01 [0.12892566, 0.1344343] [0.9546247, 0.9579553] [0.087280.06971826] [0.2909067, 0.2983333]
Cl AC,—0.05 [0.1295983, 0.1337900] [0.9550051, 0.9575399] [0.054688.06798535] [0.2918025, 0.2974533]
Cl AC,—0.01 [0.12894997, 0.1344589] [0.9545939, 0.9579256] [0.068830.07033299] [0.2909204, 0.2983469]
Cl Wila—0.05 [0.1295984, 0.1337899] [0.9550052, 0.9575397] [0.05289D.06797681] [0.2918025, 0.2974533]
Cl Wila—0.01 [0.12895008, 0.1344588] [0.9545942, 0.9579253] [0.098840.07031365] [0.2909204, 0.2983468]
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binomial assumption. Quantile plots for other valuesafiere depicted (not shown) with
the same result.

We performed a fit-of-goodness study with a Pearso¥stest. This test evaluates
whether a set of samples comes from a population with a gignlaition, aBin(ppest, n)
in this case. Since the measure of Pearsgh’est is random due to the resampling, all the
experiments have been repeat®d times and the p-value averaged. The test was performed
for n € {15, 30, 50, 100, 250, 500, 1000}.

The results of the experiments for the four study cases usidely can be found in
in Table 4.4. It shows the mean p-value with its standardaden and their difference.
We set the rejection criteria of the null hypothesis (popafacomes from &Bin(ppest, n)
distribution) ap — value — sd < a, i.e., the difference between the p-value and its standard
deviation was higher than a certain significance level, $esaya = 0.05. Looking at the
results shown in Table 4.4 we can observe that almost all tvedyes are around.23, but
it tends to get lower values whenis higher. Similarly, standard deviations get highenas
increases. Two facts can explain this behaviour. Firstrdnge of values that the random
variable Bin(pyest, n) is wider whenn is high, so it is logical that the dispersion of the p-
value was proportional ta. Secondly, effect size might have a role in the explanation o
the results. We should keep in mind thgt,; is just an estimation of the real probability
associated to the GP problem, this discrepancy is more eppahenn is high, so it is
logical that the p-value got lower values.

Looking at Table 4.4 we only find evidence to reject null hyyasis in four cases, all
of them with high values ofi. The results of the testing in the rest of the cases does not
provide enough evidence to lead us to reject our initial iypsis. Due to the reasons de-
scribed above, we argue that the few cases where null hygistiserejected are type-I errors,
concluding that Pearsonig’ test supports our claim.

In conclusion, there are strong theoretical reasons toncthat success probability in
EAs is a random variable that can be modeled with a binomgfibution. All the expe-
riments carried out in four classical GP problems suppoatsataim for GP, histograms,
quantile plots and Pearsong test for fit support the binomiality of the number of success-
ful runs in an EA experiment. Therefore, it seems to be restslento assume binomiality
until section 4.6, where this issue is resumed and additeridence provided. One of the
most notable consequences of the binomial nature of SR tghbastatistical methods de-
veloped for binomial can be applied to SR in the context of Ee of these methods is
confidence intervals.

4.4 Binomial confidence intervals

Using a binomial distribution to model the SR of EAs enta#gseval benefits, one of them
is that all the extense literature about binomials can bé&exgpn particular, the problem of

estimating the SR of an EA can be generalized to the probleestohating the parameters
of a binomial distribution, which has been a subject of istenesearch in Statistics. Any
estimator has a certain associated uncertainty, so, negarhly the value of the estimator
provides only a part of the story. It is necessary to proviigiteonal information about that

uncertainty. A powerful tool to characterize itis Cls. Owoafjis to get a basic understanding



Table 4.4: Pearson’g? goodness-of-fit against a binomial distribution with= 0.05. 1,000 p-values were calculated, each one vl
simulated experiments. Average p-valups—(val), standard deviation of p-values (sd) and their differe@li¢ f = p — val — sd) are
shown. Data that drives to reject the null hypothegis-(val — sd < 0.05) is marked with bold letters.
Santa Fe 6-Multiplexer 5-Parity Regression
N p—wal sd diff p—wal sd diff p—wal sd diff p—wal sd diff
15 0.2275 0.0032 0.2243 0.2206 0.0789 0.1417 0.2211 0.0042169 0.2331 0.0152 0.2179
30 0.2303 0.0243 0.206 0.2242 0.0060 0.2182 0.2279 0.0042238. 0.2425 0.0203 0.2222
50 0.2374 0.0197 0.2177 0.2293 0.0053 0.224 0.2327 0.0043279. 0.2453 0.0382 0.2071
100 0.2355 0.0535 0.182 0.2342 0.0285 0.2057 0.2383 0.012%258 0.2316 0.0809 0.1507
250 0.2397 0.1155 0.1242 0.2420 0.0249 0.2171 0.2300 0.0631669 0.2132 0.1535 0.0597
500 0.1885 0.1479 0.0406 0.2326 0.0756 0.157 0.2348 0.1044 0.1304 0.1303 0.16290326
1000 0.1279 0.1813-0.0534 0.2109 0.1301 0.0808 0.2041 0.1006 0.1035 0.0407 0.16080599
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of how to use binomial Cls in the context of EAs, with a focustiogir properties.

Cls for binomial distribution is a well studied problem dueitis wide range of practi-
cal applications, so, it is not surprising that there are ynaethods to calculate binomial
Cls [44], and rigorous comparisons have been published, 44945, 190, 235, 207]. A
binomial distribution is fully described by two parameteitse number of trialss(), and the
number of successes)( Alternately, the success probabilibycan also be used, which can
be directly calculated from andk simply asp = k/n. Itis interesting from the perspective
of EC because it decouples its study from the particular EZdunly these two parame-
ters are needed in order to fully describe the statistic gntags of the Cl, regardless of the
internal dynamics of the EA and its particularities. Onelwf parameters in the binomial
distribution,n, is usually known by the EA practitioner, while the SRjs usually unknown
and thus it is the parameter that we are usually interestedtimate.

4.4.1 Description of the Cls methods under study

There are numerous binomial Cls calculation methods, aridding all in this study would
be unrealistic, so, we have selected those ones that waleomsore representative due to its
wide use or its presence in the literature. We have seleotathfiethods: standard, “exact”,
Agresti-Coull and Wilson. A brief introduction to these iineds follows.

Standard interval. Also known asasymptotic methqgdhormal approximatioror Wald
interval. It is the best known, oldest [145] and extended method, dvemame represents
how extensive the usage is. It is well known that a binonitah (p, n), whennp is large
enough (usually:p > 30), approximates a normal distributia¥i(np, np(1 — p)) (see Fig-
ure 4.1). Therefore if the binomial approaches a norma$ jtdssible to generate intervals
with the same method used with the normal distribution [238though this method has
been widely reported to suffer several flaws [44, 179, 24Q],a4is widely used due to its
simplicity and its presence in basic Statistics books. Taedard interval is given by

p(1 —p)

PE 202 4.2)
where z,/, is the upper/2 critical point from N (0,1) and whose values can be found
tabulated in statistical tables as well as statistical pgek. One drawback that the standard
interval presents is that this interval cannot be calcdlatbenp is 0 or 1.

Clopper-Pearson or “exact” interval. This interval is described as “exact”, with quotes,
because it is deduced from the binomial distribution. lcalty, despite its name, its discrete
nature makes this method unnecessarily conservative, remdfore far from being exact.
The limits [L, U] of the "exact” interval [58] are given by the solution toof the equa-
tions P(bin(n,py) < X) > § and P(bin(n,pr) > X) > §, which yields the following
equations:
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The solution of these equations is not trivial and can beesged using the beta distribution

as follows.
Lep(k) = B(a/2;k,n —k+1) 4.2)
Ucp(k) = B(1 —a/2;k+1,n — k) '

whereB(«; a, b) stands for thex quantile of aBeta(a, b) distribution. Sometimes the "ex-
act” interval is expressed as a function of the F-distridnutidue to its relationship with the
beta distribution:

n—k+1 ] -1
kFQk,Q(Tl*kﬁ’l),l*O&/Q

n—=k -1
Ucp(k) = [1 + ]
*) (k + 1) Fo41) 2(n—k),0/2
wherefFy, ;, . represents thé — c quantile from the F distribution with degrees of freedem
andb.

Agresti-Coull interval . Also known asadjusted Walda term introduced by the orig-
inal paper of Agresti and Coull [2]. This is a modification bktstandard interval where
some pseudo-observations are added to (4.1). In this watgad of calculating the standard
interval usingn andp computed ap = k/n, Agresti-Coull useg andn calculated as

Lep(k) = [1 +

. (k+ %22/2)
(n + 23/2)
and
n=(n-+ 22/2)
then, the standard interval is calculated as in (4.1), bugysandr: instead ofp andn,

- p(1 —p
Pt zas b = p) (4.3)

It should be pointed out that for a common case whete 0.05, then,zi/2 ~ 2 and thusp
andn can be simplified tg = (k+2)/(n+4) andin = (n+4). Consequently it is equivalent
to adding two failures and two successes. In this way theglntity remains unchanged,
and the calculus of the CI is the same than the standard aiserbut their properties are
significantly improved.

It is interesting to note that the center of the interval isgiven byp = % as usual, but
rather byp = (k + %zi/z)(n + 22 ,) ", which is not placed in the center of the interval.
Nevertheless, as is increased (and indirectly aldg), the center of the interval tends to
be closer togp = % so increasing the number of experiments generates mormsirin
intervals.

Wilson interval. Also known as thescoremethod. Wilson interval [247] is derived from
a normal approximation as the solutions to the equatipns pg)/+/po(1 — p)/n = iziﬂ
which is given by

1.2 2 2
k+ §Za/2 + Za/Q\/ﬁ p(l _p) 4 Zoz/2
4an

Clw = (4.4)

2 2
n+za/2 n—i—za/2
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The center of the Wilson interval has the same form as Agastill, so we can point out
the same considerations about it. Actually, whesa: 0.05 Wilson intervals are quite similar
to Agresti-Coull.

4.4.2 Discussion about Cl methods

Many authors have studied the performance of Cl methodgyusjorous statistical ap-
proaches [179, 44, 45, 190, 235, 207]. Brown [44] recommefmtssmalln (40 or less),
Wilson or Jeffreys (a variation of Bayes intervals, not gedehere) methods, while for large
n values (more than 40) he recommends also Agresti-Coullil&iy Piegorsch [189] re-
marks that while Wilson and Jeffreys perform better whest 40, the rest of methods are
similar for higher values of.

Some GP studies have been focused in the more specific problestimating the com-
putational effort, [240, 241, 180], all of them have notitkd poor performance of normal
approximation, and recommend the use of Wilson. Theseestuafiply several Cls methods
to computational effort, nevertheless they use a pure @rpatal approach, without a theo-
retical or statistical justification to support the methoded. It is not considered that some
of the Cls studied, such as Wilson, are supposed to be uskdinimial distributions.

We aim to study the performance of the most significant bimbi@i methods from a
systematic, general and problem independent point of @&, how its performance de-
pends orp andn. Once the behaviour of the Cls was understood in termsasfdn, it is
easy to extrapolate the results to a EC experimental context

4.5 Study on some confidence interval methods performance

This section, inspired by [44], analyzes the performancsarhe Cl methods. We are
interested in showing the relationship between the twopaters of a binomial distribution
and how they influence the performance of the Cl. We use tvaia@lmetrics to measure
the performance of the Cl methods, the coverage probahititiythe interval width.

On the one handoverage probabilitor CP) is defined as the probability of a CI to
containp, more formally,CP = P(L < p < U). Itis worth noting that increasing the CP
of an interval is trivial, just increasing its width. Furtngore, the coverage of the (I, 1]
is alwaysl because must be contained in that interval by definition. On the otieand CI
width (or CIW) is defined as the difference between U and’UWW = U — L. Of course, a
tight interval is better than a wide interval, given thatlbbave the same CP.

CP and CIW are closely related. There is a trade-off betwdear@ CIW, so Cl methods
have to find a balance between them. A good Cl is not that oread@P next td, but rather
atight interval with a CP close to the nominal coveragey, i.e.,P(L <p <U) =~ 1—a. If
an interval achieves a CP higher than the nominal one is atata wider interval. In terms
of EA experimentation, such a conservative method would,|éar example, to a higher
difficulty to detect significant differences between the SRwo algorithms. Understanding
the properties of CP and CIW might lead to designing bettpesgrents related to SR and
composed measures such as computational effort.
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Figure 4.3: CP (left) and CIW (right) for various sample sig€) and SR ) for standard CI
with confidence levek = 0.05. Similar shape and fluctuations are found in the rest of the

methods.

4.5.1 Cls performance overview

The performance of an interval depends on the binomial petensy but these parameters
are not independent. In order to get an initial glimpse te thiestion we need a huge set
of EA experiments as well as well as a strict control on the BRich is quite difficult to
achieve in real EAs. So, instead of running EAs, we have sitadithem.

Since parameters andp fully describe the binomial Cl of an EA, we do not have to
run the algorithm. From the SR point of view, the result of akh &periment is binary.
Therefore we have characterized pseudo-EA runs with a $abels, "success” or "failure”.
For each probability € {i/2000vi = 1,...,2000}, we generated a dataset with0.000
labels "success” with probability and "failure” with probabilityl — p. Once the dataset was
created, we took pseudo-experiments 000 times, withn = 5,6, ..., 100, and calculated
p; for each set of experiments. In summary, we bootstragpesing 2, 000 resamples for
several combinations gf andn. The Cl witha = 0.05 was calculated using each method
under study and each combinationpodindn. Finally, CP and CIW were calculated. In this
way we simulated the execution of EAs varying number of rurs@robabilities, yielding a
total of 95 x 2,000 x 2,000 = 380, 000,000 simulated EA runs.

The relationship between CIW,andn can be seen in Figure 4.3 (right), where the CIW
of standard Cls witla. = 0.05 is depicted. The shape of the figure is the same for the rest of
the methods under study, so we only show the diagram of oneathe€CIW is symmetric for
the planep = 0.5 due to the fact that these methods are equivariant, theislfor (n—k)/n
are complements of those fér/'n [179]. The planep = 0.5 defines the symmetry of the
figure as well as the maximum of CIW. Cls are wider when SR iselo0.5, alternatively
the closer i to its boundarie$) and 1, the tighter is the interval. It is explained by the
constraints that the boundaries introduces to the calonlaff the interval. Looking at the



80 CHAPTER 4. ESTIMATION OF THE SUCCESS RATE IN EC

behaviour of CIW withn, we can observe that CIW is monotonically decreasing, wdreth
the number of runs is increased there is additional infalonahat is used to build tighter
intervals. Of course, the price of such improvement is areimee of the number of runs and
computational resources.

Figure 4.3 (left) depicts the coverage of standard Cls foerse values ofp andn. It
can be seen that Figure 4.3 (left) depicts a rather chaotievieur, with many peaks and
valleys without a clear pattern. We will show later that théhaviour is not actually chaotic
but rather the low resolution of Figure 4.4 which hides soimen@mena very characteristic
of binomial Cls. It will be analyzed in detail in the next dect

Some patterns can be found in Figure 4.3 (left). In particiias pretty clear that low
coverage is associated to a low number of trials or a SR ctw8eahd 1. This fact is also
observed in the other methods and is intrinsic to the nattitheo binomial distribution.
However, there are quantitative differences among the mdsthin the case of the standard
interval the effects of low: values are dramatic because the normal approximation is no
longer valid. This behaviour is consistent with the one ibimCIW: the wider is the Cl, the
less restrictive it is, and thus it is more likely that thelreavas contained in the interval.

The rest of the methods present the same high level behag@saribed above, so all
of them share some common properties which seem to be iottthe problem, however,
their performance differs significantly when analyzed itadelt worths exploring this issue.

4.5.2 Coverage of Cls

An analysis of CP shows some remarkable facts. Figure 4résepts the coverage surface
of the methods under study farbetweer20 and200 in steps ofl andp takes2, 000 values
betweerD) and1. CP was calculated using R’s functibin nom : bi nom cover age() .

Figure 4.4 shows that the chaotic behaviour of CP seen irr&iguB (left) actually fol-
lows a pattern with symmetry in the axis= 0.5. The low resolution and sampling noise
of Figure 4.3 (left) hid this pattern. As was previously seegardless of the used method,
there are some areas with poor performance in terms of CBgtatthe boundaries pfand
low values ofn. Coverage is particularly low in the bottom corners of thapdy, where both,
n andp have negative influence on CP. This is a low coverage areagwgiraply there is not
enough information to define reliable intervals. Howeuee, toverage of the standard inter-
val is dramatically poor CP in these corners in relation ®rést of the methods. Coverage
of standard intervals achieves extremely low values when15 andp < 0.1.

A new, and striking, phenomenon that was not observed prskidn Figure 4.3 (left)
is the presence of oscillations in the coverage regardles€t method used. These oscil-
lations are a well known phenomena [44, 2] and they are gttty the discreteness of
the binomial distribution. The magnitude of the oscillagchas a great impact in the overall
performance of the Cl method. Oscillations appear in Figudeas waves whose magnitude
is inversely proportional to the value af The magnitude of the oscillations also depends
onp, and itis, like CP and CIW, symmetrical with respect 0.5.

Despite the fact that CP presents oscillations regardlessntethod being used, their
magnitude changes. It is clear that, for instance, stantdedvals coverage oscillates
strongly whem is low in comparison to the rest of the methods. Wilson an@t&xmethods
contains coverage oscillations less pronounced than thdke standard method.
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Figure 4.4: Dependence between coveragandp for Cl methods under study: standard,
“exact”, Agresti-Coull and Wilson, all calculated with = 0.05. X-axis represents success
probability, p, while y-axis represents the number of runs, Coverage values lower than
0.92 have been represented in black, while coverage that ecialsaminal value).95 is
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p

It is important to verify how close is CP to the nominal cowa This point can be
appreciated more clearly in Figure 4.5, which shows sevetat” of the coverage surfaces
at some values af. In this way we obtain a detailed view of the oscillations. ideal ClI
method would generate intervals with a CP equal to the ndroime, nevertheless it is clear
looking at Figure 4.5 that the real coverage is far from beiggal to the nominal on@,95
in this case.

There are some common characteristics of the oscillationalf the methods under
study. The magnitude of the oscillations and its shape &ctlir related ton. Whenn is
large, for instancé00, CP gets a rather flat shape with small oscillations and C&etty
close to the nominal coverage. Looking at Figure 4.5 we cmiecthat, in the same line than
the ones reported by [44], whenis large enough the differences of coverage properties of
the Cl methods under study are not significant.

Each method exhibits some patrticularities in the behaviduheir coverage. “Exact”
intervals coverage is always higher than the nominal ones ddnservatism produces wider
intervals, as will be shown later. On the contrary, standatelvals coverage is lower than
the nominal coverage, indeed wherns low, the coverage is much lower. Even when-=
100, which is a relatively high number of trials, its performania the boundaries qf is
poor compared to the other methods. Agresti-Coull intedaas not exhibit such a clear
behaviour. It has areas where CP is higher than the nomimeglasd other areas where CP
is lower, however it tends to be more conservative in the tatias ofp. Finally, Wilson
intervals show good coverage properties closé te « and it is neither conservative nor
liberal.

Itis worth comparing the exact CP with those obtained in imeigted executions of GP.
Figure 4.6 depicts coverage diagrams obtained by the expatidescribed in the beginning
of the section fom = 20. It can be seen that Figure 4.6 fits nicely with the analytozal-
erage represented in Figure 4.5, with the only exceptionhifla frequency noise produced
by the sampling. Given that the CP diagram shown in Figurésit6elf the estimation of a
probability, the existence of this noise is now surprisigany case, it seems clear that the
shapes of both diagrams follow the same pattern, and thusnidherlying probability distri-
bution is likely to be the same, i.e., a binomial distribatigproviding additional support to
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our hypothesis.

4.5.3 Average CP

Some characteristics of the coverage properties can berhbhetwed using average val-
ues of CP, as they are shown in Figure 4.7. It shows the CP gaerfar 1,000 values
of p between0 and 1 (top) and values of between5 and 49 (bottom). We used the
bi nom : bi nom cover age() function from the Roi nompackage.

Figure 4.7 (top) shows how for low number of runs average iameeis degradated in all
the methods, nevertheless, it does not affect equally toSa#indard method has very poor
average performance whenis low. On the contrary, “exact” method presents a ratheh hig
average CP for small number of runs, which is consistent thi¢hconservative behaviour of
this method previously observed. Agresti-Coull methodss guite conservative, however
less than the “exact” method, its average CP is close to thenabd one. Finally, Wilson Cls
have an outstanding performance with a low number of runsedhis very low, arround,
its average CP is close to the one in the “exact” method, hetexts it dramatically decreases
for higher number of runs, achieving an average CP very ¢mfge nominal one.

It is interesting to observe the average CP when the numbemsfis high. Figure 4.7
(top) shows that increasing the number of runs tends to eethue difference among the
methods, but not to the point of diluting all the differencEsen for a relative high number
of runs (@ ~ 100), the standard method has a disappointing performanceanitfiverage
CP much lower than the nominal one. A glance to Figure 4.5 stibat the low average CP
is due to its poor performance in the boundariep.dh opposition to the standard method,
the “exact” method tends to generate conservative inteatn with high number of runs.
Agresti-Coull and Wilson are the methods that are close#teaominal coverage when
is high, with a small advantage to Wilson.

Figure 4.7 (bottom) adds a complementary perspective w&rdias been averaged
for values ofn between5 and49. Standard method has very poor coverage properties,
dramatically poor whemp is close to0 or 1. To be honest, it should be pointed out that
values used to average is rather low, just where its perfocees worse. The conservatism of
the “exact” method is evident observing the figure, this roétipenerates the highest CP. This
property makes it more difficult to find differences amongpaillpms, however it minimizes
finding false differences, which might be of interest depegan the experimentation goals.
Close top = 0.5 all the methods have similar average CP, with the only exweif the
“exact” method, again, with a high CP in comparison with thestrof the methods. The
method whose average CP is closest to the nominal coverageady Wilson’s method,
achieving a quite flat average coverage plot, even in extrehues ofp, where the average
CP is slightly increased.

45.4 Average CIW

The overall picture of how Cl methods perform should be catgal looking at CIW. Unlike
CP, CIW has not a random nature, given a certaendp, the exact value of CIW can be
determined. Average CIW values were calculated usilgigure 4.8 top) ang (Figure 4.8
bottom) as independent variable. Many properties of the €&hods are equivalent or com-
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plementary to those observed for the average CP because olbfe relationship between
CP and CIW. The most notable differences among the Cl meth@d®und whem is small
andp is close to its boundaries, just like CP. Similarly, whers large, average CIW tends
to be rather similar in all the Cl methods. The same happemswis close t00.5 between
Wilson and Agresti-Coull.

Figure 4.8 (top) shows that there is a clear relationshipvéen the average CIW and the
number of trials: the smallet is, the wider the interval is. Indeed it does not follow a &ine
relationship: whem is small adding few runs dramatically reduces CIW, but thectfof
increasingn is less notable when is greater, until a point where increasingloes not pay
off due to the limited improvements in CIW.

CIW graphs explain some facts about coverage properties. high CP found for the
"exact” method has its counterpart in CIW; high average Céclieved at a cost of wider
average intervals. This fact can be observed for almoshalvalues ofy andn shown in
Figure 4.8 (top and bottom). The normal approximation Eellightly wider Cls, except in
case of lowp values, just where CP is much worse. Wilson shows an extegleformance
from the average CIW point of view with tight intervals.

455 Discussion of the results

Looking at the results shown in this section, we suggest siigustandard method in any
case, its performance in terms of CP and CIW ranges from resligvhennp > 5), to
very poor ip < 5). The simplicity, availability and presence in the litena is a point to
take into account in favor of Wilson’s method. In any caserd¢hs not a method with better
CP and CIW in absolute terms. In average terms, Wilson seeims & good election, but in
order to be strict selecting the method with the best perfmce for an EA, we suggest to
analyze first the area of the binomial parameter space inn@itwould likely to be placed,
and then look at CP and CIW of the methods in that area to si#leanethod with better
performance.

Another important subject to take into account when selgcii Cl method, is the par-
ticularities of the experimentation. It might be importafur instance, being able to detect
differences of SR between two EAs with a high level of confaeravoiding type-Il errors
as much as possible. In this case using the "exact” methottrhgyinteresting, at the price
of making it harder to find these differences.

In any case, when the SR is very low, and it is not possiblerariarge number of runs,
the methods described in this chapter are no longer reconedenWhen this situation is
found, it is better to approximate the binomi&in(n, p) with a Poisson distribution with
expectatiom\ = np [109, 73].

We have provided so far some theoretical and empirical ecele that support the bi-
nomiality of SR, as well as a glance to the performance of @isiatural question arises
at this point: Does the behaviour of Cl performance studleal/a also describe ClI perfor-
mance in real EA experiments?. It is clear that in case SR vmasriial its Cls would have
the same performance, suggesting an affirmative answegJsownore direct evidence is
actually desirable.



4.6. EMPIRICAL STUDY ON THE BINOMIAL CIS IN TREE-BASED GP 87

Artificial ant 6-multiplexer 4—parity Regression

0.95 1.00

CP

080 085 090 095 1.00
I
CP

080 085 090 095 1.00
1
CP

080 085 0.90 095 1.00
I

5 15 27 39 51 63 75 87 99 5 15 27 39 51 63 75 87 99 5 15 27 39 51 63 75 87 99 5 15 27 39 51 63 75 87 99
Number of runs (n) Number of runs (n) Number of runs (n) Number of runs (n)

p=0.13168 p=0.95629 p=0.061 p=0.29462

CP

080 085 090 095 1.00
1
CP

080 085 090 095 1.00
I

CP
080 085 090 0.95 1.00
I

I
0.80
I

— T T T [E— T T T
80 100 20 80 100 20 80 100 20

20 80 100

40 60 40 60 40 60 40 60
Number of runs (n) Number of runs (n) Number of runs (n) Number of runs (n)

Figure 4.9: Empirical CP for the four domains (top) compae@P of the binomial distri-
bution (bottom) with the same SR (= 0.05).

4.6 Empirical study on the binomial Cls in tree-based GP

We aim to test if the theoretical CP and CIW curves shown alzoeerelated with those
ones obtained from real GP problems. So, CP and CIW curves leen generated using
the experimental setup described in section 4.3 with its 8B problems: Artificial ant
with the Santa Fe trail, 6-multiplexer, even 6-parity anthbglic regression. CP and CIW
were calculated using the same experimental procedureiloledén section 4.5.2, however,
instead of using a dataset composed by pseudoexperimeat<GP experiments was used
to generate, 000 intervals and calculate CP.

Figures 4.9 and 4.10 compare, respectively, CP and CIW ofadineproblems under
study (first row) with the theoretical CP and CIW of a binomi&h(n, py.s:) (Second row).
This diagram is visually very similar to the theoretical srehown in Figure 4.8 and 4.7.
This result supports our hypothesis thafits actually a binomial distribution.

4.7 Sample size determination of confidence intervals

We are interested in getting precise measure of SR. Such jantieb is rather simple to
achieve, just increasing the number of trials, howeverctreputational costs of running an
EA might be high, so increasing without a well founded criteria may not be a practical
solution. It would be desirable using a well grounded meigmario seta priori the sample
size needed to get intervals of the quality desired by thetitianer or researcher. Such
a mechanism would, on the one hand, avoid wasting unnegessarputational resources
running the EA just the number of times to reach a certainityy@and, on the other hand,
provide a solid methodology to set the number of runs.

When someone calculates the ClI, they know the number of xpets that have been
run, and the number of successes that have been achieve@velpwe can state the problem
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Figure 4.10: Experimental CIW for the four domains (top) gamed to CIW of the binomial
distribution (bottom) with the same SR & 0.05).

from another point of view. Instead of estimatipdor &, which is the same problem), we
could make an initial rough estimation pfwith a small number of runs, let's call iy
instead ofp, set a certain CIW for the CI, and then obtaiffrom the equations of the Cls.
This approach was proposed by Piegorsch [189] to estimateumber of samples needed to
obtain intervals with a certain CIW. In this section we sumaesome of his results. There
are other approaches, especially from the bayesian pérsgpeand a number of studies have
been published [198, 214, 171] addressing this topic fromatistical point of view.

Piegorsch describes in [189] a method to calculate the sawipé for the standard,
Agresti-Coull, Wilson and Jeffreys methods. For simpjicinstead of using the CIW, he
used the half of the intervat, = CITW/2. For the Standard method, we can state that the
half of the interval is, using eq. (4.1),= z,/21/po(1 — po)/n, solving that equation fon
is straightforward, yielding

22 1ypo(1 = po)

s =
€2

The same procedure can be used for Agresti-Coull, the halieinterval in this case is
given by eq. (4.3) as,2+/p(1 — p)/n and solving fom we obtain eq. (4.6),

(4.5)

22 ,po(1 — po)
nAC:/ZG—Q—Za/QZTLS—Zi/Q (46)

It should be mentioned that Piegorsch does not recommemd (4i6) with less thad0
samples. Similarly to the standard and Agresti-Coull wvdés, Wilson sample size is the
solution ofn when the half of the interval of (4.4) equalsyielding the following expression:

po(1 —po) — 2% + \/p2(1 — po)? +4e2(po — 1)2
2e2

nw = Zgo 4.7)
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widths whenpy = 1/2. Notice the logarithmic scale in the latter one. Unless éor Values
of pg, the sample size needed by Wilson is lower than for the ottethadas. Confidence
level is set tax = 0.05.

In-depth discussion of the equations described above isfdhe scope of this dissertation,
but it can be found in [189]. However, it is worth a brief dission to bring some interesting
points to the EC community. Comparing (4.5) and (4.6) it &aclthat sincei/2 is positive,
Agresti-Coull always requires less samples than standattiod to achieve an interval of
the same length. It is interesting to point out that whgn= 1/2, ny equalsnsc, a
fact consistent with the relationship between Agresti{Cand Wilson interval previously
shown.

A major concern to calculate the sample size method destiib¢his section is the
measure ofpg, which is, itself, the problem we face when calculating bmal Cls. A
conservative solution to deal with this problem withoufresting p is to use the fact that
Cls are widest whep = 1/2. If we setpy, = 1/2 (the worst case) it is guaranteed that the
resulting sample size will generate intervals, at leasthefdesired half-length. It could
be better understood looking at Figure 4.11 (left), thisrégrepresents the sample size as
a function ofpy whene = 0.1, i.e., an interval of the fornfjp — 0.1, + 0.1]. The same
behaviour is observed for different values «of Figure 4.11 (left) clearly shows that, no
matter which method is used, the valuepgfthat originates the highest sample sizé /g,
so it is a good conservative election when there is no infionabout its value.

Observing Figure 4.11 (left) with more detail is interegtimgresti-Coull requires al-
ways less samples than the standard CI, and this method ttekessime sample size than
Wilson next top, = 1/2. Figure 4.11 (left) could lead to mistakenly conclude thgtesti-
Coull is the best choice to reduce the sample sipg ik 0.3 ande = 0.1. To get a complete
picture, CP should also be considered. From the CIW poinief vt is clear that Agresti-
Coull would be the best choice, but looking at CP we can sdehiasmall sample size is
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at a cost of a bad CP performance. So in this case Agresti@eatls fewer runs, but it
generates less reliable intervals. In the low coverag®ne@mallpy) Wilson has a slightly
better CP performance, at a cost of a higher sample sizenasecseen in Figure 4.11 (left).

Whenp, is unknown a conservative valpg = 1,/2 might be a good choice. Figure 4.11
(right) represents the sample size as function iof this situation. The sample size dramat-
ically increases with the inverse ef This behaviour is explained by the presence af
the denominator of (4.5), (4.6) and (4.7), and is logicalyéf desire a tighter CI, we would
need more information to build it, which is translated intorearuns. As it was previously
noticed, Agresti-Coull and Wilson intervals generate #iyabe same sample size because
whenp = 1/2 both intervals are actually the same. Finally, it is intérgsto notice that
for wide intervals the sample size is as lowlasNVhene < 0.5 the interval takes the form
[L,U] ~ [0, 1], and therefore it almost covers all the possible values. dh other words,
the interval is so wide that it does not need much informatmbe constructed, yielding
extremely low sample sizes.

In conclusion, the selection of the sample size has to takeaocount several criteria,
some of them mutually exclusive, so a compromise is neededally the goal is to obtain
an interval with a certain CIW (o) with the lowest number of runs to save computational
resources. Egs. (4.5), (4.6) and (4.7) provide a mean taleddcthe number of runs required
to achieve a Cl with a given CIW regardless of the associated-@Qure 4.4 provides a mean
to estimate the expected CP for the calculated sample gize £00.05. In case that CP is
not the expected one, it is necessary to increase the nurhbamples until CP achieves an
acceptable value. Sa,is determined by the maximum sample size between the desirab
CP and CIW.

4.8 Conclusions

In this chapter we have provided theoretical and empirigalence suggesting that SR in
an EA can be modeled with a binomial distribution. Hence,dktensive literature about
binomials can be applied, including Cls, determinationhaf sample size, hypothesis test
for difference between proportions and so on. An importaoblem related to EC exper-
imentation is the measurement of SR. Due to the binomialreaiti SR, its estimation is
the same problem that the estimation of the parameters afcartial distribution, and their
statistical properties do not depend directly on the irgkrof the algorithm.

Cls are a statistical tool with a potential role when stugdyiine performance of an EA.
We have described some binomial Cl methods with some of thain properties, draw-
ing a picture useful to generate more robust experimentgds in EC. It was found that
Wilson is the method that provides better average perfocamagven for low number of sam-
ples and SR next to the boundaries, nonetheless there is thodnith the best CP for all
the parameter space. Depending on the nature of the expeation, other methods might
be interesting due to their properties, such as Agrest@uouhe "exact” method when a
conservative method is needed. In any case, experimentsshahis chapter and related
literature strongly discourage the use of the standarahalte Despite the method chosen,
we encourage EA reportingandk, as well as the interval, to ease further statistical manip-
ulation and comparability of the results.
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Finally, we reported some guidelines to select the numbenwfto generate SR intervals
with a certain expected performance in terms of CIW and CRdDfse, SR is not usually
the only measure that is taken from an EA, it only gives a phxiew of the algorithm
performance, that, with other measures, helps to understenbehaviour of an EA.

Along this chapter, we have assumed than an EA is somethatig,ste., we have in-
tentionally excluded time in this study, considering thsute of the algorithm when it has
finished its execution. It takes sense given the differattstical properties of SR and suc-
cess probability, but that only is a part of the story. Untigrding how the success proba-
bility behaves along the time is something basic to answerdbearch questions that drive
this dissertation. In particular, we have to understandrtimetime behaviour of the suc-
cess probability in order to develop an analytical model aselit to characterize the Koza’s
computational effort. That is the goal of the next chapter.
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Chapter 5

Run-time analysis of tree-based
Genetic Programming applied to
model the success probability

Organic life beneath the shoreless waves
Was born and nurs'd in Ocean’s pearly caves;
First forms minute, unseen by spheric glass,
Move on the mud, or pierce the watery mass;
These, as successive generations bloom,
New powers acquire, and larger limbs assume;
Whence countless groups of vegetation spring,
And breathing realms of fin, and feet, and wing.
The Temple of Nature. Erasmus Darwin

We need a analytical model of the success probability inraimeharacterize the error
associated to the measurement of the Koza’s computatidioat. €T his chapter is devoted
to develop such analytical model. The model we propose isthas a decomposition of the
success probability into two terms. The first term is statit mnodels the success probability
at the end of the execution of the algorithm. This is a bindmaadom variable and its
statistical properties were previously studied in the tdiap. The second term models the
variation of the success probability with time, and thudgipends on the run-time behaviour
of the algorithm, which is unknown. In order to determine hevthat run-time behaviour,
we perform an experimental analysis of the run-time requtiodind a solution, that we name
run-time to success

As a consequence of the run-time analysis performed to @eslassical GP problems,
we find that the run-time to success follows a complex patiterfianction of the problem
difficulty and the parameter setting. In general, the rametio success seems to fit well a
lognormal distribution, however, in difficult boolean pleims this claim does not hold, and

93
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in that case the right tail of the run-time to success is egptally distribution. To complete
the picture, when the selection is performed at random,uhdime behaviour is described
by a Weibull distribution. These results are used to inclindelognormal distribution in the
model of success probability which is used in chapter 6 toattiarize the estimation error
associated to the Koza's computational effort.

Even though the experimentation carried out in this chaptdy involves tree-based
GP, there are reasons to suspect that the results are, apéetially, generalizable. One
of these reasons can be found in the literature dedicatduetoun-time analysis of several
metaheuristics. In an attempt to generalize the resultprogose a theoretical model based
on Markov Chains, and demostrate that in ausence of legrtiiregresulting run-time is
geometrically distributed.

This chapter is structured as follows. First, in the intrcighn we contextualize the work
reported in the chapter. Then, section 5.2 is dedicatedrforpea run-time analysis of some
classical problems in Koza’s style GP. This analysis ineslgome common scenarios, but
also some extreme situations in order to understand bagaun-time behaviour of the al-
gorithm. Section 5.3 proposes a simple theoretical modelmetime distribution. The main
goal of the chapter is addressed in section 5.4, where thet ofee run-time analysis is
justified, and the results of such analysis are used to peopanodel of success probabi-
lity. The proposed model is then experimentally validat8dme work aligned with ours is
presented in section 5.5, followed by a discussion of thalteand some final conclusions.

5.1 Introduction to run-time analysis

Run-time analysis is a powerful tool used to characterieetin-time behaviour of the algo-
rithms. A common practice in EC is to measure the run-timerapadrt its central tendency
and variability statistics. However, this practice has sainawbacks. Perhaps, the most
remarkable one is that such a concise reporting necessedyto drop relevant informa-
tion. Using a full description of the measured run-timesrabably a better practice because
no information is lost in the process, and perhaps more itaptly, it opens the statistical
characterization of the run-time, which can lead to imptriabservations and more solid
statistical methods.

To the authors’ knowledge, the first use of a run-time ansly&is performed by Feet
al. in [82]. The most widely used tool in run-time analysis is fRen-time Distributions
(RTDs), that was introduced, formalized, widely studied advocated by Hoos and Stiitzle
in [116]. It was followed by an extense sequence of publicesiwhere several stochastic
search algorithms and problems were studied using RTD sisalyVe can briefly define a
RTD as the empirical cumulative distribution of the prolipof finding a feasible solution
at timet.

There are several advantages of using RTDs. First, it fudlscdbes run-times from a
statistical perspective, since all the statistical propgiof the data are contained in the RTD,
and thus, statistics such as the median and the standamtidevéan be calculated from it.
In addition, important properties are easily visualizag;hsas the size of the tails, rapid or
slow decays of the probability of finding a solution, and so dmis data is lost in more
conventional reporting practices. RTDs also facilitateual comparison of algorithms and
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can also be used to determine optimum restarts. But prolmaigyof its most interesting,
and less used, features, is that it opens the doors to irdeqolarametric statistics to analyze
the run-time of the algorithms. In this way, more robustistasl methods can be used, for
instance, to determine whether an algorithm A is able to fisdlation in less evaluations
than an algorithm B.

Run-time analysis made in the context of Stochastic Locat@®e(LS) and other meta-
heuristics with optimal parameter configuration have shtvan the exponential (or shifted
exponential) distribution has a major role to describe RTZR%]. Depending on the pro-
blem difficulty, and the parameters setting, other distidms might appear, in particular the
Weibull distribution in easy problems, which is a genewtiizn of the exponential. This
result holds in particular for SLS methods, such as Walk&fiplied to 3SAT, CSP and TSP
problems [115]; and some metaheuristics such as Simulateealing (SA), Iterated Local
Search (ILS), or Ant Colony Optimization (ACO) [205]. Thessults suggest that RTDs
have common properties across different algorithms anblgmos.

Nonetheless, to the authors’ knowledge, run-time analyasnot been applied to tree-
based GP, and thus, there is no evidence supporting thatdh®ps results can be applied
to GP. In order to develop a model of success probability atice 5.4, we need to know
the run-time behaviour of tree-based algorithms, whichtxEaperformed using experimental
methods.

5.2 Run-time analysis of tree-based Genetic Programming

Generally, experiments dealing with Evolutionary Algbnits (EAS) involve running the al-
gorithm until a certain condition is fulfilled or a resourcedget is exhausted. Usually the
budget of resources provided to the algorithm is, directljndirectly, time through a limit
on the number of evaluations, or generations, in a geneadtadgorithm. Run-time analysis
is based on this time, whatever the unit that was used to meeaisand in particular, run-time
analysis deals with the measurement and analysis of thertiquéred to find a solution.

A common tool used for run-time analysis is the RTD. Let us @an() the run-time of
theith successful run, and the number of runs executed in the experiment, then the RTD
is defined as the empirical cumulative probabilityrt < t) = #{i|rt(i) < t}/n [115].
Reader should note that the definition of the RTD assumesuhatme is measured in time,
which is an architecture-dependent measure. There areaeveblems associated to mea-
suring time in this way [11]. For this reason, instead of gdime as a unit, run-time analysis
is usually performed using an architecture-independeme tinit, such as number of evalu-
ations in EAs, or algorithm iterations. In this case, thent&un-Time Length Distribution
(RLD) is used instead.

A run of a stochastic search algorithm might find or not a $otutin the first case, the
run is successful. But on the contrary, if the run does nottfiedsolution, the run-time usu-
ally takes a cut-off value. The term run-time refers to bathen clearly they have different
interpretations. The cut-off execution time is a parametelt known by the experimenter,
and thus it is of little interest. Much more interesting is thme required to find the solution,
which is the basis of RTD analysis.

For these reason, in the context of run-time analysis, wiepeoiding the term run-
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time, in favor of the more specific terman-time to successn this way, we explicit the time
required by a run to find a solution, not considering runs tete unable to find it. In the
following, we use the number of generations as an archite¢hdependent time measure,
so, the time required by a run to find a valid solution will beneal generation-to-success
Given that the experimental setup uses generations as tiibewe will use run-time to
success and generation-to-success interchangeablgePlede that run-time to success and
generation-to-success are not defined for those runs thattdeach a solution.

The definition of RTDs involves the ability of an algorithm fiad a solution, but also
how many time the algorithm needs to find it. This property esakense in the original
context they were introduced, whose objective is algoritomparison and restart point
determination. However, in our opinion, there are some Heaks with this approach when
the objective is the characterization of the algorithm béha. Perhaps, the most notorious
one is that it mixes two concepts that answer different gorestand, more importantly, they
have different statistical properties. The shape of the RfiBwers when the solution is
found, while its height determines how likely is to find a s, i.e., itsSuccess RatSR).
These are two different sides of the observed phenomenantbat opinion should not be
mixed. Moreover, there is a more practical reason behirglgbsition, SR has a binomial
nature, as seen in chapter 4, and thus it has some well knatististl properties [21, 15].
In addition, generally RTD does not satisfy the propdPtysc) = 1, which makes it more
difficult to guess which distribution fit visually.

An alternative, quite naive, and efective method to repuettime required by an algo-
rithm to find a solution is just plotting the histogram of thiate. Both methods, RTDs and
histograms of the run-time to success are equivalent adégth they can be easily trans-
formed to each other, given that the SR was known. It is relesi@ce it gives us a base to
compare the results obtained using RTD analysis with the og@orted in the literature. In
the following, following our own advice, we base the runimnalysis on the histograms of
the run-time to success, measured in generations, and tapd@R independently.

5.2.1 Run-time behaviour of tree-based GP classical prolhes

Previous RTD analysis [115], mainly in the context of SLS anthe classical Al problems,
has shown that the RTD of hard problems is exponentiallyridiged. In this section we
try to verify whether this observation is repeated in trasdal GP, or on the contrary the
run-time can be described using other distributions. Te #xitent, we have measured the
run-time to success that yields as a result of running therdeal Koza-style GP algorithm
applied to some well known problems. The unit used to meatsune is the generation,
and since each generation involves a constant number afagia@is, the results should be
extrapolated if time was measured in evaluations. Addaiignthe number of generations
is a discrete measure, but it will be approximated usinginoots distributions in order to
compare the results with the literature more easily. Thisiiaption is in opossition to the
discrete-time theoretical model that we introduced inieads.3.

We first consider some classical problems in GP widely usethéyiterature, and ob-
tain the empirical distribution of the generation-to-segs. These problems belong to four
problem classes: the artificial ant, k-multiplexer, evepakity and linear regression without
Ephemeral Random Constants (ERC). Two instances of eaahnybimoblem were consid-
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Table 5.1: Tableau for the problems under study: Artificialt Avith the Santa Fe trail, 6-
multiplexer, 11-multiplexer, even 4-parity, even 5-paignd symbolic regression without
ERC.

Parameter Artificial ant  6/11- 4/5-parity Regression
multiplexer
Population 500 500 4,000 500
Generations 50 50 800 50

Terminal Set Left, Right, A0, Al, A2, DO, D1, D2, X
Move, If- DO, D1, D2, D3, D4
FoodAhead D3, D4, D5
Function set Progn2, And, Or, And, Or, Add, Mul,

Progn3, Not, If Nand, Nor Sub, Div,
Progn4 Sin, Cos,
Exp, Log
Success predicate fitness =0 fitness=0 fitness=0 fitness <
0.001
Initial depth 5 5 5 5
Max. depth 17 17 17 17
Selection Tour. Tour. Tour. Tour.
(size=7) (size=7) (size=7) (size=7)
Crossover 0.9 0.9 0.9 0.9
Reproduction 0.1 0.1 0.1 0.1
Elitism size 0 0 0 0
Terminals 0.1 0.1 0.1 0.1
Non terminals 0.9 0.9 0.9 0.9
Observations Timestep660 Even parity No ERC
Santa  Fe y = ot +
trail B+ 2+

x € [-1,1]
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Table 5.2: Estimation of the difficulty to find a solution. &ports the number of runs),
number of successful rung)( estimation of SR and Wilson CI of SR withnv = 0.95, lower
(Lp) and upper{,) values.

Artificial ant  6-Multiplexer 11-Multiplexer 4-Parity 5-Pily Regression

n 100,000 100,000 1,000 400 5,000 100,000
k13,168 95,629 333 299 305 29,462

p 0132 0.956 0.333 0.747 0.061 0.295
L, 0.1296 0.9550 0.3045 0.7027 0.0547 0.2918
U, 0.1338 0.9575 0.3628 0.7876  0.0680 0.2975

ered;6 and11 lines were used in the multiplexer, while the parity problesed4 and11
lines. The trail used in the artificial ant problem was Samtaas described by Koza in [136].
In total six problem instances were used in the experimanallithe cases the parameters
settings and implementations used were the ones found hultef ECJ v18. The only ex-
ception is the population size and cut off number of genanatiwhich were changed to tune
the algorithm according to the problem difficulty, and themniner of timesteps used in the
artificial ant, which has increased @60. A summary of the settings used in this experiment
is shown in table 5.1.

Each one of these problems were run a large number of tinjeis (order to obtain a
sufficient number of successful runs)( Some problem instances were run a huge number
of times, 100, 000, because they were reused from previous publications vithatenumber
of runs were needed. Other problem instances were run fawestenough for the purpose
of this study. The number of runs, was chosen depending on the computational resources
needed by the experiment, which is strongly correlated with population size, and the
available computational resources. The number of runsbeumf successful runs and an
estimation of the SR, and condidence interval of the SR ufiegnethod of Wilson with
a = 0.95 of each of the problem instance is shown in Table 5.2. SR gesva rough
estimate of the difficulty of the problem, and, as can be sedne table, the SR found in the
six problem instances ranges from easy problems to difftnes.

The empirical distribution of the generation-to-succefssagh problem instance was de-
picted to overlap with some fitted statistical distribugoin order to estimate the parameters
of the distribution, R’s functiorf i t di str () was used, which implements a maximum-
likelihood method. The exploratory experiments tried taita using several distributions,
including normal, Poisson, Student’s t, and Gamma, howeverfound that only a small
set of these distributions fit well enough to be consideretthénstudy. So, in the following
we only take into account the distributions that fit datadeite., lognormal, Weibull and
logistic, and additionally the normal distribution is alscluded in order to ease comparison.

The result of this experiment can be observed in Figure 5t first fact that we ob-
serve is that the distribution that better models genearatesuccess is the lognormal; it
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Figure 5.1: Histograms of the generation-to-success ofithproblem instances compared
to different probability density functions. The paramstef the distributions have been
calculated using maximum likelihood estimation. All theagable successful runs have
been used in the histogram and model fit.

is pretty clear in the case of the artificial ant, which fitsetycthe lognormal distribution.
The situation is more complex in the rest of the problem msta. In the regression and
6-multiplexer, the lognormal seems to fit well data, howevarso well as the artificial ant.
In comparison to them, the lognormal fits the generatioattocess worse. All these em-
pirical distributions exhibit a curious fact; in companiswith the lognormal, data shows a
pronounced peak, while the lognormal peak is smoother. thuhdilly, the shape of the his-
togram decays rapidly after the peak, while the decay indbadrmal is less stepped. The
rugosity found in the 5-parity and 11-multiplexer problemight be explained by the lower
number of samples used to depict the figures due to the prdtifoulty. Finally, the most
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Figure 5.2: Quantile plots of the logarithm of the generatio-success against samples
drawn from a normal population.

erratic behaviour is found in the 11-multiplexer. It has agio histogram, and is badly fit
by any distribution. In any case, the lognormal distribatie the one that seems to fit data
better in the six problem instances under consideration.

An important property of the lognormal distribution is itege relationship to the normal
one [150]. Normal data might be converted to lognormal datagithe exponential function,
while, on the other side, lognormal data might be transfaroenormal taking natural log-
arithms. Given this relationship, it seems interestingefaresent a comparison between the
natural logarithm of the generation-to-success againsriaal distribution. This compari-
son is shown in Figure 5.2, which depicts the quantile plaheflogarithm of the generation
to success against a normal distribution. As we could exgeetogarithm of the generation-
to-success of difficult problems (5-parity and 11-multkge are not too close from the line
that represents the normal distribution; just the oppdhie the easy version of these prob-
lems, 4-parity and 6-multiplexer. The discrepancy betwisenpeak observed in the data
and the lognormal distribution is clearly shown in the twanftile plots of these problems
in form of a slight curve on the right of the plot. The loganttof the generation-to-success
of the regression problem also seems to follow a normalibligton, however the tails of the
distribution fit worse.

Summarizing the results, lognormal distribution seems teéisonably well the generation-
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to-success of some of the problems studied, but it fails sorige others. A natural question
that rises at this point is why the generation-to-successmie problems follows a lognormal
distribution, while others badly fit the lognormal distritmn. Looking at the results so far,
and related literature, it seems reasonable to hypothéssehe difficulty of the problem,
to some extent, influences the distribution, and thus, inseeeasonable to study in more
detail the hard problems that did not fit well the lognormaitdibution. The next section is
devoted to study this question.

5.2.2 Run-time behaviour of tree-based GP with difficult prdlems

It seems that the lognormal distribution plays a major rolel¢scribe the generation-to-
success in tree-based GP. However, the run-time behavila@reed are only partially de-
scribed by the lognormal distribution, since some problestances do not fit well that
distribution. So, it seems pertinent to us to study thesblpms in more detail, in order to
gather a more complete perspective about this issue. licplart we are interested in the
4/5-parity and the 11-multiplexer problems.

Several authors have observed that some SLS algorithms atmheuristics yield a
RTD that follows an exponential distribution [113, 115]. wiaver, histograms in Figure 5.1
showed a shape that are far from the strictly decreasingnexpi@l distribution. Nonethe-
less, a more detailed observation of the hard boolean prab{B-parity and 11-multiplexer)
histograms leads to a more elaborated interpretationalljtthere is a pronounced increase
of the histogram density until the peak is reached, and thieegins to decrease softly. Ad-
ditionally, the peak of the histogram is more pronouncea thihthe distributions studied.
These observations lead us to hypothesize that the expaindistribution has a role in the
picture of generation-to-success distributions in GP.

In order to verify whether there is a hidden exponentialrtigtion, we removed the left
tail of all the histograms, and then overlapped a shiftedegptial distribution. The shifted
exponential is an exponential distribution of the form

e~ At=to) if ¢ > ¢,
At) = o 51
f:t) {0 if t <tp. ®-1)

where\ is the only parameter of the distribution, atidis the shift. The parameter has
been estimated using maximum-likelihood whilgeis the generation where the histogram
density reaches its maximum value.

The histogram of the right tail of the generation-to-suscdgted with a shifted ex-
ponential, is depicted in Figure 5.3, while the estimatechpeters of the lognormal and
exponential are shown in the Table 5.3. Those problems thet woorly described by the
lognormal distribution (4/5-parity and 11-multiplexegre reasonably well fit by an expo-
nential distribution when the left tail is removed. Perhapssurprisingly, the same can be
observed in the rest of the problems, so, it seems that remgart of the data eases fit it
with the exponential distribution. Nonetheless, thereristable difference, due to the strong
asymmetry of the hard boolean problems, the amount of datd#s been removed is much
lower in comparison to the rest of the histograms.

Quantile plots comparing generation-to-success and exiath distributions are shown
in Figure 5.4. In general, the exponential distributionnsg¢o fit well this subset of the data,
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Figure 5.3: Histogram of the right tail of the generatiorstacess of the problems under
study. An exponential distribution has been overlapped.

with some interesting individual cases. Surprisingly, tight tail of the 5-parity problem
instance fits quite well the exponential distribution, witle& lognormal distribution failed to
model the peak shown in Figure 5.1. In contrast, the righofaihe generation-to-success
of the 4-parity problem seems to fit worse an exponential witndency to overestimation.
It also presents some outliers.

Some authors have observed that the RTD of several algaritlisnwell a shifted ex-
ponential distribution [113], and explained it hypoth@sigthe existence of a initialization
phase where no solution is found. The plot shown in FiguresB@ports that hypothesis, it
represents the average tree depth and the average numhetesf Mhe histogram depicted
in Figure 5.1 shows that the density of the generation-tmass begins growing rapidly,
and then, after the mode, it decays slowly. This behavioanase evident in the two hard
boolean problems. The maximum in these two problem instaisciound arround genera-
tion 60. If we now observe the shape of the average tree depth (Figbréottom), we find
that initially the average depth also increases rapidlyougppoint and then it remains almost
constant, in what seems an asymptotic behaviour. Most itaptly, that point is placed ar-
round generatio60 in both problems. This lends credence to the existence ofralation
between the average tree depth and the shift of the expahdigiribution that models the
right tail of the generation-to-success of boolean hardlpros.
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Table 5.3: Estimations of the parameters of the lognormalshiifted exponential for the six
problem instances under study. The lognormal distributias two parameters, the mean
and the standard deviatien and the shifted exponential has two parameteend the shift
to.

~

i o

>

to

Artificial ant 2,73 0595 0.085 9
Regression 2289 0.44 0.150 5
4-Parity 3.03 0.284 0.146 17
5-Parity 5.004 0.8 0.005
6-Multiplexer  2.464 0.425 0.149
11-Multiplexer 5.367 0.797 0.004 60

Artificial ant 4—Parity 6—Multiplexer

Exponential

T T T T T T T T T T T T T T
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Generation—to—success

Figure 5.4: Quantile plots comparing the right tail of thengetion-to-success and a ex-
ponential distribution. Samples higher than the mode hatdaen included in the plot in
order to exclude the initialization phase.
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If the correlation between average tree depth and the dhiitecexponential distribution
were confirmed, it would lead to provide an additional suppothe Hypothesis proposed
by Hoos, i.e., exponential distribution models the genenatio-success after an initialization
phase. During the initialization, trees in average incegaeir size until the maximum size
is reached. Then the search is performed not increasingabealepth, but its shape, as can
be seen in the average number of nodes in Figure 5.5 (tog)wibith to remember that the
only bloat control method included in the algorithm usedhi@ éxperimentation is the Koza
style hard limit of the maximum tree depth.

There is an additional argument in favor of the proposedpnétation of the shift found
in the exponential, in this case it has more theoreticakrodkey property of the exponential
distribution is its lack of memory, because of that it is wydased to model memoryless
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processes. An exponential distribution of the generaiiesdccess suggests that the search
is memoryless, but it is clear that the initialization phas¢he run has memory since the
average tree size increases with time until it stabilizesiclvis just the point where data
begins to fit the exponential distribution. After that poimees have reached their maximum
depth and the search is less influenciated by the memory.

We should underline that we have considered continuous-timstead of discrete-time.
As a consequence, we have not considered the role of disisttiutions, and in particular
the role of the geometric distribution, which is interegtibecause it is the discrete-time
counterpart of the exponential distribution and plays a k@ in section 5.3. In theory,
exponential and geometric distributions should be egentaland both should fit equally
well (or bad). In order to test it, we fit the geometric disttibn in the cases were the
exponential distribution fit well the data, finding that theag equivalent, so, the discussion
made related to the exponential distribution can also be gath the geometric distribution.
This observation is important to relate the results showthis section to the theoretical
discrete-time model that we have proposed in section 5.3.

Experiments carried out in this section suggest that thetime to success of some
difficult problems follow a shifted exponential distribomi. The shift of the exponential co-
incides with the stabilization of the depth growth in the plaion, suggesting a correlation.
So far, we found two distributions, the lognormal and thdtetliexponential, that model
the generation-to-success of almost all the problem iostastudied, with the exception of
the 4-parity problem. All the algorithms so far used in theerxmentation used a standard
parameters setting, yielding the run-time behaviour reggbabove. A natural question that
raises is whether this behaviour can be changed if the paeaaation of the algorithm is
modified. In order to answer this question, we used an extadgrgithm design.

5.2.3 Run-time behaviour of tree-based GP with random seléon

The problem instances so far studied have shown a run-timgcteess that follows a lognor-
mal or a shifted exponential distribution. However, it icl@ar if this behaviour is particular
of the standard algorithm configuration used so far, or, erctimtrary, it is a general prop-
erty. To study this issue, we run the algorithm with an exeeonfiguration, and analyze its
generation-to-success to verify whether it fits a lognoranaln exponential distribution.

Due to the presence of the exponential distribution preshodiscussed, it seems rea-
sonable to suppose that randomness in the search is a faatshbuld be considered. So, in
this experiment we increment the randomness of the algoriii reducing the tournament
size. In particular, we have run the same canonical treeeb@s algorithm with the same
configuration shown in Table 5.1 with a notable exceptior, thurnament that originally
was set t&r, now has been reduced toln this way, we have removed the selective pressure,
making the selection purely at random.

As an initial hypothesis, we can expect that, since expadaledistribution deals with
memoryless processes, it might describe the generatisnewess of these runs without se-
lective pressure. However, we should avoid a mistake, rargiection does not mean itis a
memoryless algorithm. Even though the selective pressasdben removed, the algorithm
still has memory through the recombination operator, h@rete role that it plays and how
it might affect the generation-to-success is not clear.
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Figure 5.6: Histogram of the generation-to-success of trablpms solved by GP without

selective pressure compared to four distributions (left) quantile plots comparing data and
samples drawn from a Weibull distribution with its paramgtestimated using maximum-

likelihood (right).

The histograms of the generation-to-success obtainedutielective pressure are shown
in Figure 5.6 (left). First we should point out that, sincerthis no selective pressure, the
population is not pushed to any direction, making the seahstost random. As a result,
the efficiency of the algorithm finding a solution has beenuced notably, and indeed only
two out of the six problems instances found enough solutiore significant. Hence, only
two problems are reported in this section, the artificialamd the regression. In addition,
the time required to find the solution has been dramaticaltyeiased, those problems that
required at mosBi0 generations, in absence of selective pressure, retiLi generations
to find it, if it is found.
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Figure 5.7: Discrete-Time Markov Chain model of an iteratstochastic search algorithm.
States denotes that the algorithm has found a solution to the pnelsiehand, while states
i € {0, ..., G} denotes that no solution was found at iteration

Perhaps, the most interesting fact in the figure is the shigghe bistogram. Surprisingly,
the histograms in Figure 5.6 (left) show that in this cadeegitognormal neither exponential
fit data, indeed, a new distribution appears into scene, Weibkhich is able to fit data pretty
well. This observation is supported by the quantiles plgiicted in Figure 5.6 (right). It
shows that the generation-to-success is well describetidyMeibull distribution, even in
extreme values. The histograms have peaks somewhat smtudinethe lognormal distri-
bution, and a right tail that decreases slower. Howevergthee some fluctuations in the
histograms that degrade the fit, but fortunately they ardlsma

In summary, in absence of selective pressure the genetatisnccess of the observed
problem instances fit a Weibull distribution. Curiouslyatates to the previous observation
of the exponential nature of generation-to-success ircdiffproblems because the Weibull
distribution is a generalization of the exponential. In aage, the results so far reported are
hardly generalizable without a theoretical framework orwecinmore extense experimental
apparatus. The next section is an attempt to provide a thearapproximation to generalize
these results.

5.3 A simple theoretical model of generation-to-success

A pertinent question at this point is whether there is a thtcal explanation of the distribu-
tions so far found. To try to give an insight to this issue weehmodeled the convergence
of the algorithm using Discrete-Time Markov Chains (DTM@30]. Without lack of gen-
erality, we consider a discrete-time model instead of aisootis-time model. In order to
generalize the results, we first discuss stochastic seggotitams and then, the problem is
restricted to population-based algorithms.

Let S,, = j be a random variable that takes a state {0,1,...,G, s} at iteration
n € {0,...,G}. There are only two feasible transitions from stat¢ < G,toj + 1 ors. If
the statg7 had been achieved, then we say that the algorithm has faili&lding a solution
to the problem. On the other hand, if after any number of ttans fewer thanG the state
is s, we say that the algorithm has found a solution and thus ibbas a success. Once the
states has been reached, the system cannot change its state. Tleéimbeitter illustrated
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in Figure 5.7.

The probability P(S,, = j|S,—1 = 1) is the transition probability between stateand
i, for clarity we denote it ap; ;. Then, the probability of an algorithm to go from an initial
state to a certain final state is given by the multiplicatibthe transition probabilities found
in the path between the initial state and the final state. fidwesition probabilities are given
by the transition matrixp| as follows

0 1-—pso 0 0 0 Ps,0
0 0 1_ps,1 0 0 Ps,1
0 0 0 l_ps,Q 0 Ds2
pl=1| (5.2)
0 0 0 0 o 1—=paag-1 PsG-1
0 0 0 0 1 0
0 0 0 0 . 0 1]

Such matrix has dimensidiiz + 2) x (G + 2). The columni stands for receiving state
i, and row; stands for editing statg The last column and row are related to the state of
successs. The algorithm always begins in stdigeso the initial probability vector yields as

The (not-accumulated) probability of reaching a succesaty : iterations is given by
the pathy, 1, ..,i—1, s, which is given by the probability?(S; = s|S;—1 = i—1,..., Sy = 0).
For convenience, we denote that probabilitypas ;. o. With these considerations we can
state the following theorem.

Theorem 1 The probability of a iterative stochastic search algorithenfind a solution in
exactlyi, 1 <1i < @G, iterations is given by

i—2
Ps,i—1,..,0 = Ps,i—1 H(l — Ps,k)- (5.4)
k=0

Proof 1 The algorithm can be modeled using the transition matrixwshan (5.2). Then,
the probability of finding a solution after iterations is the probability of reaching to the
states by using the patl, 1, ..., — 1, s. Hence, given that they are independent, the pro-
bability of the algorithm to follow this path is given by theiltiplication of their transition
probabilities. So we can infer that

Psji—1,...,0 = Ps,i—1 Pi—1,i—2 --- P1,0
=ps,i—1 (1 = psi—2) ... (1 —psp)
i—2
=psi-1 [ = psr) (5.5)
k=0

Corollary 1 The run-time of a memoryless stochastic search algorithfimtba solution,
measured in iterations, follows a geometric distribution.
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Proof 2 Given a memoryless algorithm, the transition probabiditiare equal,p; ;-1 =
pjj—1 Vi, j € {1,---,G}. Takingp,; = pin (5.4) yields

psi1..0=p][(1=p) =p1—p), (5.6)

which is the geometric probability mass function.

Theorem 1 supposes an iterative search algorithm, howekien dealing with population-
based algorithms, as is the case in EAs and GP, there is agtigpubf candidate solutions,
S0, to be more realistic in the context of EAs, they shoulddyesitlered. Then, the transition
probability p, ;, can be expressed as a function of the success probabiligcbfiadividual
in the population. Let us namepﬁ”g, where(k) stands for the probability of individual
to find a solution, wheré € 1,....M andM € N is the number of individuals in the
population.

With these considerations, the probabilities; ; andp, ; can be decomposed as a func-
tion of the success probability of each individual in the ylagion. The probability; 1 ; is
the probability of not finding any solution by any individualthe population, while; ; is
the inverse op; 11 ;. This idea can be expressed analytically by

M

pirri =[] - o) (5.7)
k=1
o k
Psi=1—pit1,=1- H(l pg Z)) (5.8)
k=1

With these considerations we can particularize theoremdetmrational population-based
algorithms, in particular to EAs. In order to be consistenthwhe experimentation, we
consider that each generation is an algorithm iteration.

Theorem 2 Given a generational EA with a population si&€, the probability of finding a
solution at a certain generatiohis described by

M
Psil-1,..,0 = <1 -IIa psz ) H H (1 —psj (5.9)

k=1 7J=0k=1

Proof 3 Equation (5.9) comes from using (5.7) and (5.8) with (5.4) some basic algebraic
manipulation.

Corollary 2 The run-time of a memoryless generational EA, measured nergéons, is
described by a geometric distribution.

Proof 4 In a memoryless algorithm, the probability of an individaalfind a solution is
independent of the generation, and therefore the transjtiobabilities are equalP*) (i|i+
1) = P®) (i +1]i) = p®'. Subsequently, (5.9) can be simplified,

[\

Ds,isi—1,..,0 = [1 - (1~ p(k)/)M} T (1 - P(k)l)M (5.10)
=0
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This equation can be simplified with a change of varigile- p*)' )™ = (1 — p/), then

i—2
P [ =pa-p)", (5.11)
=0

=
»
.
“@ .
|
-
L
Il

which is the geometric probability mass function. An alégive proof of this theorem is
settingM = 1in (5.9), yielding to (5.4).

Experiments carried out showed three distribution invdlvethe description of the generation-
to-success: lognormal, Weibull, and exponential. Due ®dhect relationship between
exponential and geometric distribution, corollaries 1 amatovide a theoretical framework
to describe the exponential behaviour found in some prolistances, i.e., the absence of
memory in the search process. The theoretical explanafitre@ppearance of the Weibull
and lognormal distributions is unknown. Equation (5.9) Imigrovide a clue about it. It
shows that the probability, ;1 ..o can be expressed as the multiplication of several terms,
and thus, it would make sense to apply the Multiplicative t€8h.imit Theorem to conclude
thati is a lognormal random variable. Nonetheless, this int¢ésiosn would be naive since

it supposes that the distribution is always lognormal, Whiontradicts the empirical data
previously reported.

In this section we have proposed a theoretical model of tbealility density of the
generation-to-success based on DTMC. It was also shownwthah success probability
in each generation is constant, and therefore the algorishmemoryless, the underlying
distribution of the generation-to-success is a geometree &vhen a lognormal or Weibull
distribution models the generation-to-success is an oggrei Nonetheless, related work in
other areas related to stochastic search might provides,chrel additional evidence about
the generality of these results. Once the run-time behawbtree-based algorithms has
been characterized, we are in position to propose a modelkotss probability.

5.4 A new model of success probability

In order to develop a model of success probability, it is ement to define more formally
some terms, in particular the terms success probabilitysadess rate. In EC, an experi-
ment uses to be composed by a collectiom @idependent runs. Due to the random nature
of EAs, many of their properties are stochastical, and theg tannot be characterized using
a single run, but with an experiment. One of these propeidiéise success probabilityor,
using Koza’s notation [136]P(M, ), whereM is the population size, angthe generation
number.

P(M,1i) is calculated as the ratio between the number of successfslin generation,
k(M, 1), and the number of runsin the experiment,

k(M,1)

P(M,i) = === (5.12)

This estimator of the success probability is also its maximntikelihood estimator [174].

We define the SR as the accumulated success probability infiaitea number of gen-
erations, S6R = lim;_.., P(M,i). The reader would agree with us if we state that run-
ning the algorithm for an infinite number of generations is a@eneral practice. Usually
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an experiment is run for a fixed finite number of generati@giisthen the SR is given by
SR = lim; .., P(M,i) ~ P(M,G). Since the true SR can hardly be measured in expe-
riments, P(M, G) is just an approximation to SR, and thus it can be seen froratatital
perspective as an estimatBiz = P(M,G).

5.4.1 A general model of success probability

Let us consider the problem from another point of view. ladtef analyzing the problem
looking at the probabilityP(M, i), we pay attention to the generation-to-success. May
be the outcome of ruk at generatiori, and can take two values labeled ‘asiccess” and
“failure”, soxF € {“success”, “failure’} for k = 1,2,...,nandi = 1,2,...,00,
therefore we assume an EA that is run an infinite number ofrgéinas. We suppose that if
z¥ = “success” then the outcome in the next generation is also sucegss,= “success”.
Using this probabilistic notation?(1/, i) can be expressed &z¥ = “success”). In order
to simplify the notation, in the following, labetsuccess” and“ failure” will be equivalent
to “s” and“f”.

Now consider the success generatighin which runk converges to the solution, so
g* € Nt is a random variable that may take any positive integer valiee probability of
run k to have converged in generations P(g* < i), while the success generation is not
defined for those runs that have failed. Similarly, the SRodlgorithm might be expressed
asSR = P(zF, = s).

Our objective is to find a model dP(M, 7). This model, using the probabilistic notation
defined before, and from the perspective of success gemerigi

P(M,i) = P(¢" <)

This equation does not take into account the total numbeuadfessful runs, so it not useful
from a practical point of view, it is necessary to express fhrobability as a function of
something that could be measured. To consider this factawese a conditional probability.
Then, a run has a success generation if, and only if, its medwas been a success, so

P(g* < ilak, = 5) = F(i) = / ' f(u)du (5.13)
0

where f(u) is the (yet unknown) probability density function (PDF) bétrandom variable
g*, while F(i) = fg f(u)du is itscumulative density function (CDF).
We are now in condition to use Bayes’ Theorem,

P(g*F <i)P(ak, = s|g" <)
P(zk = s)

P(g" <ilal, =) =

Obviously, the conditional probabilit(z*, |¢* < i) equalsl because if the experiment has
converged into a solution, by definition, its outcome hasibgaccess”. P(g* < i|z¥, = s)

is not known, but can be empirically studied, aR@z*, = s) is the SR, which also can be
easily estimated. Solving the equation fg* < 1) is straightforward to conclude that

P(g" <i) = P(ak, = s)P(¢" < ilal, = 5)
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following that
P(M,i) = SR F(i) (5.14)

It provides an alternative representation of the accuradlaticcess probability, more con-
venient for this study, furthermore, it is a generalizatdnthe binomial random variable de-
scribed in chapter 4. If assunie= oo, then the CDH'(c0) equalsl, and thusP(M, co) =
SR, which is binomial. So this model is composed by two terms, fthctional term that
describes the SR, while the second term models the varigtitbme of that probability.

If we fix the generation to an arbitrary valige< oo, the underlying distribution is again
binomial, as we could expect. However it is multiplied by etéa F'(i) that depends on the
generation, and represents the proportion of runs that are supposeédfbund a solution
in generation.

The model shown in (5.14) presents a serious problem, it &éas bonstructed under the
assumption of an experiment that has been run an infinite auoflgenerations. We guess
that the reader will agree with us if we state that this situeis rather difficult to happen in
real life. It is impossible to measure SR, but instead we stimate it asSR = k(M, G)/n,
with G < oo. Of course, this measure is unlikely to be equal than SR, sowill be
introducing an error that is specific of this model. So, thalelgiven by (5.14), cannot be
used in practice, but instead

kM, G)

n

P(M,i) = SR F(i) = F(i) (5.15)

Unfortunately, the model given by (5.15) does not providéoaeform of P(M, i) and
thus it cannot be used. However, we only need a modét(af/, i) to make (5.15) useful.
But this problem was, to some extent, solved in the run-timayeis performed in sec-
tion 5.2. It was showed that in tree-based GP, the lognorimailmltion seems to fit well the
generation-to-success, and it is reasonable to suppdsgetieration-to-success is a lognor-
mal distribution. With this data, we can reformulate (5.fidprovide a complete model of
success probability.

5.4.2 A specific model of success probability

Experimentation reported above showed that the lognorisailgltion fits reasonable well
most of the case studies, in particular, all with the exceptf the two hard boolean prob-
lems. So it seems reasonable to assume a lognormal diginbftm this point. If we make
this assumption, then it is straightforward to then deduceodel of P(M, i) from (5.14)
that could be used in practice.

It is well known that the lognormal CDF [150] is given by

Fi;f1,6) = ® <lnif ﬂ) (5.16)

g

where ®(...) is the standard normal CDF. If there ateruns that have converged in the
experiment, andy, k = 1, ..., m is the generation-to-success of rkjnthen

m
1
=119 (5.17)
m

[=
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Figure 5.8: Comparison among the best maximum-likelihcgtdr@ator of the accumulated
success probability and the model approached using a logatistribution.

and
m —_ )2
5= \/ 2= (Inge — 1) (5.18)
m
Using (5.14) and (5.16) yields that the accumulated suqmedzability can be expressed as
P(M,i) = W\i’ G g <h”f ”) (5.19)
g

All the parameters involved in this equation are known by ékperimenter. One advan-
tage of using a lognormal distribution is its close relasioip with the normal distribution,
and actually, lognormally data can be transoformed intorabrdata, and viceversa [150],
therefore the statistical proporties of the estimgt@ndgs are well known.

5.4.3 Experimental validation of the model

Although data has been fitted a lognormal distribution, éfiemo experimental support to
claim that the model of accumulated success probabilitgrglyy (5.19) is a correct model.
So, additional experimental evidence is collected in taisn.

Figure 5.8 shows a comparison betwdg/, ;) calculated using the standard maximum-
likelihood method and the lognormal approximation. All #zenples available in the datasets
were used to calculat® (M, ) with both methods. It can be seen in Figure 5.8 that both
methods achieve very similar results, and thus, in the stadgs under consideration, when
using a large number of runs, our proposal achieves estingatf P(M, ) pretty close to
the standard method. Nevertheless, this experiment showsraalistic scenario since the
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Figure 5.9: Comparison between the best maximume-likelihestimator of the accumulated
success probability and the model approached using a logalistribution.

computational cost of running an experiment with real-dgnioblems imposes a maximum
number of runs much lower than the used in this experiment.

A collection of experiments were simulated using differesiues ofn. Given the whole
set of runs stored in the previous experime¥s,50, 100 and200 runs were resampled with
replacementP (M, i) calculated using both methods and finally they were depictédg-
ure 5.9. To give more elements to compare with, the best astmof P(M, ) (calculated
with all the runs) also included in Figure 5.9.

As can be seen in Figure 5.9, when there are a high number sf the differences
between the three curves tend to disappear, and the estmaitih both methods tend to
be closer to the best estimation available. More interggsrthe relationship between the
two methods, they yield similar estimations of the accunealasuccess probability, which
is logical because they use the same data; if one method naaked estimation of the
accumulated success probability, the other one also mabad astimation. It leads us to an
almost tautological conclusion: there is no magic. With akmumber of runs, there is not
much information available, and without information, isisnply not possible to reach good
conclusions.

Despite the lack of magic of the proposed method, Figuretio@/s an interesting prop-
erty: the proposed method is able to interpolate valuegubim experimental data, yielding
much smoother curves than the standard method. And apyanémian be done without
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sacrificing the accuracy of the measure. This fact is ratlearcfor instance, in the 4-parity
problem withn = 25. A similar property is the ability of the lognormal approation to
extrapolate values of the accumulated success probafiiig is interesting in early genera-
tions, where there are no success due to a low, but not natiess probability. In these cases
the standard method yields a null estimation of the succedsapility while the lognormal
yields a non zero value.

Another interesting fact that can be found in Figure 5.9 é&sdkcellent estimation made
in the 4-parity problem. Despite the fact that the experies run for too few generations
and it was the domain with the poorest model fit, it generate&ea approximation to the
maximum-likelihood estimator of the accumulated succesbability. This fact could be
quite interesting to reduce the number of generations metedgtudy the performance of GP
using less computational resources, however we feel tigisgue requires more study.

5.5 Run-time analysis in other Metaheuristics

Experimentation reported in this chapter has been basedpa'¥style GP. The experimen-
tal results obtained so far cannot, without additional aerations, be generalized to other
algorithms. Fortunately, there are some papers describagun-time behaviour of several
SLS algorithms and metaheuristics applied to solve diffepeoblems. A comparison of the
results reported in the literature and our results mightigesome clues about whether the
observed distributions are generalizable or not.

Probably the authors that have investigated in more défaitdpic are Hoos and Stiitzle,
who applied RTD analysis to different algorithms and proide They studied in [116] the
RLD of WSAT algorithms used to solve 3SAT problem instanddwey found that the RLD
is exponential when the parameters setting is optimaltezhiéxponential or Weibull when
the parameters setting is not optimal. Shifted exponeapigears when the parameters are
above optimal, and Weibull, when they are under the optimatues Analogously, in [113]
Hoos and Stutzle studied the RLD of some other stochast®agiorithms, such as GWSAT,
GSAT with tabu-lists, TMCH and WMCH, to solve instances offSstad CSP, finding that,
again, when parameters are optimal, the RLD follows an espioal, and otherwise RLD fits
a Weibull distribution. Curiously, this result only holdsrfhard instances, in easy instances
they did not found statistical significance. RLD of easy anses deviates from the expo-
nential distribution, and they conjectured that it was eausy the initial hill-climb phase of
the search. In a later work [114] observed that the RLD of 384T instances solved with
the WalkSAT algorithm also follows an exponential disttibn, and more interestingly, the
higher the difficulty of the problem, the higher the fit is falirStiitzle and Hoos also studied
the RTD of ILS algorithms in various types of TSP problemsdifig that the RTD follows
a shifted exponential distribution [224].

A more recent work made by Hoos and Stitzle showed a more letangiew about
this topic [115]. The authors compare various versions oAG&nd WalkSAT algorithms
to solve some problems coded as 3SAT (random 3-SAT, gragrieg] block world and
logistic planning) using an RTD analysis. They found thasthalgorithms also have expo-
nential RTDs for hard problems and high values of the noisarpater. More importantly,
they found that RLDs of easy problems are not exponentiahitketheir tails are still expo-
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nential. Their interpretation is that there is an initiahigdn phase where the probability of
finding a solution is very low. In hard problems where the tinme is high enough, this ini-
tialization phase has a minimal impact, while in easy proisiét takes a notable amount of
time and thus the distribution is less likely to be expor@nilhe initial search phase seems
to be well described by the Weibull distribution. Only fevsea were not correctly described
by either exponential neither the Weibull distributionst bven in this case, they can be well
approximated by a weighted linear combination of Weibutrdbutions. Another interest-
ing result reported in [115] is how the noise parameter &féwe RLD. For values of the
noise higher that optimal, the RTD is still exponential, gaver, the initial search phase is
less prominent, increasing the fit of the model. On the coptfar suboptimal values of
the noise parameter, the RLDs exhibits longer and heavlsrciampared to the exponential
distribution.

Chiarandini and Stutzle [53] studied the RTD of ILS, ACO,ndam Restart Local
Search and two variants of SA applied to the Course Timetghdroblem, finding that the
Weibull distribution approximates well the RTDs. Data pd=d in that paper does not per-
mit to clearly deduce whether the approximated Weibullriistion can be reduced to an
exponential distribution in any of the problem instancebeyreport, however, that in SA,
the RTD in hard problems can be approximated, at least pgrtiging a shifted exponential
distribution. This result partially contradicts the oneoded in [224], where the RTD fol-
lows a shifted exponential, but this discrepancy could Iplared by the parameters setting
and the problem difficulty. In any case, both studies are egusnt with the basic fact that
RTDs appear to follow a exponential or a Weibull distribatio

On the contrary than Hoos, Stiitzle and Chiarandini, Febat.[89] studied the RTD us-
ing the same algorithm, backtracking, with different peshlinstances of the CSP, and found
an interesting fact. The RTD of the algorithm running on able instances [80] follows a
Weibull distribution, while unsolvable instances generaignormal run-time distributions.
However, only the lognormal distribution for solvable pierbs had statistical significance.
These results hold for several backtracking algorithms, rasults with the 3SAT problem
are similar. It is interesting to mention that, althoughdtet al. did not mention it, some
of the experimental results reported in [89] suggest alsexgonential distribution, which
is supported by the reported fit~ 1. Other studies about the RTD of several metaheuris-
tics have observed that their RTD follow an exponential ditesth exponential distributions,
these metaheuristics include GA, TS and GRASP [205].

It is worth to compare our results with the related work. Thaimrole found for the
exponential distribution reported by the literature wassfaoond in our research, which points
to the lognormal distribution and reserves the exponefdaiasome difficult problems after
some data filtering. However, we have to take into accountikalid not looked for optimal
parameters, that might have an impact in the result, as stegyyen [113, 115].

The interpretation of the Weibull distribution made by Haosl Stiitzle in [115] might be
applied here. They suggested that the Weibull distributidmard problems is able to model
the initial search phase. The asymptotically exponenthlalwiour of the Weibull distribu-
tion supports this idea. In our case, runtime-to succesaroftoolean problems approximate
shifted exponential, with a, in comparison, small initiehsch phase. The Weibull distribu-
tion appeared when the selective pressure were removedhgclearly suboptimal, and
thus the search was almost random. More research shoulchkdaldetermine the influence
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of the parameters setting on the run-time behaviour in GPate there were a correlation
between that and the RTD, it would be a result with a strongtjoa interest.

5.6 Discussion

There are some interesting issues that arise from the @is®srs made in this chapter and
the related work. It seems clear, looking at the related wibidt RTD analysis is dominated
by the Weibull and the exponential distributions. The lagmal, in some circumstances,
also appears in the literature. The prominent role of théstiltlitions does not seem to
be circumscribed to a particular algorithm, but it seemseis to be a general property of
metaheuristics. In addition, this work has shown, with s@ungport from the literature, that
the lognormal distribution also plays a role, at least, é®tbased GP.

These three distributions are widely used in Reliabilitgdty to model failures in physi-
cal systems, suggesting a link between run-time analysisediability theory. This observa-
tion is not new, previously Hoos [115], Luke [156] and Fr@&] mentioned this idea. More
recently, Gagliolo and Legrand introduced a detailed disitun about this topic in [90].

An insight to a possible reason behind the run-time to swdoebaviour found so far was
suggested by Frogt al. [89], inspired by the Reliability Theory. The failure ratedefined
in Reliability Theory ash(t) = f(t)/(1 — F(t)), where f(t) and F(t) are, respectively,
the density function and CDF. In the context of EAs, givengodathm that has not found a
solution attime, h(t)+ At is the probability of solving the problem in the intervalt+At).

In Reliability Theory,~(t) determines when failures happen. If it is constant, the tione
failure is exponentially distributed. (¢) is of the linear formh(t) = \?gtP~! time to
failure follows a Weibull distribution. Finally, in casedhthe failure rate were nonmonotone
the lognormal distribution appears. So, this interpretaguggests that the distribution of
the generation-to-success depends on the success pitybatbdach generation. Ironically,
failures in Reliability Theory can be associated to the tiore to success in GP.

It has been shown that, at least in one extreme case, the @@rarsettings may change
the distribution of the run-time to success. When the detaGl) parameters setting were
used, the run-time to success of four out of six problem irestg, measured in generations,
was characterized by a lognormal distribution, meanwhtles tournament size was reduced
to one, the distribution changed to a Weibull. It opens thestion of whether the opposite
deduction could be done, given the distribution of the fiametto success, infer facts about
the parameter configuration, for instance, its goodnessutropinion, the practical conse-
guences that such analysis might have, deserves futhercbsévioreover, there should be
a theoretical reason that explains why the run-time to sscelognormal, exponential or
Weibull. Experimentation has provided some clues for sheloty, problem difficulty and
selective pressure are probably factors to take into accoun

The presence of exponential distributions leads to an vagen with potential theoret-
ical implications. The exponential distribution is welldwmn for one remarkable property, it
is memoryless. This property has been widely used by thatitee to support the idea that
when the RTD is exponential, it cannot take benefit from réatathe run [116]. We con-
jecture that there are notable theoretical implicatiortsrmkthis fact. Hoos and &e [115]
suggested an interpretation of the exponential nature @<RWhen they stated that “the
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exponential RTDs suggest a novel interpretation of Sta@hascal Search behaviour as in-
dependent random picking from a drastically reduced sespahe”, this observation might
well be valid in GP. Following Hoos’ reasoning, we might gaidsat, given an exponentially
distributed run-time to success, the search is memorydesshence learning can hardly be.

The lognormality of the run-time to success opens somedstielg applications. Just
mention one, we could apply it to determine objectively the-time cutoff value. The de-
termination of the number of runs needed to estimate thengteas is a classical problem
in statistical inference, and the transformation betwesmmial and lognormal is straightfor-
ward, X ~ N(u,0) = eX ~ LN(u,0) andX ~ LN (u,0) = In(X) ~ N(u,o) [150],
using this transformation the number of runs in the exptwyagxperiment can be determined
using

2 2
n = o/2° (5.20)

e2

wheree is the desired level of precision for the estimation of theamegiven in the same
unit thans, s the standard error of the samples ang, is the upper,/2 critical point from
N(0,1) [218]. The probability of getting at least one success inegation: is given by
P(M,G) F(i; 1, 6), while the probability of not getting any success in genenat: is

e=1-P(M,G) F(G;1,6) (5.21)

This equation provides an estimation of the errdhat is introduced by limiting the max-
imum number of generations &. Moreover, if we set a maximum error that is tolerable,
we could calculate7 from (5.21), yielding the maximum number of generationg tha
algorithm should be executed to achieve that error.

5.7 Conclusions

The main goal of this chapter was to develop an analyticalehofithe success probability.
In order to accomplish this goal, we needed first to obtaintatistical characterization of
the time required by GP to find a solution. For this reason wpigcally studied the run-
time to success of six well known problems in tree-based GRifexpected side effect, we
observed some patterns in the run-time behaviour of theitigus that could lead to general
conclusions with an impact wider than the original objecstoidy that motivated this work.
We have found that when using the ECJ default parameteisgsgtthe generation-to-
success tends to follow a lognormal distribution. In som&esahe lognormal distribution
yields smoother peaks in comparison to empirical data,rbgeneral it fits well, and better
in any case than other distributions such as the Weibullrdhere, however, two problem
instances, both difficult boolean problems, whose germrdt-success were not well mod-
eled by the lognormal, but instead by a shifted exponenigttidution. A third problem
instance, the 4-parity, was not well modeled by any distilouunder consideration in this
study. We conjecture that there is a initialization phasepme extent related to the tree size,
that is well modeled by lognormal distribution in easy pesbs, but in hard problems the
long run-times make the initialization phase less infllenand the lognormal is no longer
a good model. If the initialization phase is removed, theaming samples fit the shifted
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exponential. Finally, in absence of selective pressusedins that the generation-to-success
does not follow either a lognormal neither an exponential ,abWeibull distribution.

In an attempt to provide some clues to develop a theoretiqalbeation of the run-
time behaviour found in the experiments, we developed alsithporetical model based on
Discrete-Time Markov Chains, and demonstrated that inradesef memory, the generation-
to-success follows a geometric distribution. Empiricaladalso fit well geometrical distri-
bution. In a near future we expect to develop this model ardMisntecarlo simulation to
understand in which circumstances the lognormal and Wedlistributions appear. More
experimentation could be used to provide clues to directldgwment of a run-time theory.
In any case, experiments shown in this chapter, and expetsmeported in previous liter-
ature have shown a complex picture, where several stalististributions are involved and
there are complex iterations with the parameters settings.

In relation to the dissertation main research goal, the roairiribution of this chapter
is the proposal of a model of success probability in gerammatitree-based GP. This model
considers the existence of two different -although relagedblems: whether the algorithm
is able to find a solution, and, given that it has been foungnihhappens. The model uses
the result of the run-time analysis performed, in particti& fact that the lognormal distri-
bution seems to describe well the run-time to success of aidké studied problems. If the
generation is fixed, a classical binomial distribution is\ted from our model. Following it,
we discussed some practical applications of the model. istamce, given that the genera-
tion where the algorithm finds a solution (i.e. peneration-to-succepsould be described
with a known probability distribution, it would be deterreith when the algorithm is more
likely to find a solution, and therefore, use this informatio set the maximum number of
generations in a well grounded way.

Once that the main component of Koza’s computational effastbeen analitically mod-
eled, and that the estimation error of SR has been chazatesve can join these two results
in order to characterize the reliability of the computatibeffort. This task is performed in
the next chapter.
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Chapter 6

Accuracy of Koza'’s performance
measure

We find ourselves, then, met with the same difference thaiadlie

exists between the fool and the man of sense. The latter staztly

catching himself within an inch of being a fool; hence he rsake

effort to escape from the imminent folly, and in that effa$ his intelligence.
The Revolt of the Masses. José Ortega y Gasset

In this chapter, the amount of uncertainty associated withaks performance measures
is investigated. The approach used to explore this tops to be systematic. We identify
two sources of variability (the ceiling operator and théneation of the success probability)
and study their effects. In order to simplify the analysis degompose it into two steps.
First we analyze the error in the estimation of the numbendividuals to be processed,
and secondly thee error in the computational effort. Thdyaisatakes a double approach,
theoretical and experimental. An analytical model of th@mrrbased on some empirical
observations, is proposed, and then it is validated by @xgertation.

The main contributions of this chapter are: 1) an analytimaindary of the variability
sources of Koza’'s performance measures validated withrempatation; 2) based on the
previous result, a model for the maximum error associatddegd<oza’s performance mea-
sures; 3) a proposal of a new method to calculate Koza'’s padioce measures based on the
lognormality of the run-time to success. In addition, wevglibat a constant success pro-
bability generates a constant number of individuals to g@gec The conclusion that can be
deduced from this work is that in common experimental sgstithe error of Koza's perfor-
mance measures is rather high, only a high number of runseciute this error to tolerable
values. The use of the ceiling operator should be avoidedyrcase.

The chapter is structured as follows. It begins with a bmgfaduction and a literature
review. Then, a detailed description of Koza’s performamssasures is presented, with an
introductory discussion about the mathematical propedfeéhe computational effort. After
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that, section 6.3 introduces an exploratory experimeritalsa serves to motivate this chap-
ter. Section 6.4 investigates and determines the origirmoefiomness in the measurement
of the computational effort, including a study of the effecof the ceiling operator, and a
brief overview of the effects of an error in the estimationtlod success probability in the
estimation of Koza’s performance measures. Sections 6.5 &are dedicated to character-
ize the effects of the estimation of the success probaliitiunctions of known parameters.
Then, the analytical results so far obtained are validatpdr@mentally. We finish with some
conclusions.

6.1 Introduction

This chapter deals with two popular measures in GeneticrBnogiing (GP): the number of
individuals to be processed to achieve at least one sucdtsa wertain probability, and the
computational effort. Both, were defined by John R. Koza [£8@] are closely related to
each other. Computational effort is indeed obtained as timnmam value of the number
of individuals to be processed. These measures do not reénpispecific element of GP,
and could be used in any other generational EA, even theyddmilused in steady-stade
algorithms with minor modifications [180]. However, perkdpr historical reasons, they
only have had a relevant position in GP.

Despite the importance of the statistics proposed by Kazd,tiae number of research
work that has been done trusting in them, the accuracy arabilgly of these measures
have not been object of intense investigation. Angeling dioserved that the computational
effort [6] is actually a random variable, and concluded thatstochastic nature of the com-
putational effort should be handled with statistical toolSome time after, Keijzer [127]
calculated the computational effort using confidence vatisr(Cls) instead of just punctual
estimation, achieving a remarkable conclusion: when sscpeobability is low, Cls of the
computational effort are almost as large as the computtigffort. In order words, the va-
riability of computational effort is similar to its magnide, and thus, in that case, the high
dispersion of the computational effort makes it not rekabl

To the author’s knowledge, the only systematic attempt niadaderstand why the com-
putational effort presents the variability observed byjkasi was done by Christensen [54].
He identified three sources of variability and provided aiopl data that gave some light to
the circumstances that reduce the reliability of compoteti effort. More research in this
area was done by Walker [240, 241], who studied how to appy/t€the calculus of the
computational effort, and Niehaus [180], who investigatiesl statistical properties of the
computational effort in steady-stade algorithms.

Our work in this chapter is aligned with the research done lsBensen. It is a system-
atic attempt to take a step forward to identify and char&gehe variability sources of the
computational effort. We use a theoretical and experini@mproach, providing analytical
boundaries to the measurement errors of Koza’'s performaraasures, as well as experi-
mental validation of these limits. Since the performancéricgestudied in this chapter are
based on the estimation of a success probability, this ehaplies on the contributions of
the chapters 4 and 5.
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6.2 Koza's performance measures

In order to clarify the terminology used in this chapter, wetfdefine some terms that we
will use. Arunis a single execution of an evolutionary algorithm (EA), letd@n experiment
is a collection ofn independent runs. Due to the random nature of EAs, many af the
properties are stochastical, and thus they cannot be ¢berad using a single run, but
instead an experiment with several runs. One of these giepas thesuccess rat¢SR),
that we define as the probability of getting a success wheggis run an infinite number
of generations [21, 15]. The exact meaning of success dspemdhe problem and the
objectives of the practitioner, so, depending on the cantex consider that a run has yielded
a success if it satisfies a certain success predicate seelgxperimenter. For instance, a
success predicate might be finding an individual with a ceftaness value. From the point
of view of SR, the exact form of this predicate is irrelevasii@ng as it clearly classifies the
outcome of the run as “success” or “failure”.

Instant and cumulative success probabilities are clogddyad to SR, but in contrast with
it, they depend on time. Given an experiment wjtld/, :) successful runs in generation
and each run composed by a populationidfindividuals, theinstantaneous probability
of successY (M, 1) is defined by Koza a¥ (M,i) = y(M,i)/n [136]. Similarly, the
cumulative success probabilit# (M, i) is the cumulative success probability that derives
from Y (M, i), and thus we can express it as a functiony@¥/, ) as

(M) = - 7 y(M, )
j=1

ExpressingP (M, i) as a function of thenumber of successek(M, i) :ijly(M,j) is
usually more convenient, yielding th&(M,i) = k(M,i)/n. We should point out that
P(M,1i) is an empirical accumulated probability, but for languabese, it is usually om-
mitted.

We previously definitined SR as the accumulated successbpiliip at the end of the
experiment, and thu§ R = lim; .., P(M,i). However, in the general case SR cannot
be known, but it can be estimated. The EA is run for a fixed nunolbe~ generations,

Y (M,i) =0, i > G, andP(M, i) remains constant, so the estimation of SR is
SR =P(M,G) = kM, G)

n

The definition we have made of SR implicitly assumes thatettiemo guarantee that the
algorithm will explore all the search space, and thereforeight find a solution. It seems
reasonable that, under certain conditions, for instanceéAawith some types of mutation,
given infinite time the algorithm will be able to find a solutifil93]. This topic is open to
theoretical discussion, and we simply assume that theidigois not guaranteed to find a
solution in infinite time.

Another definition that will be useful igeneration-to-successvhich we define as the
generation in which a run achieves the success [16]. Of eotings definition only makes
sense for those runs that have been able to find a solutiocgrvafe it is not defined.

A few words should be dedicated to the notation. We use tlggnadi notation used by
Koza, who expressed the cumulative success probabilityfsciion of M andi, whereM
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is the population size andthe generation. The original intention of Koza was to emyzeas
the dependence of the probability with the population simbthe generation. From a strict
mathematical point of view, the only independent variahléhie previous equation isand,
with exceptions, the population size usually does not taria the execution of an EA.
The notationP (MM, ¢) might induce the idea that/ is an independent variable while it is a
constant, hence, in our opinion, the accumulated succegslpitity should be expressed as
P(i) instead ofP(M, i). Nevertheless, in order to be consistent, in the followirggwill use
Koza’s notation.

Another issue about notation is related to the discreter@ailEAS. The notation sug-
gests that the performance measures are defined in congirtimog, although they are dis-
crete values. In this chapter we consider them as contin@usresults will not be affected
by this decision meanwhile the notation will be more corsistind clear. With these pre-
liminar considerations, we are in position to introducedbmputational effort.

6.2.1 Discussion about computational effort mathematicgbroperties

Koza, in his classical book [136], defined a measure of thepbexity of a problem and the
performance of an algorithm namedmputational effortThe computational effort is based
on the estimation of the number of individuals that the d@thor has to process to achieve at
least one success with a given probabilifexpressed ag M, i, z). Itis common to express
the probabilityz with the greek letter such ass = 1 — . A common value of used in the
literature is0.01 (z = 0.99).

Then, thenumber of individuals to be processidyiven by

I(M,i,z) =M iR,

whereM is the population size and= 1, 2, ..., G the generation, thus/i is the number of
individuals processed until generatiarThereforeM i estimates the computational process-
ing needed to execute one run i@enerations, whil& contains the number of runs that the
experiment needs to achieve, at least, one success withlplibbz, and it is

= Ln(in—(lP_(]\Zi),i))—‘ ©-

The operator...]| is the ceiling operator and returns the smallest integelesst than its
argument, i.e., it rounds up the fractional part of its argaim This operation was introduced
becauserR gives the number of times that the experiment should be nohttaus it must be
an integer. However, it should be noticed that usually itydrds a mathematical interpre-
tation, and the experiment is not supposed to be repdatiéties. The importance of this
observation will be evident later.

Equation (6.1) can be deducted directly from Statisticspgobtability theory. A Bernoulli
trial [174] is defined as an experiment whose outcome cantiakgandom values, named
“success” and “failure”. Some problems in EC, where an optinor near-optimum solution
can be identified, may be described as a Bernoulli trial bezdle algorithm in those do-
mains can achieve a satisfactory solution, or not, i.e.uacsss” or a “failure” with a certain
probability, the SR.
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By definition, the probability of getting one success affedBernoulli trials with success
probability p is described by the geometric distribution,

P(X=R)=(1-p)"'p,

and the probability of getting at least one succesR inials is described by the well known
cumulative distribution function (CDF) of the geometristiibution,

P(X<R)=1-(1-p" (6.2)

It is interesting to point out that the geometric distributiis the only discrete distribution
without memory [174]. Using the CDF of the geometric digttibn in Eqg. (6.2) it is straight-
forward to calculate the number of trials such asP(X < R) = z. With these considera-
tions we can express (6.2) with the notation used by Koza.

z=1-(1-pf

which is the same expression that Koza deduced in [136] ysilgabilities. Taking natural
logarithms on both sides of the equation we can isalate

In(1 —
Rln(l—-p)=In(l—2) = R= In(l = 2)
In(1—p)

which is the same than (6.1), without the ceiling functiamahy case, the minimum number
of individuals that have to be processed to achieve at lesstsolution with probability:,
takes the form

) o In(l—z2)
I(M,i,z) = Mi [ln(l—P(M,i))-‘ (6.3)

Therefore, the number of processed individuals is a funaifa. By convenience, we define
I1.(M,i,z) asI(M,i, z) without the ceiling operator,

‘ . In(l—2)
I.(M =M A
(M3, 2) “In(1 — P(M,7)) 64)
By definition,computational effortdenoted by, is the minimum value of (6.3),
. ) In(l—2)
p=min {01 | i ©9

Equations (6.3) and (6.5) are rather simple and easy to staael, however, understanding
its behaviour and accuracy is far from being a trivial taslkeve3al statistical issues arise
when they are studied in detail, as it will be shown laters interesting to glimpse some of
their mathematical properties before we begin to study theguracy, variability and error
sources.
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6.2.2 Constant number of individuals to be processed

Randomness is intrinsic for all EAs, and it is also a majorceon that difficults experimen-
tal as well as theoretical studies. In order to simplify dpe authors, such as Christensen
[54] and Niehaus [180], used two different synthetic cunisasuccess probabilities that
was used in their study about the properties of Koza's perémce measures. The former
calculated the success probability that generates a carigta/, 7, z), while the latter sam-
pled I(M, 1, z) from a Gaussian distribution. This last approach might reotlose to the
reality because of the differences that we found betweenntioalel and the data obtained
empirically, as will be shown later in section 6.6.1.

The following theorem describes the relationship betwehl, i) andI (M, i, z), specif-
ically, any P(M, i) that corresponds to the CDF of an exponential distributaorit$ discrete
counterpart, the geometric distribution) generates ataahs( M, i, z).

Theorem 3 Any cumulative probability described by the CDF of an extiaédistribution,
P(M,i) =1— e withi > 0and\ > 0, generates a constai{ M, i, z) such as

Jmmaazfgm (6.6)

(1-2)

Proof 5 The derivate of a constant function equélsor all the values of the independent
variable. So, and being consistent with Koza’s notationiake the partial derivate of (6.4)
with respect to and equal it tad

oI(M,i,z) 0
di o
yielding the following differential equation
: s PME)
ln(z — P(M,Z)) +Zm =0

Solving it, we obtain the functioR(M,4) = 1 — e, where\ is a constant parameter. We
know thatP (M, ) € [0, 1], so we can deduce an additional condition\to

P(M,i)>0=>1-e>0=X<0

Given thati is a natural number, any success probabiliy M, i) that generates a constant
computational effort must be of the form

P(M,i)=1—¢ XeRT (6.7)
which corresponds to the CDF of the exponential distrilbutio

The equation that Christensen and Oppacher deduced indb4ye& obtained from (6.6). It
is interesting to note that the exponential distributiothis only memoryless distribution, it
means that, in some sense, the variability 0¥/, i, z) is a consecuence of the memory of
the accumulated success probability.
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Table 6.1: Best estimation of success probability for thdical ant problem. It reports
the number of runsn), number of successful rung)( best estimation of success rate
Pbest(M, G), best estimation of computational effort’es!), best estimation of compu-
tational effort without ceiling operatoﬂ?est) and their difference in absolute as well as
relative values.

Artificial ant  6-Multiplexer 5-Parity Regression
n 100,000 100,000 5,000 100,000

k 13,168 95,629 305 29,462
Pbest(M, G) 0.13168 0.95629 0.061 0.29462
Ebest 490,000 24,000 14,800,000 117,000
Egest 487,276 22,805 14,633,571 116,468

Difference 2,724 (0.5%) 1,195 (4.98%) 166,429 (1.13%) 5B69%)

In any case, the deterministic function studied here igésting from a theoretic point
of view, but actually in real EA experiments the behaviourR{fM, i) and I(M,1i,z) is
much more complex. An initial insight to this behaviour iseg in the next section, which
introduces an exploratory experiment showing an inititistical overview of computational
effort.

6.3 Exploratory experimental analysis

There are two main problems concerning the experimentafianwe have to carry out in
this chapter. First, since we are interested in the accuwhtlye measures under study, there
is a need to have something to compare with, to take as referégeally it should be the
exact measure, but clearly it is not possible. Secondly, @eslra high number of algorithm
runs, with a high consumption of computing resources. Tha&egoroblems can be solved
using resampling methods.

Like in chapter 4, four classical GP study cases have beestedt Artificial ant with
the Santa Fe trail, 6-multiplexer, even 5-parity and a limegression [136]. They have been
selected to represent a diversity of difficulties, from asyeproblem (6-multiplexer) to a
difficult one (5-parity), with two intermediate problemst{ficial ant and regression). Each
one of these domains was run a high number of timés, 000, with the exception of the
5-parity, that was only rui, 000 times because its greater population size required more
computational resources. The main advantage that it pgeviglthat using all the runs it is
possible to calculate an accurate estimation of the mairider study. A second advantage
is that once those runs are executed and stored, they casadmeplked to avoid running again
the algorithms, saving substancial computational ressuand time.

The object of this study is not the algorithm itself, but eatthe performance metrics, so
the details of their implementation and the parameter tydives not affect this study. Con-
sequently, we have used the default implementation of tleeteel problems and parameters
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Figure 6.1: Number of individuals to be processe@@i pseudoexperiments composed by
50 runs. The mean value is plotted with a black solid line.

found in ECJ v18 [154], which are based on the original sg$tinsed by Koza [136]. The
main parameters that we have used are reported in Table #l2just minimal corrections
such as the population size. The large number of runs exkgiglls a good estimation of
the true values of Koza’'s metrics. Since they are the beisha&ison available for this study,
we note them agb®st(M, i, z), Pst(M, i) and EP*5t. The values of these estimations are
shown in Table 6.1.

The variability of the estimation aof ()M, 4, z) is depicted in Figure 6.1. It contains the
outcome o200 simulated experiments (or pseudoexperiments) with itsaaeevalue. Each
experiment has been simulated takistgsamples with replacement from the dataset. This
figure shows that different pseudoexperiments usuallydyiifferent performance curves.
Depending on the domain, the variability of the curves cleanfpr instance, if we compare
the curves of the artificial ant and the 6-multiplexer, we fesb variability in the latter than
in the former. Notice that the scale used in the figure in basdes is the same.

At this point it makes sense for us to hypothesize that thblpmo difficulty plays a role,
this hypothesis is based on the apparent correlation battheesuccess rate of each problem
and the dispersion of theif{ M, i, z) curves. The two most difficult problems, the artificial
ant and the 5-parity, are those with greater variability ighs the two easiest problems,
6-multiplexer and the regression, present less varigbilit

Figure 6.2 shows the histograms of the computational effidulated for the problem
domains under study. Each histogram usg300 pseudoexperiments calculated usbty
(bottom row),200 (middle row) and500 (top row) runs sampled from the datasets of runs.
Histograms do not clearly suggest a distribution functibtedo fit data in all the cases.
Computational effort in the regression problem takes agudar form while, for instance,
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Figure 6.2: Histograms of the computational effort for toerfproblems under consider-
ation. Each histogram represents the computational esfast 000 experiments that were
simulated subsamplingd, 200 and500 runs from the datasets.

the artificial ant seems to fit better in a lognormal or a Weibligtribution. There are also
some outsider histograms, such us the parity problemmfer 50 or the multiplexer with
n = 50, nonetheless, the latter can be explained by the groupirijeotategories in the
histogram.

The lack of an obvious distribution able to describeconfirms the previous result re-
ported by Walkeret al in [241], who also failed in finding a probability distribati able
to model £. In our opinion, there is an underlying random variable eisged to the ac-
cumulated success probability, and this random variablaadified by several non-lineal
operations such us logarithms and the minimum operatof; #w some sense follows the
same distribution but it has been "contaminated” by thosatpns. From another point of
view, differences in the distribution df with different levels ofn suggest the presence of a
sampling bias [59], and thus the presence of other factatsrnifiluencer. We suspect these
factor are the non-linear operations made by (6.3) and.(6.5)

An important property of any estimator is its variabilityigbre 6.2 illustrates a rela-
tionship between the variability of the estimator and thenbar of runs: the higher is,
the narrower is the distribution of. Let us, for instance, observe the artificial ant, when
n = 50 most of the estimators are placed betw8eand1.5F6 individuals, if we increase
the number of runs tB00, most of £ take values betweel0, 000 and800, 000; higher val-
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ues ofn yield even less variability of the estimations of computaél effort, whem = 500

E is mostly placed in the range 600,000 and700,000. This behaviour is observed also
in the rest of problem domains. Since the estimatiod (@f/, i, z) and E depends on the
estimation of the accumulated probability, and its quasthiighly dependent on the number
of runs [15], it makes sense to suppose that they are relateaich other.

In any case, it is clear that performance measures contaaniability that comes from
the intrinsic stochastic nature of experimentation. Havélie exact nature of the variability
and the factors that influence its magnitude is not yet ckawe move on to try to identify
the sources of that variability in order to quantify and mdte

6.4 Determination of the variability sources

Previous work performed by Christensen identified threecssuof variability in computa-
tional effort, the ceiling operator, the estimation of thiesess probability and the minimum
operator [54]. We hold a slightly different point of view alidhe effects of the minimum
operator. First of all, we hold that, to be strict, it is nesay to clearly distinguish between
I(M,i,z) and E, something that some studies do not do. In our opinion, th@nmum
operator is a deterministic non-linear operator whosaléity depends on its operand. In
other words, the reliability of the measurementibnly depends on the measurement of
I(M,i, z), which does not depend on any minimum operator. So we ettplexclude the
minimum operator in the study, and we will simply study thiatslity of 7(M,1,z), and
then apply the result to the computational effort.

Consequently, we consider two sources of randomne$glifi i, z) and E: the ceiling
operator and the estimation of the cumulative success pildpa In order to simplify the
study of the effects of these uncertainty sources, we sep#ram as independent noise
sources using the following model.

I(Ma i) Z) = fC(M7 iv Z) + 6geil + 5£5t
while, by definition,

E = min (I(M,,2)) = min (L(M,i,2) + Ly + L)
K3 1

So we can identify an uncertaintjeil generated by the ceiling operator, as well as a noise

el., associated to the estimation Bf M/, i), which is related to the limitation in the number

of runs. This chapter moves towards charactetizg ande’,,, to try to understand how

they affect the precision of performance measures, andltodnfor methods to reduce its
variability while improving the reliability.

6.4.1 Ceiling operator

The first variability source we study is the ceiling operat8irictly speaking, the ceiling
operator is not a randomness source because it is a detstimimperator, but it removes
information, increases the variability of the measure asdlices its precision, as will be
demonstrated later, so its effects in practical terms is#ime than a biased random error.
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Figure 6.3: Maximum relative ceiling error as function o€sess probability for three values
of £, 0.05, 0.01 and0.001 (left) and comparison betwedn and R, (right).

In order to study the effects of the ceiling operator, let efré an alternative computa-
tional effort, £, asE, = min (I.(M, i, z)), wherel.(M, 1, z) = MiR. and
(2

_In(1-2)
" In(1 — P(M,1i))

It is clear that, assuming that,; = 0, the error term introduced by the ceiling operator
is the difference betweef(M, i, z) andI.(M, i, z),

elu=1(M,i,z) — I.(M,i,z) = Mi(R — R,)

The error depends on the the fractional parfzahat is rounded by the ceiling operator,
the population size and the generation number. We know(tRat R.) is limited by the
maximum fractional part of a real number, & — R.) < 1. With this consideration, it is
possible to bound’_;,

Eteit < Mi (6.8)

It follows thatmax(e! ;) = Mi. This equation introduces an absolute limit to the ceiling
error which is linear with for a given population size. One way to study the importarice o
this error compared witti(1/, 4, z) is calculating the relative ceiling errar’(,, (%)), which

is straightforward using the definition &f(M, i, z) and (6.8).

1 (%) < maX(Eﬁeil) _ 111(1 _P(M7Z))

el V) ST M4, z) T In(l—2)

(6.9)

and thus the relative maximum ceiling error in the measufferistion of P(M/, ) and z.
A graphical representation of (6.9) for three commowalues can be found in Figure 6.3
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(left). It can be seen that the estimationIgf\/, i, z) is more sensitive to the ceiling error
for low values ofz. Figure 6.3 (left) also clearly shows the asymptotic betawviof the
maximum relative ceiling error next th so whenP (M, 1) is close tol, the estimation of
I(M,i, z) might become arbitrary wrong. A graphical comparisoi®@nd R, can be found
in Figure 6.3 (right).

Given the reported results in this section, we conclude tt@aterror generated by the
ceiling operator might be very significant. The maximum aniaf error introduced by this
operator depends on the population size and the generagvertheless, in relative terms,
it only depends on the accumulated success probabilityzalde do not recommend using
values ofz lower thatP(M,i). The good news are that, oné&¥ M, i) is known, the error
may be bounded by (6.9), moreover, it can be completely péted simply removing the
ceiling operator. We are unable to find any remarkable dmatdge, so, evidence moves us
to suggest not using the ceiling operator when calculafiig, i, z) and E. In few words,
ceiling error might be a considerable source of variabilitthe measures, however it is
trivial to remove it in comparison with the estimation errarhich is studied in the next
section.

6.4.2 Estimation error

The second source of variability we can identify comes frém éstimation ofP (M, ).
The true success probability is rarely known in EC, and floeeethe experimenter has to
estimate it [54]. In practical terms, (6.3) cannot be diseased, but rather we can obtain an
estimation

FIM i) = Mi In(l—2)
I(M,i,z) =M |Vln(1 - ﬁ(M,z))-‘ (6.10)

Whereﬁ(M,z‘) is the estimation of the accumulated success probabilitsiioédd from the

experiments

P(M,i) = B(M, i)

n

The difference between the theoretida(), ) and the experimentaP (M, i) is the
only randomness source 6t i, z), the error induced by this difference is what we call
estimation error

Following [54], we model the estimation erray,; as a noise”(M, i) = P(M, i)+ eest.
This error, associated to the estimationfaf)/, i), induces another error in the estimation
of I(M, i, z), that we model adding an error terfy,, soI.(M,i,z) = I.(M,i,z) + ¢! ,.
In order to isolate the effects of the estimation error ammidaunnecessary complexity, we
do not consider the ceiling operator.

With these considerations we can state that the number vidodls to be processed is

given by

s In(1 - 2) o In(1-2) I
I.(M,i,2) = len(l — R Te] len(l S P D) +el,.,  (6.11)

then, the estimation error @§(M, i, z) as a function of the estimation error of the cumulative
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Figure 6.4: Error produced by the estimation/of)/, i) as function of success probability
and estimation error. The function is definedBye (0, 1], .t € [-1,1] \ P +¢ € (0, 1].
M is fixed to 5004 to 10, ande = 0.01.

success probability is the difference betwdefl/, i, z) and (M, i, z)

Miln(1 - z) Miln(1 — z)
In(1—P(M,i)) In(l— (P(M,i)+ cest))
To ease the graphical representation of (6.12) shown inr€ig4 we consideP (M, i) =
P ande., as independent variables, fixing the rest of the parameiessrhe common val-
ues,M = 500, ¢ = 0.01 andi = 10. Figure 6.4 shows that ., has an asymptotic behaviour

in two planes,P = 0 ande.s; = P.

The high estimation error found in the plafe= 0 was previously observed by Chris-
tensen [54]. He calculated the Taylor series of (6.11) andddhat/ (M, i, z) is very sensi-
tive to estimation errors wheR (M, 7) is close td), which is the situation in early generations
of the evolutionary process. The reason of this sensitiga aan be found in the first term
of (6.12), givere.s # 0, and taking the limit

. Miln(1 — z) Miln(1 — z)
(M,i)—0 <1n(1 — P(M,i)) In(1-(P(M,i)+ sest))>

yields an infinite error. The another asymptotic behavidan®estimation error is originated
by the second term of (6.12). Whep,; ~ —P(M, i) the denominator tends to loe and
then the estimation error increases its magnitude. It shbelnoticed that this effect is not
symmetrical, only happens for negative values Qf, i.e., whenP (M, i) is overestimated.

The relative estimation error is given by the cociepy,/I.(M,1,z), then, using the
definition of I.(M, i, z) and (6.12)

el - In(1 — P(M,1))

el = I.(M,i) —I.(M,i) =

(6.12)

est

Eeat(%0) = LM = T W= (POVLD) + 20m))

(6.13)
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Estimation error and I(M,i,z)

Relative estimation error (&) (%)
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Figure 6.5: Relative error as function of SR and estimatiwareThe function is defined by
P e (0,1],eest € [—1,1]\P + €est € (0,1].

This equation provides a way to determine whether the esrsignhificant in relative terms.
When the estimation error is small, the ratio is closé #nd therefore the estimation error
is, in proportion, close t6%.

The relationship between ,; ande<l,, given by (6.13) can be better appreciated in Fig-
ure 6.5. First we observe that the signegf; has a strong influence arf,, (%), an over-
estimation of P(M, i) (negatives.) leads to more error in the calculus bfM, i, ) than
an underestimation (positive.;;) of the same magnitude. This behaviour is explained by
the asymptotic effects of the relative estimation error wiéM, i) + c.s; = 0, which was
seen before in Figure 6.4. Secondly, it can be seerefhdt’) also depends on the value of
P(M,1); low values of P(M, i) are more sensitive to the estimation error than high ones, as
can be seen in the slope of the curves, much more inclinectifotimer case.

As a conclusion, we can state that the number of processedduals is specially sen-
sitive to the estimation error in two cases: when the accatedIsuccess probability is very
low, close to0, and where.;; ~ —P(M,4). Drawing conclusions about the relationship
between the estimation error afdrequires further analysis, which basically deals with the
minimum operator. In any case, and as an almost tautologaralusion, high estimation
errors will generate high errors in the calculus of the nundigprocessed individuals, and
we can conjecture that this error will also be translateti¢oststimation of the computational
effort.

In this section we have related the estimation ey, with the error that it introduces
in e, however, it is yet unclear what factors determine the ntageiofe,s. This is not a
minor observation, depending on the valuesgj the error induced might be significant or
not. We need to express that error as function of a known mea3ihat is the objective of
the next two sections, model,; as function of known factors and check out its influence on
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the accuracy of (M, i, z) and E.

6.5 Characterization of the estimation error of I (M, i, z)

The magnitude of the estimation error®Bf M, i) is a key element to explain the accuracy of
Koza's performance measures. Due to the stochastic natagg; pit is hot possible to set a
hard limit to its size, as was done with the ceiling error Yprbnetheless, it does not mean
that there are no mathematical tools that could give sonhetiggthis topic. The study on the
binomiality of SR and confidence intervals done in chapter@n example.

The maximum likelihood estimator of the accumulated suepesbability isP(M, i) =
k(M,i)/n. Given a certain generation, let say the number of successful ruhsM, ig) is
a binomial random variable [21, 15, 177]. Then; is an error associated to the estimation
of a binomial variable, and thus, it can take any value betwe® 1. Nonetheless, it is
still possible to determine a region where the estimatiothefprobability is likely to be
contained with Cls [44, 179].

The Confidence Interval Widtfor CIW) is defined as the difference between the upper
and lower bound of the interval, 8/ = U — L, we can set a relationship between the
CIW and the estimation error, as it will be justified later.e8k two properties, CP and CIW,
are commonly used to measure the quality of an interval [129§ood interval has a CP
close to the nominal coverage and low CIW.

Binomial Cls is a well studied problem, and there is a largges of publications deal-
ing with this topic. Probably, the two best known compamattudies about binomial Cls
are [44, 179], but many other studies have been publishe@B& 190]. Much less research
have been done to relate this field of Statistics with EC, mewasing Cls in the context of
computational effort is not a new idea. Walladral. studied how to apply Cls to the esti-
mation of the computational effort [241], the reliabilitgliability of Cls [240] and proposed
a new metric called “success effort” using a binomial Cl [R48iehaus and Banzhaf also
studied the reliability of the computational effort [180jthin steady-stade algorithms.

Probably the main problem here is the dependencB(af, i) with i. For a fixed gen-
eration: = iy, the cumulative number of succesg€s,) can be described using a binomial
distribution, and thus it is straightforward to create a @lthe probabilityP (M, i), but if
we introduce the generation numbé¥ M, i) is no longer a binomial random variable, but
rather a stochastic process. This topic was addressedaihidethapter 5. Walker [240] pro-
posed some solutions, but finally concludes that the befinpeance is achieved when the
Cl is calculated for each generation, and therefore, gikierCil of the accumulated success
probability in generation, [L;, U;], the Cl of [(M, i, z) is

LI:MZWln(l—z)-‘

! ln(l - Lz)
(6.14)
I o] In(1=2)
Ui =Mi Ln(l - Ui)-‘

If the algorithm is run forG generations, calculating intervals fbrusing (6.14) requireé!
Cls.
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Following Walkeret al., computational effort is then the inter\,{aljf-, U;], wherej is the
generation wheré(M, i, z) achieves its minimum. As Walker noticed, this method doés no
consider thay is a random variable, and thus we do not feel this is the masirate method
to calculate computational effort. We need to know hBW\/, i) varies with the generation.

Any binomial Cl method may be used, for instance, a normat@pmation or Wald
interval [145], Clopper-Pearson or “exact” interval [58fresti-Coull or adjusted Wald [2],
Wilson or ‘score’ [247], not to mention alternative bayesapproaches [91, 214]. No mat-
ter which method is used, binomial Cls can be used to chaizetthe magnitude of the
estimation error.

6.5.1 Relative error induced by the estimation error in(M.i, z)

There are several binomial Cl methods, each one with its owwpegsties. However, we
have seen in chapter 4 that their basic properties are confonatl the methods, and only

a through analysis of the methods may find differences irr thehaviour. In any case,
for the purpose of this research, these differences areigmifisant, we are interested in
the common properties of binomial Cls to charactetizg, not in the particularities of each
method. Several authors [21, 240, 44] recommend the ci$&itson method. This method
combines good performance in average term with simplittigse properties makes Wilson
a good choice to characterize,;, these observations were confirmed in chapter 4. For
this reason, we select the method of Wilson with continudyrection, that corrects some
aberrations found in the original method [45], so the fornthaf Cl used in this study is

1.2 2 2
k+ 3200 Za/2\/ﬁ “a/2
L= 2 - 2 p(l - p) + 4—
n+za/2 n—l—za/2 n (6.15)
1.2 2 2
k+ 3700 Za/2\/ﬁ “a/2
U= 5 —\[p(—p)+ =
n+za/2 n—l—za/2 7

wherep = k/n is the maximum likelihood estimator of the success proligpbik is the
number of successes,is the number of runs ang, , is the upper/2 critical point from
N(0,1).

It should be noticed that the center of the interval is noegibyp = k/n, but rather
byp = (k + %23/2)(n + ziﬂ)*l, hence the punctual estimatB 1/, i) is not placed in the
center of the interval. This is a common characteristic pfcgt all the binomial Cls [44]
produced by the boundaries of the random variable. Fromaire pf view of the calculus
of I(M, i, z) the shift of the location op within the interval produces that a low success
rate close td) is more likely to have underestimated its value, because e no negative
probabilities. On the contrary, an estimation closé farobably will overestimate the real
SR because there are no probabilities greater thdimis fact has to be considered to obtain
a fair estimation of the error, actually, a quantificatiortto$ asymmetry is needed.

The effects of the asymmetry of the estimation of a probigbilan be studied using the
distance betweef and the boundaries of the interydl, U]. Inspired by Newcombe [179],
and as a way to measure the asymmetry of the interval, we difBistal Confidence
Interval Width or DCIW, as the difference between the maximum likelihostineator of
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Figure 6.6: Maximum estimation erref,, as function of number of runs and success proba-
bility. <., has been calculated as the maximum of Wilson DCIW and MCIWAfet 0.05

est

(see Eq. (6.16)).

the probability and the lower limit, sd)CIW = p — L. Similarly, we define théviesial
Confidence Interval Widthor MCIW, as the differenc@d/CIW = U — p. It is trivial to
demonstrate that CIW, DCIW and MCIW satisfy the propettyiV = DCIW + MCIW.
Differences between DCIW and MCIW tend to be reduced wherettsea high number of
runs.

If the probability estimator was centered in the intervag, aould set a direct relationship
between the estimation error and the CIW, simgly, < CIW/2. This boundary for the
estimation error is expected to be true with probability . Nonetheless, the asymmetry of
the binomial distribution does not ensure a fair estimatibthe error just taking the center
of the interval. Good Cls methods should guarantee moressrtlee same probability of
underestimate and overestimatwithin the interval [179]. However their effects are not the
same, because DCIW and MCIW are not likely to be equal (it balgpens whep = 0.5),
and thus the error that is associated, following #iat < CIW/2 actually underestimates
the error. In order to be conservative, and to obtain a maree&imation of the error, we
take the maximum between DCIW and MCIW, so

€%, < max(DCIW, MCIW) (6.16)

est =

To better illustrate the properties of (6.16), it has beepiaded in Figure 6.6. The error
e, is symmetrical wrt the axi® = 0.5, however its maximum is not placed on that axis, but
it is biased, the reason can be found in the displacemeitwith respect to the center of the
interval. Interestingly, the effect of the asymmetry ofitmterval is less evident as the number
of runs is increased and rather obvious for low values..ofin any case, higher number
of samples always generates tighter intervals because thenore information about the
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algorithm [21], and thus more precise intervals can be lauill therefore the estimation
error is reduced.

Looking only CIW may lead to an incomplete view of the Cl penfiance. In particular,
evidence shown previously may induce the (incorrect) amich that estimation of prob-
abilities close ta) and1 are more reliable than those with intermediate values secau
that area intervals are tighter. The confidence levéd also known as nominal coverage
because intervals cover the true probability with proligbill — «), nevertheless, the real
coverage that one finds in practice is unlikely to coincidéhwlie nominal one. This is the
reason because it is necessary to look at CP. Figure 4.4 shewsP for Wilson intervals
with o = 0.05. Like CIW, CP is symmetrical with? = 0.5 and explains why intervals
are tighter near the boundaries of the domain, CP in those giets worse and actually, for
values ofp close to0 and1 the intervals are not reliable at all. Intervals are tighiet it is
more unlikely that the estimated probability falls withiretinterval. In these regions, when
number of runs is large, successes are better describegl agdoisson distribution [148]
instead of a binomial.

In this section we have developed some tools in order to helfp wnderstand under
which circumstances the estimation error is higher. Howetie question about how these
circumstances affect the estimationlgf\/, i, z) and E' remains open. Next section tries to
provide some light to the answer.

6.5.2 Relative magnitude ot!

est

The main variability source of(M, i, z) is the estimation of?(M, ). Due to the intrinsic
stochastic nature of the estimation, it is necessary totasist&cal methods to characterize its
behaviour. Confidence intervals provides a tool to estimateas a function of the number
of runs and the success probability. Sir¢g is a function ofz.,;, we can use the previous
result to directly develop a relationship amatjg,, » andp.

With all these considerations, we can limit the effects efdélstimation error in the mea-
surement off (M, i, z) as

1  In(1 — 2)  In(1 — 2)
gﬁst < 3 <M’Lm — M’Lm> (6.17)

where|[L;, U;] follows (6.15).
In order to ease the analysis of the relative effects of ttiematon error, we calculate
the relative maximum errar? , (%) as the ratio of the maximum error and the number of

individuals to be evaluated with the probability placed le tenter of the intervaly =
(k + %22/2)@ + z§/2)71'

7 -
1 _ Cest 111(1 — p) 1 — 1
Eest(V0) = I(M,i,z) < 2 <ln(1 —L;) In(l- Uz)>

The surface defined by this equation fer= 0.05 is depicted in Figure 6.7. It shows
thate!,, (%) is highly dependent on the number of runs and success plitjaliising a
high number of runs yield less error in the measurement(df, i, z). The influence of
the success probability is slightly more complicated. Laalues of P(M, ) yields poor
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Figure 6.7: Maximum relative error df(M, i, z) calculated using confidence intervals with
a = 0.05. X-axis represents the success probabififjywhereas y-axis represents the number
of runs ).

estimations ofl (M, i, z), the same can be said whét{)/, ) is close tol, however, in
this case the effect is not so evident. It is interesting ttenagain, that early generations
of the EA, where the success probability is lower, the egtoneerror is greater, and thus
in that region the estimation df(M, i, z) looses accuracy. The evolution of an EA may
be represented graphically in Figure 6.7 as a point that méreen left to right, the first
generation is placed if0, n) and moves horizontally toSR, n) in G generations.

Let us consider a common experimental setup compose6Dlyns, a value within
an order of magnitude commonly used in practice. Lookingigtife 6.7 we find that the
maximum relative estimation error is, at least, arogaigh when P(M, 7) = 0.78. This error
does not include the error produced by the ceiling operatuat,actually, it is not guaranteed
that the experiment achieves it, for instance, in case @SR achieved by the algorithm
were lower thard).78. It shows that the estimation error is rather significanheee a relative
high number of runs¢0, moreover, finding literature reporting fewer number ofgisnot
rare.

How the estimation error affects the computational effefar from being a trivial pro-
blem. Computational effort is the minimum 6fM, i, z), which is a deterministic non-linear
operation and thus it does not introduce randomness in tlasune An issue that makes
difficult the analysis ofF is its dependence with the generation numbehis dependence
affects in two ways. Indirectly, througR (M, ), which is a function ofi, and directly be-
cause it is included in (6.3). Another factor that difficulte study ofE is that P(M, 1)
cannot longer be considered as a point estimator, but ratharstochastic process because
it depends on, i.e., there is a statistical dependence betwBeh/, i) andi. This issue is
disscussed in detail in the next section.
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6.6 Characterization of the estimation error of £

The main difficulty that we find in the study df is that, on the contrary thah(M, i, z),
its statistical properties do not depend on an underlyimgrial random variable, but on a
stochastic process. Therefore, we need a model of the te@havibur of/ (M, i, z), which
also depends on the existence of a model of success prapabitirtunately, this problem
was addressed in the previous chapter and therefore we posiiion to develop a model of
the computational effort.

6.6.1 Analytical model of/ (M, i, z) and E

Equation (5.19) provides a reasonable model of the accuetlfaiccess probability in tree-
based GP, as it was demostrated in section 5.4.3). It lead as tlternative method to
calculatel (M, i, z), let us name this methalt (M, 7, z). Using (5.15) and (6.3) we trivially

obtain that the estimator df (M, i, z) is given by

(M, 2) = Mi— E @@Z@T_“»

where ®(...) is the standard normal CDF [125]; is given by (5.17) andr by (5.18).
Then, (M, i, z) is a function of three parameteris(M, G), /i andé. Once that we have
I*(M,i,z), providing an analytical model o, let us name itE*, is straitforward. The
estimator of£™* is then

ox _ e . In(i — z) .
B = {Mln(1"f§>q>(m;ﬂ))} (6.19)

(6.18)

g

A graphical representation of the proposed modéel @ given by Figure 6.8. Given that
the definition of £ contains a minimum operator, it is not unreasonable to ctunje that
E depends on points close to the minimum operator that coted e estimation. On the
contrary thanZ, E* uses all the sampled points, and thus it seems reasonabfpdthbtize
that the estimation made is less sensible to local outligesling a more robust estimator.
This is just an hyphothesis, and thus it is desirable to aoniirthrough experimentation.
Similarly, we have proposed a model, but we do not know iftiniglel is able to approximate
E well. These two issues are addresses in the following sectio

6.6.2 Experimental validation of the analytical model ofE/

The model proposed in (6.19) is an alternative formulatibthe computational effort, and,
in order to be useful in this study, it should be able to esnfareasonably well. A side ef-
fect of the definition of2* is that it provides an alternative method to calculate caatpnal
effort that uses all the available samples, and then it sseaspnable to hypothesize thzt
is more robust and accurate than In this section we explore these two questions, whether
the model is realistic and additionally if it is able to prdgimore accurate estimations to the
computational effort.
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Figure 6.8: Graphical representation of the analitycal ehad computational effort as a
function of i1, o for population size M£500, 1000}, and SR$.5, as modeled in (6.19).
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Table 6.2: Differences off and E* with E.,, for different sample size. The table shows
data for the regression problem, the same behaviour is fthendther three problems under
study. The computational effort has been calculated witleeiling operator regardless of

the method.

|Ebest - E‘ 3d|Ebest - E‘ |Ebest - E*‘ Sd‘Ebest - E*|
50 3627.9770 2562.9722 3482.4215 2910.1751
100 2585.3189 1961.6505 2416.7762 1900.6281
200 1634.6052 1264.5999 1572.8789 1204.3831
300 1368.5800 1013.5731 1300.1529 991.7907
400 1158.0780 888.1902 1118.1963 860.9419
500 1073.2470 790.5500 1012.5622 766.0491

In order to verify whethet* approximates betteE..; than E, we have performed
the following experiment. We simulated 000 experiments of the four problems sampling
n € {50,100, 200, 300,400,500} from the dataset. For each experiment, we calculated
and £ and then we depicted a boxplot with the differentBg.; — E;| and|Epes; — Ef].
So, a good estimation df must generate boxes closetoThe result, for the case of the 6-
multiplexer (the rest of the problems follow the same pajtes shown in Figure 6.9 (left).
The boxplot shows that the distribution of the error folloawskewed shape with a long
tail represented by outsider points. It is clear that theigreis the sample size, the error
associated to the measure is lower no matter which methosed. uThe improvement in
quality of the lognormal-approximation used to estimatés not clear. While the standard
deviation of the population is similar across the differeatber of runs, a slight difference
in the median of the samples is found, more significant forsmmber of runs. It might be
more clear in a numerical form rather than a graphical on#,csm also be read in Table 6.2.

In average terms, the modified method yields measures dioske best estimation of
E. Because of the significant variance of the measurementgelaas the small difference
between the methods, we cannot claim that the precisioreah#sasures is improved, how-
ever this fact repeated across all the number of runs andigifienumber resamples done
in the experimentp, 000, lead us not to negate that. The mean values are represented i
Figure 6.9 (left) with lines, and they show that the mean ef phoposed method is lower
than the original one for all the values of

The experiment previously reported served to compare tberacy of £ and Ex wrt
to best estimation. Therefore, we only can conclude abait #bility to yield accurace
estimations of computational effort, but does not provigerimation about the accuracy of
E*. In order to check it out, we have performed another experimguite similar to the
previous one. In this experiment we have simulaié@ experiments, calculating; and £*
for each pseudoexperiment. Then, we have depicted a siattetth the relative difference
(E; — E¥)/Eyes versusn in Figure 6.9 (right). It can be seen that the relative déffere is
very small in the four problem instances. Even with a low namdf runs §0), our model
seems to be quite accurace, with a maximum relative erro¥wof 1

With these data in mind, we cannot state that the lognornyalosgmation to calculate
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E is more precise than the standard one using the same numbansof Nonetheless, we
can take the opposite view, the lognormal approximatiomgast, does not seem to be less
reliable than the standard method. This conclusion, in theext of this dissertation, is
important, since it justifies that™ is a reasonable model &, and therefore, we can use it
to characterize the error df.

6.6.3 Using the analytical model oft’ to characterize its estimation error

Once we have an analytical model of the computational effwet can address the main
objective of this PhD thesis: characterize its error in otdedetermine the reliability of.
Our model is a function of three variables, which are GRndo, hence expressing in a
fuctional form E(SR, u, o). The objective of this section is to analyze how an error & th
estimation of any of its parameters affects the quality eféktimation. In order words, we
want to determine

AFE = ﬁ ASR + '— Ap+ ‘— Ao
The effects of the estimation error of SR has been partidligied in chapter 4, so we
exclude it. However, the way that the estimatioruando can affect the reliability o2 is
still unknown, so, in the following we focus our investigatito the study of these factors.
Given the analytical complexity of the model, and the lachedessity of being strict, we
simplify the problem using a numerical approach. A rudeyeasonable way, to estimate the
relative errorA E” numerically is just observing the difference of the exaenpatational
effort and the computational effort calculated with an eimdhe estimation of its parameters

E(SR7M>U) — E(SR,,U + A,LL,U—F AU)
E(SR, p,0)

AE” =

The problem here is which valugsy and Ao should be used. This problem is similar to
the previous characterization of the estimation error ofabability, and can be addressed
using the same strategy, which is relating error and Clshibhdase, there are two variables
involved, and thus from a geometrical perspective, thdimeadion define an uncertainty

surface whose boundaries would be approximated by the Glsaatls.

So, the problem of determining the uncertainty region ofstamation ofE, and thefore
Ap andAco, becomes a problem of computing lognormal Cls. But this isohlem that can
be solved using the relationship between the normal andlogal distributions, which is
well known [150], and is given by the expression

X ~ N(p,0) = X ~ LN(ur,01)
X ~ LN(pr,or) = In(X) ~ N(p,0)

This relation is handy because provides a way to apply alhtitenal statistics to lognormal
distributions, including normal Cls. It is well known thaiet Cl of the mearu—, ], given
an unknowry, is

A ~

g

o
o wt = A —tajpn1—— b+ tajon1—— (6.20)
2t ) 2t )
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wheret, ;1 is the upper(1 — a)/2 critical value for the Students’ t distribution with
(n — 1) degrees of freedom, andthe number of samples (or runs in the context of EC).
Similarly, the normal C[o~, o] when the mean is unknown is given by

—1)62 _1)52
oot = [\/(n 1) ’\/(n 1) ‘ 6.21)
Xa/2,n—1 X1—a/2,n—1
wherex, 2,,—1 andxi_q /2,1 are the upper and lower critical valuess for tpsquared
distribution with(n — 1) degrees of freedom. The Cls defined in (6.20) and (6.21) gesvi

the limits of the uncertainty region. Then, for each pdjmnto), we determine its uncertainty
region and estimate the relative error as

maX(E(SRv Hs U) — E(SRv :u/> 0/))

AE” =
E(SR, p,0)

(6.22)

where (SR, u, o) is the point in the domain off where the error is being evaluated, and
(SR, 1/, 0’) is a point contained in the surface defined (2, i1, 0) ando™ < o < ot
andu~ < p < pt that maximizes the differencB(SR, p,0) — min(E(SR, i/, 0'). A
graphical representation df £% with confidence leved5% is given in Figure 6.10. The
figure plots the maximum expected relative error calculatgl confidence leve.95 and
SR = 0.5 for a domain that covers the parameter values reported ile EaB. Other values
of SR were tried, however no significant differences weraébu

Firstly, in Figure 6.10 we observe that the expected errauige high when there is
a low number of samples, but it decreases rapidly wittadditionally, increasing: has
as side effect a flatter error surface, and thus, the behawidine error seems to be more
homogeneus when a large number of runs are used. SecongllyeF.10 shows that the
effect of i is pretty moderate, and only in low values of this parameter,can observe a
dependence of the relative error within form of smooth oscillations. The relative error
depends much more on the dispersion of the run-time to ssi@e@snon trivial way. When
o is low, the relative error seems to stay low, but as it is iasegl, the error also increases.

In this section we have developed a characterization ofélative estimation error of
E. The model predicts high values of error associated to theesarement o in typical
algorithms and experimental designs with= 30. It also showed that the error remains
almost constant with the mean run-time, while it is sensiblalgorithms that exhibit high
variances of the run-time to success. The model that we hebmoged relies in several
assumptions and simplifications that could reduce itshiiiya For this reason, we comple-
ment the almost theoretical approach previously done,dardo verity its accuracy through
experimentation.

6.7 Experimental analysis of Koza's performance measures

This chapter has approximated to problem of the reliabdftthe computational effort from
almost a theoretical perspective. Ecen though it used a Ineddiccess probability that
required some empirical observations. From our point ofvvideally theory and experi-
mentation should complement each other in a double wayryrswuld be able to inspire
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30 50

Figure 6.10: Maximum expected estimation errofbés function ofu, o andn, as modeled
by (6.22). The number of runs takes values {30, 50,100, 500}. The SR is in all the cases
0.5, different SR values do not yield remarkable differences.
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Figure 6.11: Comparison between the number of individualset processed computed us-
ing the ceiling operator (solid line) and not using it (dashiee). The curves have been
calculated using all the samples in the dataset with0.99.

new experiments, and, analogously, experimentation ntighdble to suggest new theories
and verify them. Following this philosophy, in this sectiae try to verify the theoretical
results obtained so far.

To be consistent with the theoretical work previous rephriee follow the same struc-
ture. We divide the problem into two assessing, on the ond,lthe accuracy of (M, i, z),
followed, on the other hand, by an analysisE)fIn both cases, we consider the two factors
that we have been studing along this chapter: the ceilingappreand the estimation error.

6.7.1 Accuracy ofl(M, i, z)

Before studing the reliability of?, we study the reliability of its main component, the number
of individuals to be processed, or simplyM/, i, z). We begin the empirical study looking
at the effect of the ceiling operator in the estimation ¥/, i, z).

6.7.1.1 Ceiling error of I(M, i, z)

Firstly, we analyze the effect of the ceiling operator justing I°¢st(M, i, z) andI’st (M, i, 2)
in Figure 6.11. The most obvious difference is the sawtob#ps that/’*s*(M, i, z) has in
some problem domains, such as the multiplexer. This shaglsdsfound in the rest of the
problems, nonetheless in different magnitude. In the cétbeoparity problem it seems
that there are no discontinuities, however there are, layt #ine so small that only a zoom
over the figure shows it. In any casB¢st(M, i, z) is strictly higher than’st(M i, z),
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Figure 6.12: Comparison of theoretical and experimentiéihgeerror measures with all the
runs. Error is reported in absolute (left) and relativeHtjgralues.

so, as Christensen reported, the ceiling error is biasedemts to increase the value of
15t (M, i, 2).

Interestingly, there seems to be a correlation betweenrtdiggm difficulty and the mag-
nitude of the discontinuity; the ceiling operator introdaanore discontinuities in the mul-
tiplexer problem L. (M, G) = 0.96), followed by the regression{..; (M, G) = 0.29),
artificial ant (P..:(M,G) = 0.13) and finally the parity problem&Z..; (M, G) = 0.06).
This experiment confirms the relationship between thergeiéirror and the problem diffi-
culty found by Christensen and Oppacher using a syntheticesgion ofP (M, i) [54]. Ex-
periments show that measuridg)M, i, z) in easy problems tends to have more ceiling error
than in hard problems. This fact is consistent with the tegcal work done in section 6.4.1.

The difference betweeffs'(M, i, z) and I’*!(M, i, z) is better illustrated in the Fig-
ure 6.12 (left). This figure shows the differenéts! (M, i, z) — I%5t(M,4,z) with the
maximum theoretical ceiling error set by (6.8). It can bensibat the theory describes very
well the maximum error induced by the ceiling operator, thigarticularly clear in the case
of the artificial ant. The relationship between the ceilimpeand the problem difficulty
is clear looking at the relative ceiling error depicted igiiie 6.12 (right), where an easy
problem such as the 6-multiplexer achieves a ceiling epdolB0%, when problems with a
low success probability get much lower estimation error. ifstance, the artificial presents
at most an estimation error around 2.7%.

Despite the potentially high impact that the ceiling operatight have in the estimation,
there is an easy solution, just removing the operator. Koizaduced this operator to reflect
that it is not possible to carry out a fractional number of exkpents [136, Chapter 4],
however it is actually not supposed to be interpreted philgicso the ceiling error can be
removed without any evident drawback. Nonetheless, théhaneource of variability under
study, the estimation error, is intrinsic to the measuretand cannot be removed.
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6.7.1.2 Estimation error of I (M, i, z)

If we look in more detail (6.3), we can identify two fixed paraters, M andz, and one
independent variable, All these values are known, and thus they do not generaterunc
tainty. Usually, the only element in (6.3) that is not petfie&nown is P(M, 1), that is an
unknown probability and must be estimated empirically. €her associated to the estima-
tion of P(M, 1) is actually the only true source of error since this is they@ément in (6.3)
that introduces uncertainty.

P(M, i) is the estimation of a probability, and, if we do not consitierariation in time,
this probability in a fixed generatialg can be described using a binomial distribution, which
is a well known problem [44]. Irrespective of the problem endtudy, the quality of the
estimation of any success probability only depends on timebewn of trials (or runs in our
case) and the magnitude of the probability [44], this reetiltis limit our study to only those
factors.

We begin investigating the influence of the number of run$lie following experi-
ment. Given the four datasets, we have calcul&té0 values offc(M, i,z) usingn runs
resampling with replacement from each dataset. The céllingtion is removed to isolate
the effects of the estimation error. For each valué.oM, i, z), its distance tdest(M, i, z)
has been calculated using the following formula

R G 2pes . 24 .
E:ZZ c t(Mvz)Z)R_ L];(M,Z,Z) (623)

where¢ is the statistic that measures the average distance bef§égi/, i, z) and (M, i, z),
which is thej*" curve of the number of individuals to be processetlis the number of
pseudo experiments. All the experiments were carried oilt ®i= 5,000 andG = 50. Of
course, it is an error measure and therefore, low values ig@ach estimations.

The boxplots of the estimation error calculated using th¢hotk described earlier are
depicted in Figure 6.13. A glance to this figure clearly sigja strong relationship between
the number of runs and the average estimation error, moseyiefd better estimations of
I(M,i,z). The estimation error of the 5-parity problem is not showoawse it was found
that the low number of generations whdi@/, i, z) is defined (see Figure 6.1) induced an
erratic distance behaviour.

Experimentation with the other factor under study, the aadated success probability,
is more tricky. P(M, ) is not an independent variable, but a dependent one andssunie
use a synthetid’(M, i), we cannot manipulate it to carry out the experiment. Addéily,
P(M, 1) is afunction rather than a scalar. These two facts difficgleeimentation, however,
we can still perform an experiment to observe the behavibtmenestimation error for dif-
ferent values of the accumulated success probability. & problem domain, we have run
200 pseudoexperiments with = 100 following the same procedure described above, but we
have done a different manipulation of the data. Instead @fsmee how close i8¢ (M, i, z)
from I.(M, i, z), we have stored the tupl®(M, i), e (7)), wherei = 1, ..., G and
ouli) = 100 Igest(ﬂ{, i,2) — I.(M,i,2)

Ibest(M, i, z)
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Figure 6.13: Boxplot of the absolute estimation error/ 0§/, i, z) with several values of
number of runs. Each box represents the sum of the average#sh error of5.000 pseu-
doexperiments.

is the relative estimation error. In this way we obtéin= 50 tuples from each pseudorun,
and we use@00, so there aré0, 000 tuples in each problem domain.

The tuples that we have obtained are shown in the scatta¥pfatted in Figure 6.14.
This figure shows a surprising behaviour of the estimatioareit is not symmetrical and
it is biased. Overestimating (), ) yields an underestimation df(M, i, z), on the con-
trary, an overestimation dP(), i) generates an underestimation/¢f/, i, z). Figure 6.14
shows that the effects of overestimating or underestirgali\/, i) are not the same. An
overestimation ofP (M, ¢) induces a higher error ih()M, i, z) than a underestimation, it is
specially notorious in the case of the artificial ant and tHpaty problems. This asymmetry
varies with the success probability, while the minimum etemds to reduce with the proba-
bility, the maximum error is almost constant. In any caserdtis an asymptotic behaviour
of the estimation error with very low success probabilitgttmakes the estimation highly
imprecise in that region.

The magnitude of the maximum estimation error depends orstibeess probability.
Low probabilities yield higher estimation error and higsaccess probabilities tend to gen-
erate less estimation error. Nonetheless the error isdiashe end of the execution of the
algorithm (higher success rates), with the only exceptigdghemultiplexer, which is the only
one that achieve a success rate closg tli leads us to conjecture that high success proba-
bilities have associated higher estimation error, howexefeel unable to claim it with the
evidence shown, it should be confirmed by further reseantclany case, the magnitude of
the bias seems to be rather significant in almost all the casasnd30% and50%, with the
exception of the 6-multiplexer. We should remark that tikiseziment used 00 runs, which
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is a relatively high number of runs; it is quite easy to findr#ture that reports experiments
with fewer number of runs, so we can expect that the estimagioor in those experiments
were higher.

In average, the relative estimation error is notable andesiignator is biased signifi-
cantly, depending on the problem domain. Nonethelesse tbesr might be, or not, signi-
ficant when the computational effort is calculated, whicth&s objective of the next subsec-
tion.

6.7.2 Accuracy ofE

Common sense suggests that a good estimatié\df ¢, z) should also yield a good estima-
tion of the computational effort; this apparent correlatshould link the factors of(M, i, z)
with the factors oft!. However, common sense might fail, therefore we have paddrsome
experiments to verify this hypothesis. We should point bat in this section we only study
one factor, the number of runs. There are reasons to thinkhtéanagnitude of the accumu-
lated success probability plays an important role, howexemust face that this probability
is not fixed with the generation time and it is not an independariable. Moreover, the
variation of P(M, i) plays an essential role in the measurement of the compuogtaffort,
and it is not possible to treat it as a punctual estimatog, Vile did in the previous section.
For these reasons, in the following, this factor is exclufileth the study.
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6.7.2.1 Ceiling error of £

Firstly it is worth to compare the computational effort wéthd without ceiling operator when

it is calculated using all the samples. These values, asaselieir absolute and relative dif-
ference, can be found in Table 6.1. We found earlier that paslylems -those with high
success probability- generated more ceiling error in thienesion of I(M, i, z). Table 6.1
shows that our experiments partially verify this behaviouhe estimation of2. The easiest
problem, the 6—mu|tip|exer]i’b65t(M, G) = 0.96), generated the biggest difference between
Eest and Ebest, 4.98%, while the rest of the domains achieve intermediate valfie®ib

ing error: the artificial ant]?best(M, G) = 0.13) with a difference 0f0.5%, the 5-parity
(Pyest (M, G) = 0.06) with 1.13% and finally the regression problemy(; (M, G) = 0.29)
with 0.49%.

There is no direct correlation between problem difficultg ariling error when estimat-
ing E. There may be two possible explanations behind this facst,Rhe ceiling operator
introduces discontinuities (M, 4, z) that might increase variance when the minimum is
calculated. From another perspective, we observe thatfzeity is the hardest problem but
it has the second highest ceiling error. There is an impbisaoe with this problem domain,
as can be seen in Figure 6.1: the number of generations givte tlgorithm is too scarce,
so it could have affected the result of this experiment. atfaseems to be a tight correlation
between the success probability of a problem and the cedliny associated t&. As we
did earlier, we pass to study whether the number of runs inflee the ceiling error.

Figure 6.15 shows a boxplot that represents the Qifferé%edic of 2,000 pseudoexper-
iments calculated with different valuesof The use of2**s* has been avoided to isolate the
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Table 6.3: Analysis of variance for six levels of factor the independent variable is the
square root of the differencB. — E. Residuals of problems marked with * did not pass the
normality test. P-values with significance & 0.01) are marked in bold.

Problem df Sum.sg. Meansq. F-value p-value
Artificial ant 5 2445 489.03  0.9689 0.437
6-Multiplexer 5 5145 1029 5.1462 0.0001529%

5-Parity 5 236380 47276  4.95950.0002247

Regression 5 4349 869.79  2.9602 0.01266

ceiling error from the estimation error. We first observe tha difference is always positive,
meaning thay > E., which is not surprising because the ceiling operator abvagreases
its argument, unless it were an integer, which is rathekahli No notable differences in the
mean value of the differencé — Ec are appreciated, only whenis small, around0 runs,
the tail of the distribution seems to be longer, with moresimlgrs, but the median, as well as
the first and third quantiles, remains almost constant,rdégss of the number of runs.

This result is confirmed with a one-way ANOVA test, whose leistshown in Table 6.3.
The ANOVA was calculated for six levels of (50, 100, 200, 300, 400 and500) using the
square root ofs — F, as independent variable. Usiff pseudoexperiments for each level,
two problems (multiplexer and parity) yielded statistisanificance withoe = 0.01 while
two did not (artificial ant and regression). However, thedweals of the multiplexer and the
parity problems did not pass the normality test, and theeefiee cannot accept their test as
valid. The residuals of the other two problems did pass tmatlity test, which are the two
that did not found differences, so, with this evidence, wectude that the number of runs
does not affect the ceiling error when estimating compaatli effort.

Experiments shown in this subsection were designed to &heidffects of the estimation
error, which is just the factor that we move forward to study.

6.7.2.2 Estimation error of £

Finally, we study the effects of the estimation error. Thiglg follows a procedure similar

to the one used previously. Given the datasets of the foectsal problem domaingp0
experiments were simulated resamplinguns with replacement from the datasets. For each
simulated experiment, the error between the estimatiortf@nbest estimation of computa-
tional effort was calculated. Two methods to calculate cotafonal effort were used, using
the ceiling operator and not. In this way, we are able to meathe estimation error as
well as compare both methods of calculating computatioffiaiteso the statistic of relative
estimation error is given by

- Egest o Ec

B _
<€est((%) =7 ¢ Ebest
c

The variation of the estimation error with is shown in Figure 6.16. It shows some
interesting behaviors. Probably, the most important oo fa practical point of view is the
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high relative estimation error found in our experiments.p&wling on the problem, when
the number of runs is not too high, an estimation error of aatatonal effort up ta50%

is found. Error decreases rapidly with the number of runsyewer there is a point that a
small reduction of the error requires a very remarkableeimant of the number of runs.
Depending on the context, incrementing the number of rugghtmot pay off.

Another interesting property that Figure 6.16 shows is terametry of the estimation
error. It was previously shown that estimation errof @i/, i, z) is asymmetrical and we can
observe now that this behaviour is transferred to the ebmarror of E. The maximum
overestimation of is bounded and it tends to reduce its value &screases. Unfortunately,
whenF is underestimated, it tends to produce much higher errorsgtheless this difference
tends to disappear when the number of runs is increasedllyi-ihe ceiling operator does
not seem to influence the estimation error, the distributibthe estimation error with and
without ceiling operator is similar, with the only exceptiof the 6-multiplexer, which is
also the most sensitive problem to the ceiling operator.

Although the variation of the estimation error shown in F&6.16 is rather clear, it is
better support this conclusion with a statistical test. \&égrmed a one-way ANOVA of the
square root of the estimation error for the six levels.gireviously shown, the result can be
seen in Table 6.4. The test found differences in the levelsefactor for the four problems
using a significance level = 0.01, however one problem, the 5-parity, did not pass the
normality test of its residues.
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Table 6.4: Analysis of variance for six levels of factor the independent variable is the
square root of the estimation error Bf. Residuals of problems marked with * did not pass
the normality test. P-values with significanee-€ 0.01) are marked in bold.

Problem df Sumsq Meansq Fvalue p-value
Artificial Ant 5 126.44 25.2874 12.579 1.035e-10
6-Multiplexer 5 95.09 19.0180 14.654 3.272e-12

5-Parity 5 98.72 19.7441 8.46234.308e-07

Regression 5 106.12 21.2248 12.2643.414e-10

6.8 Conclusions

Koza’s performance measures have been widely used in thigeBRure. It makes surprising
the lack of attention that the understanding of this siatisas attracted. In this chapter
we have tried to provide some clues to reduce the gap betvieseimportance of Koza’s
performance measures and the knowledge about its behandueliability.

In short, we can identify one source of variability, the icgjloperator, and one source
of randomness, the estimation of success probability,céetsa to the measurement of the
number of individuals to be processed. The ceiling opelatonduces a maximum relative
error that is arbitrary high depending on the success pilityaliligh success probabilities
generate high error values induced by this operator, meigmainall values ofP (M, i) are
associated to small ceiling errors. From the perspectivabeblute value of the maximum
ceiling error, it is linearly limited by the product of the palation size and the generation
number. It is possible to remove the operator without sigaifi drawbacks. So, results
reported in this chapter recommend, in the same line thare swavious authors, not using
the ceiling error when calculating M, i, z).

The only source of randomness in the measureme{ &f, i, z) is introduced by the
estimation of the success probability. An estimation o$ thiror can be done using Cls.
Basically, the quality of the estimation of a success prdipalllepends on two factors: the
number of runs and the value of the probability. The worshade is estimating a success
probability close ta) or 1 with a low number of runs, in that case the estimations arg ver
unrealible. This is just the scenario found in early stageth® EA, and there is only one
method to improve the reliability of the measure: incregsire number of runs. In case there
were a high number of runs, and a low success probabilitgesses can be modeled using a
Poisson distribution instead of a binomial. The analytaggbroximation to characterize the
error associated to the estimation of the success protyabiis supported by experiments.
These experiments validated the analytical models.

As a final observation, measures studied in this chaptercrd@ only options to gather
information about EA behaviour. A comparative study of perfance measures would pro-
vide useful information about their behaviour, advantaged disadvantages, even more, it
could provide clues about which measure, when, and how/dHh®uused to achieve better
experimentation in EC. Finally, we should emphasize thatop@ance is only a restricted
view of all the picture. To fully understand what happenshwitan EA, other measures
should be taken into account.



Chapter 7

Conclusions and future work

Un soneto me manda hacer Violante,
gue en mi vida me he visto en tal aprieto;

catorce versos dicen que es soneto:
burla burlando van los tres delante.

Yo pené que no hallara consonante
y estoy a la mitad de otro cuarteto;
mas si me veo en el primer terceto
no hay cosa en los cuartetos que me espante.

Por el primer terceto voy entrando
y parece que enércon pie derecho,
pues fin con este verso le voy dando.

Ya estoy en el segundo, y aun sospecho
gue voy los trece versos acabando;
contad si son catorce, y éshecho.

Lope de Vega

This chapter summarizes the main conclusions of the datsmrtand some research
lines that remain open are also described.
7.1 Conclusions
The main goal of this dissertation has been to charactdnzetror associated to the mea-

surement of Koza's computational effort. With this chagsiegtion, it is possible to draw
an answer to the main research question that drives this Réddst which is to determine
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whether the computational effort is a reliable performameasure, or, on the contrary, it
is not. Since the main research question is too wide andvasah collection of different

issues, it was convenient to split it into five specific reskauestions. In the following, we
review these specific questions, which were already predentthe introduction, and their
answers are discussed under the light of the evidence egpaldng this dissertation.

e Q1: Which factors influence the reliability of the computational effort?
Computational effort, as defined by John Koza, only contairtssources of variabi-
lity, one deterministic and another stochastic (section 6.4is dlaim is a direct con-
sequence of the definition of the computational effort. Theedninistic source of
variability is theceiling operator It removes part of the information introducing a
deterministic bias in the results depending on the magaitfdhe measure (section
6.4.1). The only source of randomness isélmation of the success probabilitiis
source of error cannot be removed, and thus, it is the mairtsai uncertainty.

The basic measure that determines the quality of the estimat the computational
effort is the success probability, which is a probabilitpdtion that depends on the
time. In order to characterize it from a statistical pointaw, it is useful to decom-
pose this problem into two: the success probability wher tisrfixed (static estima-
tion) and the variation with the time of the success prolitghjtlynamic estimation)
(section 5.4.1). This decomposition relates to the two tijpes that the success pro-
bability answersHow likely is it to find the solution angvhenis the solution likely to
be found.

e Q2: Which statistical properties the static estimation of he success probability
has?
If time is fixed, an EA may be described as a simple Bernoublicpss, i.e., an ex-
periment with only two possible outcomes, that we name “ssgtor “failure”. By
definition, the number of success (and therefore the sucaéssin a Bernoulli pro-
cess is a binomial random variable. Empirical and theakgegidences reported in
sections 4.3 and 4.6 support this claim.

The statistical properties of the success rate in any EAedaged to the binomial dis-
tribution, and therefore its quality depends only on twades, thenumber of trials
and theestimated probabilitysection 4.4). A low number of trials and extreme prob-
abilities close td or 1 set the ideal conditions to generate bad estimations. |tvigl
that the quality of the estimation does not depends dir@gtlthe algorithm internals,
but only indirectly through the value of the success prdiigbiEasy and hard prob-
lems would yield probabilities close to the boundafiesnd1, and thus the quality of
the estimation get worse (section 4.5. In these cases, tvessirate should be better
approximated using alternative distributions (sectidn%).

The binomiality of the static estimation of the success ahility opens the opportu-
nity to use binomial statistics into EC. Perhaps, one of tlstrinteresting statistical
tools, and indeed a tool that we needed in order to accomipiesimain research goal,
is confidence intervals (Cls). They provide a region wheeedirccess rate is likely
to be contained with a certain nominal probability. Manydrmal Cl methods have
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been reported in the statistical literature, but we analyiper methods under the per-
spective of EC: Standard, Agresti-Coull, “exact” and Wilso

The quality of a Cl can be reported using two measures, cgegreobability (CP) and

confidence interval width (or CIW) (section 4.5). Experirteeim section 4.6 showed
that the CP and CIW of intervals calculated in EC follow thmeabehaviour that has
been reported in the statistical literature. After an asialpf the four binomial CI

methods, we concluded that Wilson has some properties thlkat ihbetter as a gen-
eral purpose binomial Cl method (4.5.5). Under certain igheontexts, “exact” and

Agresti-Coull methods would be a better choice, while tlamdard method showed
very poor performance, and its usage is not advisable in asg.c

e Q3: Which statistical properties the dynamic estimation ofthe success probabi-
lity has?
There is not a definitive answer to this question yet, howesecan outline an answer.
The dynamic estimation of the success probability is closelated to the run-time
analysis of the EAs, which is a problem widely studied in thistext of Metaheuristics
and Stochastic Local Search, but, to the author’s knowlgtlipas not been addressed
before in GP.

The term run-time to success was introduced in section 5&2rasw tool to analyze
the run-time of EAs, and it was empirically studied in GP iderto find a statisti-
cal model able to describe it (section 5.2.1). We found timagjeneral, the run-time
to success is a lognormal random variable. There are somarkebie exceptions,
notoriously, difficult boolean problems. In these caseshéfleft tail of the distribu-
tion is removed, the remaining samples fit a exponentiafidigton (section 5.2.2),
suggesting that the search is performed without learnifithel tournament selection
is replaced by a random selection, and thus any selectigsyme has been removed,
the resulting distribution of the run-time to success fitelyi to a Weibull distribution
(section 5.2.3). So far, it seems reasonable to concludghbse three distributions
play a role in the description of the run-time in GP, moreptiee literature suggests
that this behaviour likely can be generalized to Metah&usisand Stochastic Local
Search algorithms (section 5.5).

As a consequence of the run-time analysis performed, wdwabeat that the dynamic
estimation of the success probability can be done estign#iti@ parameters of a log-
normal, Weibull or exponential distribution. In particylave provided empirical data
supporting this claim in case of algorithms with a lognormai-time distribution
(section 5.4.3). Thus, classical statistical methods tomase the parameters of a
distribution can be applied to solve this problem, inclgdtonfidence intervals or
maximume-likelihood, whose properties are well known intiStecs.

e Q4: Can the success probability be analytically modeled?
Yes, at lesat, in four problem instances, as seen in sectibB)5 On the one hand,
the static success probability at the end of the run comes &bdinomial distribution,
and the well known maximume-likelihood method can be usedti@e 4.3). On the
other hand, the dynamic estimation of the success prohabén be deduced from the
run-time behaviour of the algorithm (section 5.4.1). It whserved that the lognormal
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distribution describes reasonably well the run-time dhistion of tree-based GP, and
thus it is a good candidate to be used in a model of succesalgfhibp (section 5.4.2).
With these considerations, an analytical model of succestsapility was proposed,
and its accuracy tested experimentally, finding out thaintioelel approximates well
the success probability (section 5.4.3). The main limotaf the model come from
the estimation of the success rate, needed by the modeg whkhows to be robust to
bad fits of the run-time distribution.

In addition to the previously described empirical approactheoretical model based
on Discrete-Time Markov Chains of the convergence of amiiteg stochastic search
algorithm was proposed in section 5.3. Using this model, emahstrated that the
exponential run-time behaviour observed in tree-based G dgeneral property of
memoryless iterative stochastic search algorithms. Ifalgerithm is memoryless,
its run-time to success is exponentially distributed. Thisoretical result is consis-
tent with the experimentation (section 5.2.2) and relateddture (section 5.5), where
only difficult problems, when the initialization phase isnaved, have an exponential
behaviour.

e Q5: Does the run-time behaviour provide information about the algorithm?
This question is still open and requires further researcle. e observed, and the
literature supports it, that the resulting run-time digttion of the algorithm depends
on the parameters and problem difficulty. However, the oppateduction is not
clear, given a certain run-time distribution, can we infemg knowledge about the
algorithm? In case of an affirmative answer, it would opennape hew method to
analyze stochastic search algorithms with a minor comiomiait overhead.

Based on the previous answers to specific research quefibits Q5, we were able
to accomplish the main goal of this thesis, characterizestitignation error of the compu-
tational effort. Once we identified the two sources of uraety in the measurement of
computational effort, the ceiling operator and the estiomabf the success probability, we
characterized the error induced by both.

It was analytically demostrated in section 6.4.1 thatdb#ing operatorintroduces as
error that is bounded by the product of the generation angdpellation size. In relative
terms, this error is a non-linear function of the succes®aidity. The maximum relative
ceiling error grows non-linearly with the value of the sugsprobability, up to a point where
the success probability is higher than the parametand the measure is no longer valil.
straightforward solution to eliminate the ceiling errorjisst not using the ceiling operator
Koza justified its use to represent that an algorithm only lmamun an integer number of
times. In practice, this measure is not used to estimate uhgbar of runs needed in an
experiment, but rather to estimate the amount of resoursess o achieve a solution. There-
fore, the ceiling operator does not provide a practical athge while it introduces notable
problems.

The second source of error comes from éséimation of the success probabilignd is
much more difficult to characterize. This error source ignsic to the measuring procedure
and cannot be eliminated. In order to characterize it, wel tike model of success pro-
bability developed to answer Q4 in section 5.4.2. This maéglends on three parameters
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that have to be estimated: Mean and variance of the run-tinsad¢cess, and the success
rate. In order to model the error associated to the measuteme used confidence intervals
to model the uncertainty. This model predicts (section3.that the estimation error does
not depend on the estimation of the mean, but it correlatésitgi dispersion in a non triv-
ial way, but in general we can assume that higher varialmlityun-time to success involves
higher errors in the estimation of the computational effdltese results were experimentally
validated in section 6.7.

In addition to the previous conclusions, we can make somergecomments. From
an analytical point of view, Koza’s computational effortsha serious problem, due to its
non-linearity, small estimation errors of the success a@bdlly, under certain conditions,
are amplified to a point that the measure is not reliable atMtreover, the computation
of the metric involves a fundamental measure (the succedmbpility), the population size,
and a new parametet)( increasing the complexity, and introducing the effecesvusly
described.

It seems reasonable to ask why it introduces all this conityJeand which is the advan-
tage of such increased complexity. Koza justified it as a wake into consideration not
only the time required to find the solution, but also the papah size, which determines the
resources wasted in the search. From our point of view, ieteeb measuring the number
of evaluations used to achieve the solution, which providégeast, the same information,
without any of the drawbacks previously described. Anotligble alternative would be re-
porting the success probability and the population sizéhisyway we avoid the non-linear
effects, providing a more reliable information about thgogithm.

For all these reasons, and as a general conclusion of thertdissn based on the ev-
idence reported in this memonye suggest not using Koza’s computational effért our
opinion, it is unnecessarily complex and unreliable. Basethe Occam'’s razor principle,
we suggest using simple measures such as the success [itpbalihe average number of
evaluations.

7.2 Future work

There are some topics related to the reliability of the cammanal effort that have not
been addressed in this dissertation. For instance, thetides between the success rate
and the other two parameters of the model have not been dtuldieddition, in chapter 5
we obtained three statistical distributions that could beduin our model, but only one
of them, the lognormal, was included in the study in orderdpresent the most general
case. However, despite all these flaws, we think that thisares line does not pay off: the
main conclusion of this work is that the computational dfirould not be used; probably
the model of error can be enhanced, but it hardly would chaimgenain concusion of the
dissertation.

Nonetheless, along the way that we have followed to accaimplie main objective of
the thesis, several new questions have arisen, opening memiging research lines. In the
section 5.3, we proposed a model of run-time to succesdaigstm based on Markov chains,
and using this model we deduced the conditions that yieldxporeential run-time to a so-
lution. However, we did not explore this line enough to vwetiieoretically the conditions
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that generate a lognormal or a Weibull distribution. Mont&l€ simulation seems to be a
tool that could be used in order to justify the run-time bebavobserved in the experimen-
tation. In particular, it would be interesting to analyzi&eg a certain run-time distribution,

what could be known of the algorithm and problem at hand. Tévetality of the proposed

model, and the related literature, suggest that the caodsi®btained in this way could be
generalizable to a large number of algorithms, includingd¥euristics. Following this line,

it would be interesting to extend this type of study to theuapon, and try to understand
how it changes with time.

The run-time analysis that we have performed has used tleajeon as time unit. It was
done motivated by our object of study, which is computatiaifort, however, it is not the
most popular time measure in the EC community. There aregtreasons to hypothesize
that the observations made so far relating to the genertdisnccess can also be extended
to any time unit. It would be interesting to check out if mompplar time units, like the
average number of evaluations to a solution, follow the spatiern. Linked to this, we plan
to extend the experimental analysis in order to include raditgorithms and problems, for
instance, multiobjective algorithms and real world protde



Bibliography

[1]

B. Adenso-Diaz and M. Laguna. Fine-Tuning of Algorithtdsing Fractional Expe-
rimental Designs and Local SeardBperations Resear¢b4(1):99-114, 2006.

[2] A.Agrestiand B. A. Coull. Approximate is Better than "&et’ for Interval Estimation

3]

[4]

[5]

[6]

[7]

of Binomial ProportionsThe American Statisticiarb2:119-126, May 1998.

R. Aler, J. M. Valls, D. Camacho, and A. Lopez. ProgramgiRobosoccer Agents
by Modeling Human BehaviorExpert Systems with Applicatign36(2):1850-1859,
20009.

L. Altenberg. Handbook of Evolutionary Computatiormolume 2, chapter NK fit-
ness landscapes, pages B2.5:5-B2.7:10. 0P Publishin@siodd University Press,
Bristol and Oxford, 1997.

P. J. Angeline. Adaptive and Self-Adaptive Evolutiop&omputations. IlComputa-
tional Intelligence: A Dynamic Systems Perspectpages 152—-163, 1995.

P. J. Angeline. An Investigation Into the Sensitivity @enetic Programming to the
Frequency of Leaf Selection During Subtree CrossoverProteedings of the First
Annual Conference on Genetic Programming (GECCQ pé&yes 21-29, Cambridge,
MA, USA, 1996. MIT Press.

P. J. Angeline. A Historical Perspective on the Evolatiof Executable Structures.
Fundamenta Informaticae85(1-4):179-195, 1998.

[8] T.Back, D. Fogel, and Z. MichalewicHandbook of Evolutionary ComputatiotOP

Publishing Ltd., 1997.

[9] T. Back, U. Hammel, and H.-P. Schwefel. Evolutionary Gutation: Comments

[10]

[11]

on the History and Current StatéEEE Transactions on Evolutionary Computatjon
1:3-17, 1997.

W. Banzhaf. Genetic Programming for Pedestrian®rbteedings of the 5th Interna-
tional Conference on Genetic Algorithms (ICGA-93age 628, University of Illinois
at Urbana-Champaign, 17-21 July 1993. Morgan Kaufmann.

R. Barr, B. Golden, J. Kelly, M. Resende, and W. Stewaesigning and Reporting on
Computational Experiments with Heuristic Methodkurnal of Heuristics 1:9-32,
1995.

161



162

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

BIBLIOGRAPHY

R. Barr and B. Hickman. Reporting Computational Expesnts with Parallel Al-
gorithms: Issues, Measures, and Experts’ Opinio@RSA Journal on Computing
5:2-2, 1993.

D. F. Barrero, D. Camacho, and M. D. R-Moreno. A Framdwr Agent-Based
Evaluation of Genetic Algorithms. IRroceedings of the 3rd International Symposium
on Intelligent Distributed Computing (IDC 20Q9olume 237, pages 31-41, Ayia
Napa, Cyprus, 13-14 October 2009. Springer-Verlag.

D. F. Barrero, D. Camacho, and M. D. R-Morenbata Mining and Multiagent In-
tegration chapter Automatic Web Data Extraction based on Genetioitlgns and
Regular Expressions, pages 143—-154. Springer-Verlagedsity of Technology Syd-
ney, Australia, July 2009.

D. F. Barrero, D. Camacho, and M. D. R-Moreno. Confideimtervals of Success
Rates in Evolutionary Computation. Rroceedings of the Genetic and Evolutionary
Computation Conference (GECCO-2010ages 975-976, Portland, Oregon, USA,
jul 2010.

D. F. Barrero, B. Castafio, M. D. R-Moreno, and D. CanwacBtatistical Distribution
of Generation-to-Success in GP: Application to Model Acalated Success Pro-
bability. In Proceedings of the 14th European Conference on Genetic&rmging,
(EuroGP 2011)volume 6621 oL NCS pages 155-166, Turin, Italy, 27-29 Apr. 2011.
Springer Verlag.

D. F. Barrero, A. Gonzalez-Pardo, D. Camacho, and MRIMoreno. Distributed Pa-
rameter Tuning for Genetic Algorithm&€omputer Science and Information Systems
7(3):661-677, Jun 2010.

D. F. Barrero, A. Gonzalez-Pardo, M. D. R-Moreno, and@amacho. Variable
Length-Based Genetic Representation to AutomaticallyNEvdVrappers. InPro-
ceedings of 8th International Conference on Practical Agqgtions of Agents and
Multi-Agent Systems (PAAMS 2010pblume 2, pages 371-379, Salamanca, Spain,
26-28 April 2010. Springer-Verlag.

D. F. Barrero, M. R-Moreno, B. Castafio, and D. CamachAn.Empirical Study on

the Accuracy of Computational Effort in Genetic Programgnim Proceedings of the
2011 IEEE Congress on Evolutionary Computation (CEC 20payes 1169-1176,
New Orleans, USA, 5-8 June 2011. IEEE Press.

D. F. Barrero, M. D. R-Moreno, and D. Camacho. Adaptirga®ghy to Extract Data
Using Evolved Wrappers€Expert Systems with Applicatignio appear, 2011.

D. F. Barrero, M. D. R-Moreno, and D. Camacho. Statatiestimation of Success
Probability in Evolutionary ComputatiorApplied Soft Computinglo appear, 2011.

D. F. Barrero, M. D. R-Moreno, and D. R. Lopez. Inforimoat Integration in Searchy:
an Ontology and Web Services Approattiternational Journal of Computer Science
and Applications (IJCSAY(2):14-29, 2010.



BIBLIOGRAPHY 163

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

A. M. Barreto, H. S. Bernardino, and H. J. Barbosa. Pbilistic Performance Profiles
for the Experimental Evaluation of Stochastic AlgorithrisProceedings of the 12th
annual conference on Genetic and evolutionary computgt&liBCCO 2010) pages
751-758, Portland, Oregon, USA, 2010. ACM.

T. Bartz-Beielstein. Tuning Evolutionary Algorithm®verview and Comprenhensive
Introduction. Technical Report 148/03, Universitat Dound, 2003.

T. Bartz-Beielstein.Experimental Research in Evolutionary Computation: The/Ne
ExperimentalismNatural Computing. Springer, 1 edition, April 2006.

T. Bartz-Beielstein, M. Chiarandini, L. Paquete, and®Meuss.Experimental Meth-
ods for the Analysis of Optimization Algorithm$pringer-Verlag New York, Inc.,
New York, NY, USA, 1st edition, 2010.

T. Bartz-Beielstein, C. Lasarczyk, and M. Preussperimental Methods for the Anal-
ysis of Optimization Algorithmshapter The sequential parameter optimization tool-
box, pages 337-360. Springer-Verlag New York Inc, 2010.

T. Bartz-Beielstein, C. W. G. Lasarczyk, and M. PreuSgquential Parameter Opti-
mization. INnIEEE Congress on Evolutionary Computation (CEC 20@®jume 1,
pages 773-780. IEEE, 2005.

T. Bartz-Beielstein and S. Markon. Threshold Selatctidypothesis Tests, and DOE
Methods. Inln 2002 Congresss on Evolutionary Computatipages 777—782. IEEE
Press, 2002.

T. Bartz-Beielstein and M. Preuss. Considerations wdidet Allocation for Sequen-
tial Parameter Optimization (SPO). Rroceedings of the Workshop on Empirical
Methods for the Analysis of Algorithimsages 35—-40, Reykjavik, Iceland, 2006.

T. Bartz-Beielstein and M. Preuss. Tuning and ExpentakAnalysis in Evolutionary
Computation: What we Still Have Wrong. FProceedings of the 12th Conference on
Genetic and Evolutionary Computation (GECCO 2QXges 2625-2646, Portland,
Oregon, USA, 2010. ACM.

J. Baxter. Local Optima Avoidance in Depot Locatiodournal of the Operation
Research Society2:815-819, 1981.

D. Beasley, D. R. Bull, and R. R. Martin. An Overview of aic Algorithms: Part
1, FundamentaldUniversity Computing15(2):58—-69, 1993.

D. Beasley, D. R. Bull, and R. R. Martin. An Overview of ic Algorithms: Part
2, Research TopicdJniversity Computing15(4):170-181, 1993.

H.-G. Beyer and H.-P. Schwefel. Evolution Strategids Comprehensive Introduc-
tion. Journal of Natural Computingl:3-52, May 2002.

M. Birattari. The Problem of Tuning Metaheuristics as Seen from a Macteaerling
Perspective PhD thesis, Université Libre de Bruxelles, Brusselsgieh, 2004.



164 BIBLIOGRAPHY

[37] M. Birattari. Tuning Metaheuristics: a Machine Learning Perspectivelume 197.
Springer-Verlag, 2009.

[38] M. Birattari and M. Dorigo. How to Assess and Report tleefBrmance of a Stochas-
tic Algorithm on a Benchmark Problem: Mean or Best Result diuenber of Runs?
Optimization Letters1(3):309-311, 2007.

[39] M. Birattari, T. Stutzle, L. Paquete, and K. Varrempa A Racing Algorithm for Con-
figuring Metaheuristics. IRroceedings of the Genetic and Evolutionary Computation
Conference (GECCO 2002pages 11-18, San Francisco, CA, USA, 2002. Morgan
Kaufmann Publishers Inc.

[40] M. Birattari, Z. Yuan, P. Balaprakash, and T. Stutzl&xperimental Methods for
the Analysis of Optimization Agorithmshapter F-Race and iterated F-Race: An
overview, pages 311-336. Springer-Verlag, Berlin, Gegndumne 2009.

[41] M. Birattari, M. Zlochin, and M. Dorigo. Towards a Thgoof Practice in Meta-
heuristics Design: A Machine Learning PerspectivEheoretical Informatics and
Applications 40(2):353-369, 2006.

[42] C.Blum and D. MerkleSwarm Intelligence: Introduction and Applicatior&pringer-
Verlag, 2008.

[43] C. Blum and A. Roli. Metaheuristics in Combinatorial @pization: Overview and
Conceptual ComparisomCM Computing Surveys (CSURPH(3):268—-308, Septem-
ber 2003.

[44] L. D. Brown, T. T. Cai, and A. Dasgupta. Interval Estimoatfor a Binomial. Statisti-
cal Sciencel16:101-133, 2001.

[45] L.D.Brown, T. T. Cai, and A. Dasgupta. Confidence Intdsvfor a Binomial Propor-
tion and Asymptotic Expansion&nnals of Statistics30(1):160-201, 2002.

[46] J. Brownlee. A Note on Research Methodology and Benchkimg Optimization Al-
gorithms. Technical report, Complex Intelligent Systenabdratory (CIS), Centre
for Information Technology Research (CITR), Faculty ofdmhation and Communi-
cation Technologies (ICT), Swinburne University of Teclugy, 2007.

[47] D. S. Burke, K. A. D. Jong, J. J. Grefenstette, C. L. Raynaed A. S. Wu. Putting
More Genetics into Genetic Algorithms Evolutionary Computation6:387—410,
1998.

[48] E. K. Burke, S. Gustafson, and G. Kendall. Diversity ier@&tic Programming: An
Analysis of Measures and Correlation With Fitnel§sEE Transactions on Evolution-
ary Computation8:47—-62, 2004.

[49] D.Camacho, M. D. R-Moreno, D. F. Barrero, and R. Akerl@&emantic Wrappers for
Semi-Structured DataComputing Letters (COLEX(1-4):21-34, December 2008.



BIBLIOGRAPHY 165

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

D. Camacho, M. D. R-Moreno, D. F. Barrero, and R. Akerl&emantic Wrappers for
Semi-structured Data Extractio@omputing Letters (COLEX(1):1-14, 2008.

D. Caragea, J. Pathak, J. Bao, A. Silvescu, C. AndorD@bbs, and V. Honavar. In-
formation Integration and Knowledge Acquisition from Serieally Heterogeneous
Biological Data Sources. IliProceedings of the 16th International Workshop on
Database and Expert Systems Applicatigregges 175-190. Springer-Verlag, 2005.

M. Chiarandini, L. Paquete, M. Preuss, and E. Ridge.dtxpents on Metaheuristics:
Methodological Overview and Open Issues. Technical RepdE-2007-03-003,
The Danish Mathematical Society, Denmark, 2007.

M. Chiarandini and T. Stitzle. Experimental Evaloatof Course Timetabling Algo-
rithms. Technical Report AIDA-02-05, Intellectics Gro@omputer Science Depart-
ment, Darmstadt University of Technology, Darmstadt, Gamm April 2002.

S. Christensen and F. Oppacher. An Analysis of Kozas@atational Effort Statistic
for Genetic Programming. IRroceedings of the 5th European Conference on Genetic
Programming (EuroGP’02)pages 182-191, London, UK, 2002. Springer-Verlag.

S. Christensen and F. Oppacher. Solving the Artificiat An the Santa Fe Trail
Problem in 20,696 Fitness Evaluations. Pmoceedings of the 9th Conference on
Genetic and Evolutionary Computation (GECCO 2Q0Fages 1574-1579. ACM,
2007.

D. Chu and J. E. Rowe. Crossover Operators to Contra Sicowth in Linear GP
and Variable Length GAs. In J. Wang, editlifEE World Congress on Computational
Intelligence Hong Kong, 1-6 June 2008. IEEE Press.

O. Cicchello and S. C. Kremer. Beyond EDSM. Pmoceedings of the 6th Inter-
national Colloquium on Grammatical Inference (ICGI 200@ages 37-48, London,
UK, 2002. Springer-Verlag.

C. Clopper and S. Pearson. The Use of Confidence or FEHughnits lllustrated in
the Case of the BinomiaBiometrikg 26:404—-413, 1934.

P. R. Cohen.Empirical Methods for Artificial Intelligence MIT Press, Cambridge,
MA, USA, 1995.

J. I. Criado. Las Tecnologs de la Informadn y la Comunicadin en la Moder-
nizacobn de las AdministracionesiBlicas. Un Adlisis de la Configuradn de la e-
Administracon en la Comunidad de Madrid y la Generalitat Valenciana 8:2905)
PhD thesis, Universidad Complutense de Madrid, 2009.

C. Cruz, J. Gonzalez, and D. Pelta. Optimization in 8yic Environments: A Survey
on Problems, Methods and MeasureSoft Computing - A Fusion of Foundations,
Methodologies and Application$5:1427-1448, 2011.



166 BIBLIOGRAPHY

[62] J.Daida, S. Ross, J. Mcclain, D. Ampy, and M. Holczeralnges with Verification,
Repeatability, and Meaningful Comparisons in Genetic Rnmgning. InProceedings
of the Second Annual Conference on Genetic Programngages 64-69. Morgan
Kaufmann, 1997.

[63] C. Darwin.On the Origin of Species by Means of Natural Selection, oPteserva-
tion of Favored Races in the Struggle for Liflohn Murray, London, 1859.

[64] S. Das and P. Suganthan. Differential Evolution: A Syrof the State-of-the-Art.
IEEE Transactions on Evolutionary Computatidrb(1):4—31, February 2011.

[65] R. Dawkins.The Selfish Genéxford University Press, USA, 2006.

[66] R. Dawkins. The Greatest Show on Earth: The Evidence for Evolutibransworld
Publishers, 2009.

[67] K. A. De Jong.An Analysis of the Behavior of a Class of Genetic AdaptivéeBys
PhD thesis, Ann Arbor, MI, USA, 1975.

[68] P.Deeptiand B. Majumdar. Semantic Web Services ingkctiEnterprise Information
Integration. InProceedings of the 5th international conference on Ser@lidented
Computing (ICSOC 2007)pages 485-496, Berlin, Heidelberg, 2007. Springer-
Verlag.

[69] P.J. Denning. Performance Evaluation: Experimentah@uter Science at its Best.
In Proceedings of the ACM Conference on Measurement and NigdeliComputer
Systems (SIGMETRICS 198pages 106—-109. ACM, 1981.

[70] P.J. Denning. Is Computer Science ScienCgMmmunications of the ACM8:27-31,
April 2005.

[71] J.Derrac, S. Garcia, D. Molina, and F. Herrera. A ReatfTutorial on the Use of Non-
parametric Statistical Tests as a Methodology for CompgdEivolutionary and Swarm
Intelligence Algorithms.Swarm and Evolutionary Computatioh:3—18, 2011.

[72] M. Dorigo and T. StutzleAnt Colony OptimizationMIT Press, 2004.

[73] W. Ehm. Binomial Approximation to the Poisson Binomiiktribution. Statistics &
Probability Letters 11(1):7-16, January 1991.

[74] A. Eiben and T. Back. Empirical Investigation of Mydérent Recombination Opera-
tors in Evolution Strategie€volutionary Computationb(3):347—-365, 1997.

[75] A. E. Eiben, R. Hinterding, and Z. Michalewicz. ParaareControl in Evolutionary
Algorithms. IEEE Transactions on Evolutionary Computatj@124-141, 1999.

[76] A. E. Eiben and M. Jelasity. A Critical Note on Experint@rResearch Methodology
in EC. In Proceedings of the 2002 Congress on Evolutionary CommutaiCEC
2002) pages 582-587. IEEE, 2002.



BIBLIOGRAPHY 167

[77] A. E. Eiben and C. A. Schippers. On Evolutionary Exptmma and Exploitation.
Fundamenta Informaticae35:35-50, August 1998.

[78] A. E. Eiben and S. K. Smit. Parameter Tuning for Configgrand Analyzing Evolu-
tionary Algorithms.Swarm and Evolutionary Computatiof(1):19-31, 2011.

[79] A. E. Eiben and J. E. SmitHntroduction to Evolutionary ComputingNatural Com-
puting. Springer-Verlag, 2009.

[80] S. Epstein and X. Yun. From Unsolvable to Solvable: Arplexation of Simple
Changes. InNorkshops at the Twenty-Fourth AAAI Conference on Artificieelli-
gence 2010.

[81] J. Farmer, N. Packard, and A. Perelson. The Immune Byselaptation, and Ma-
chine LearningPhysica D: Nonlinear Phenomena2(1-3):187-204, 1986.

[82] T.Feo, M. Resende, and S. Smith. A Greedy Randomizegi#aaSearch Procedure
for Maximum Independent SeDperations Researclpages 860-878, 1994.

[83] T. A. Feo and M. G. C. Resende. A Probabilistic Heuridtica Computationally
Difficult Set Covering ProblemOperations Research Lettei®(2):67 — 71, 1989.

[84] S. Finck, N. Hansen, R. Ros, and A. Auger. Real-Paramntgck-Box Optimiza-
tion Benchmarking 2009: Presentation of the Noiseless tiars: Technical report
2009/20, Research Center PPE, 2009.

[85] P. J. Fleming and J. J. Wallace. How not to Lie with Staiss The Correct Way to
Summarize Benchmark Result€ommunications of the ACN29:218-221, March
1986.

[86] D. Fogel. Evolutionary Computation: Toward a New Philosophy of Maehintelli-
gence volume 1. Wiley-IEEE Press, 2006.

[87] L. J. Fogel, A. J. Owens, and M. J. WalsArtificial Intelligence through Simulated
Evolution volume 26. John Wiley & Sons, 1966.

[88] C. Fonseca and P. Fleming. On the Performance AssessamdnComparison of
Stochastic Multiobjective Optimizers. IRarallel Problem Solving from Nature
(PPSN V) pages 584-593. Springer, 1996.

[89] D. Frost, I. Rish, and L. Vila. Summarizing CSP Hardnegth Continuous Probabi-
lity Distributions. InProceedings of the Fourteenth National Conference on Ailfi
Intelligence and Ninth Conference on Innovative Applimasi of Artificial Intelligence
(AAAI'97/1AAI'97), pages 327-333. AAAI Press, 1997.

[90] M. Gagliolo and C. LegrandExperimental Methods for the Analysis of Optimization
Algorithms chapter Algorithm Survival Analysis, pages 161-184. Sper-Verlag,
2010.



168 BIBLIOGRAPHY

[91] A.Gelman, J.B. Carlin, H. S. Stern, and D. B. RulBayesian Data Analysis, Second
Edition (Chapman & Hall/CRC Texts in Statistical Sciendehapman and Hall/CRC,
2 edition, July 2003.

[92] I. P. Gent, S. A. Grant, E. MaclIntyre, P. Prosser, P. Stgawl. Smith, and T. Walsh.
How Not To Do It. Research report 97.27, School of Computadi®s, University of
Leeds, May 1997.

[93] F. Glover. Future Paths for Integer Programming and&.ito Artificial Intelligence.
Computers & Operations ReseardB:533-549, May 1986.

[94] A. V. Goldberg. Selecting Problems for Algorithm Evation. InProceedings of
the 3rd International Workshop on Algorithm EngineeringA®99), pages 1-11,
London, UK, 1999. Springer-Verlag.

[95] D. E. Goldberg.Genetic Algorithms in Search, Optimization and Machinerbigy.
Addison-Wesley Longman Publishing Co., Inc., Boston, MAA] 1st edition, 1989.

[96] D.E. Goldberg, D. E. Goldberg, K. Deb, K. Deb, H. Kargapgt. Kargupta, G. Harik,
and G. Harik. Rapid, Accurate Optimization of Difficult Pfeins Using Fast Messy
Genetic Algorithms. IfProceedings of the Fifth International Conference on Gienet
Algorithms pages 56—64. Morgan Kaufmann, 1993.

[97] B. W. Goldman and D. R. Tauritz. Self-Configuring Crosgso In Proceedings of the
Conference Companion on Genetic and Evolutionary ComiomtdGECCO 2011)
pages 575-582. ACM, 2011.

[98] A. Gonzalez, D. F. Barrero, M. D. R-Moreno, and D. Calmac A Case Study on
Grammatical-Based Representation for Regular Expre&siotlution. InProceedings
of 8th International Conference on Practical ApplicationisAgents and Multi-Agent
Systems (PAAMS 2010)olume 2, pages 379—-386, Salamanca, Spain, 26-28 April
2010. Springer-Verlag.

[99] M. Graff and R. Poli. Practical Model of Genetic Progmraing’s Performance on
Rational Symbolic Regression Problems Pimceedings of the 11th European confe-
rence on Genetic programming (EuroGP 200Bxges 122-133, Berlin, Heidelberg,
2008. Springer-Verlag.

[100] T. Grubber. A Translation Approach to Portable Onggi&pecificationsKnowledge
Acquisition 5(2):199-220, 1993.

[101] S. Gustafson, A. Ekart, E. Burke, and G. Kendall. Reob Difficulty and Code
Growth in Genetic ProgrammingGenetic Programming and Evolvable Machines
5(3):271-290, 2004.

[102] L. Haas. Beauty and the Beast: The Theory and Practibt@mation Integration.
Proceedings of the 11th International Conference on DasabBheory (ICDT 2007)
4353:28-43, Jan 2007.



BIBLIOGRAPHY 169

[103] N. Hansen, S. Finck, R. Ros, and A. Auger. Real-Pararhitck-Box Optimization
Benchmarking 2009: Noiseless Functions Definitions. Teethmreport RR-6829,
INRIA, 2009.

[104] P. Hansen and N. Mladenovic. Variable Neighborhoodr&8® Principles and Appli-
cations.European Journal Of Operational Researd80(3):449-467, 2001.

[105] I. Harvey. The SAGA Cross: The Mechanics of Recombamafor Species with
Variablelength Genotypes. Parallel Problem pages 269-278. North-Holland, 1992.

[106] F. Herrera, M. Lozano, and D. Molina. Test Suite for 8pecial Issue of Soft Com-
puting on Scalability of Evolutionary Algorithms and OthHéetaheuristics for Large
Scale Continuous Optimization Problems. 2010.

[107] K. E. Hillstrom. A Simulation Test Approach to the Ewation of Nonlinear Op-
timization Algorithms. ACM Transactions on Mathematical Softwa®&305-315,
December 1977.

[108] R. Hinterding, Z. Michalewicz, and A. Eiben. Adaptatiin Evolutionary Compu-
tation: A Survey. INIEEE International Conference on Evolutionary Computatio
(CEC 1997) pages 65-69. IEEE, 1997.

[109] J. L. Hodges and L. Le Cam. The Poisson Approximatioth&oPoisson Binomial
Distribution. The Annals of Mathematical Statistj&l(3):737—740, September 1960.

[110] J. H. Holland.Adaptation in Natural and Artificial SystemMIT Press, Cambridge,
MA, USA, 1992.

[111] J. Hooker. Needed: An Empirical Science of Algorithm®perations Research
42:201-212, 1994.

[112] J. Hooker. Testing Heuristics: We Have it All Wronipurnal of Heuristics1:33-42,
1995.

[113] H. Hoos and T. Stutzle. Characterizing the Run-Tingh&vior of Stochastic Local
Search. IrProceedings AAAIQXiteseer, 1998.

[114] H. Hoos and T. Stitzle. Towards a CharacterisatiothefBehaviour of Stochastic
Local Search Algorithms for SATArtificial Intelligence 112(1-2):213-232, 1999.

[115] H. Hoos and T. Stitzle. Local Search Algorithms fofTSAn Empirical Evaluation.
Journal of Automated Reasonin24(4):421-481, 2000.

[116] H. H.Hoos and T. Stitzle. Evaluating Las Vegas Altioris — Pitfalls and Remedies.
In Proceedings of the Fourteenth Conference on Uncertainfriificial Intelligence
(UAI-98), pages 238-245. Morgan Kaufmann Publishers, 1998.

[117] B. Hutt and K. Warwick. Synapsing Variable-Length €sover. Meaningful
Crossover for Variable-Length Genomd&EE Transactions on Evolutionary Com-
putation 11(1):118-131, 2007.



170 BIBLIOGRAPHY

[118] C. Igel and K. Chellapilla. Investigating the Influenaf Depth and Degree of Geno-
typic Change on Fitness in Genetic ProgrammingPioceedings of the Genetic and
Evolutionary Computation Conference (GECCO 1998)ges 1061-1068, Orlando,
Florida, USA, July 13-17 1999.

[119] T. Jansen and C. Zarges. Comparing Different Agingr&pes. InProceedings of
the 8th International Conference on Atrtificial Immune Sysfd CARIS '09, pages
95-108, Berlin, Heidelberg, 2009. Springer-Verlag.

[120] Y. Jin and J. Branke. Evolutionary Optimization in éni@in Environments-a Survey.
IEEE Transactions on Evolutionary Computatj&@{3):303—-317, 2005.

[121] C. G. Johnson. Genetic Programming Crossover. Ddemsolts over? IProceedings
of the 12th European Conference on Genetic Programmingao&Br2009) pages
97-108. Springer-Verlag, 2009.

[122] D. Johnson. A Theoretician's Guide to the ExperimkAtaalysis of Algorithms.
Data Structures, Near Neighbor Searches, and MethodolBifth and Sixth DIMACS
Implementation Challenge59:215-250, 2002.

[123] I. Kant. The Critique of Pure Reasoi©ambridge University Press, 1999.

[124] D. Karaboga and B. Basturk. A Powerful and Efficient édighm for Numerical
Function Optimization: Artificial Bee Colony (ABC) Algohim. Journal of Global
Optimization 39(3):459-471, 2007.

[125] A. Kaufmann, D. Grounchko, and R. CruoMathematical Models for the Study of
the Reliability of Systemsolume 124 ofMathematics in Science and Engineeting
Academic Press, Inc., 1977.

[126] A.Kavehand S. Talatahari. A Novel Heuristic Optirtina Method: Charged System
Search. Acta Mechanica213(3-4):267-289, 2010.

[127] M. Keijzer, V. Babovic, C. Ryan, M. O'Neill, and M. Catico. Adaptive Logic Pro-
gramming. InProceedings of the Genetic and Evolutionary Computationf@ence
(GECCO-2001)pages 42—-49, San Francisco, California, USA, 7-11 Julyl 2D®r-
gan Kaufmann.

[128] J. Kennedy and R. Eberhart. Particle Swarm Optinoratiln IEEE International
Conference on Neural Networkslume 4, pages 1942-1948, 1995.

[129] L. Kerschberg, M. Chowdhury, A. Damiano, H. Jeong, $chkll, J. Si, and S. Smith.
Knowledge Sifter. Ontology-Driven Search over HeterogerseDatabases. [b6th
International Conference on Scientific and Statistical &b@tse Management (SSDBM
2004) pages 431-432, Santorini Island, Greece, June 2004. |EBEtpGter Society.

[130] D. Kinzett, M. Johnston, and M. Zhang. How Online Siifightion Affects Building
Blocks in Genetic Programming. IRroceedings of the 11th Annual conference on
Genetic and evolutionary computation (GECCO 20(&ges 979-986, New York,
NY, USA, 2009. ACM.



BIBLIOGRAPHY 171

[131] S. Kirkpatrick, C. Gelatt, and M. Vecchi. Optimizatiby Simulated AnnealingSci-
ence 220(4598):671, 1983.

[132] C. A. Knoblock and J.-L. Ambite. Agents for InformatidGathering. InSoftware
Agents pages 347-374. AAAI Press / The MIT Press, 1997.

[133] J. Knowles, D. Corne, and K. DeBlultiobjective Problem Solving from Nature: from
Concepts to ApplicationsSpringer-Verlag, 2008.

[134] J. Koza. Genetic Programming II: automatic discovery of reusablegpams MIT
Press, 1994.

[135] J. Koza. Human-Competitive Results Produced by Gemrbgramming. Genetic
Programming and Evolvable Machinekl(3):251-284, September 2010.

[136] J. R. Koza.Genetic Programming: On the programming of Computers byrides
Natural Selection MIT Press, Cambrige, MA, 1992.

[137] J. R. Koza.Genetic Programming IV: Routine Human-Competitive MaeHimtelli-
gence Kluwer Academic Publishers, Norwell, MA, USA, 2003.

[138] J. R. Koza, D. Andre, F. H. Bennett, and M. A. Kear@enetic Programming Ill:
Darwinian Invention & Problem Solving Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 1999.

[139] K. Krishnanand and D. Ghose. Detection of Multiple &&u_ocations Using a Glow-
worm Metaphor with Applications to Collective Robotics.Rroceedings of the IEEE
Swarm Intelligence Symposium (SIS 20@&)ges 84-91. IEEE, 2005.

[140] G. Kronberger, S. Winkler, M. Affenzeller, and S. WagrOn Crossover Success Rate
in Genetic Programming with Offspring Selection. Rmoceedings of the 12th Euro-
pean Conference on Genetic Programming (EuroGP 20p8yes 232-243, Berlin,
Heidelberg, 2009. Springer-Verlag.

[141] K. J. Lang. Evidence Driven State Merging with Searcfechnical report, NEC
Research Institute, 1998.

[142] K. J. Lang, B. A. Pearlmutter, and R. A. Price. Resuftthe Abbadingo One DFA
Learning Competition and a New Evidence-Driven State Meydilgorithm. InPro-
ceedings of the 4th International Colloquium on Grammatingerence (ICGI 1998)
pages 1-12, London, UK, 1998. Springer-Verlag.

[143] W. B. Langdon and R. Poli. Why Ants are Hard. Genetic Programming 1998:
Proceedings of the Third Annual Conferengages 193-201, Madison, Wisconsin,
USA, 22-25 July 1998. Morgan Kaufmann.

[144] W. B. Langdon, T. Soule, R. Poli, and J. A. Fostéhe Evolution of Size and Shape
pages 163-190. MIT Press, Cambridge, MA, USA, 1999.



172 BIBLIOGRAPHY

[145] P.-S. LaplaceThéorie Analytique des probabi#&s Mme. Ve Courcier, Paris, France,
1812.

[146] P. Larranaga and J. Lozan&stimation of Distribution Algorithms: A New Tool for
Evolutionary Computatignvolume 2. Springer-Verlag, 2002.

[147] C.-Y. Lee and E. K. Antonsson. Variable Length GenoroesEvolutionary Algo-
rithms. In Proceedings of the Genetic and Evolutionary Computatiomf@ence
(GECCO 2000)Las vegas, Nevada, USA, 2000.

[148] L. Leemis and K. S. Trivedi. A Comparison of Approxiradhterval Estimators for
the Bernoulli Parameter. Technical report, 1993.

[149] J. Liang, T. Runarsson, E. Mezura-Montes, M. ClercSi#anthan, C. Coello, and
K. Deb. Problem Definitions and Evaluation Criteria for thE@2006 Special Ses-
sion on Constrained Real-parameter Optimization. Teahnéport, Nangyang Tech-
nological University, Singapore, Tech. Rep., 2006.

[150] E. Limpert, W. A. Stahel, and M. Abbt. Log-normal Dibtutions across the Sciences:
Keys and CluesBioScience51(5):341-352, May 2001.

[151] F. G. Lobo and C. F. Lima. A Review of Adaptive Populatidizing Schemes in Ge-
netic Algorithms. InProceedings of the 2005 workshops on Genetic and evolugiona
computation (GECCO 2005pages 228-234. ACM, 2005.

[152] J. Lozano.Towards a New Evolutionary Computation: Advances in theniation of
Distribution Algorithms volume 192. Springer-Verlag New York Inc, 2006.

[153] S. M. Lucas and T. J. Reynolds. Learning DFA: Evolut\dersus Evidence Driven
State Merging. IfProceedings of IEEE Congress on Evolutionary Computat@ia
2003) pages 351-358, Newport Beach, California, USA, 2003.

[154] S. Luke. A Java-based Evolutionary Computation Rete8ystem (ECJ Libraries)
home page. http://cs.gmu.edu/"eclab/projects/ecj/.

[155] S. Luke. Code Growth Is Not Caused by Intronsiniiwvhitley, D. (Ed.), Late Breaking
Papers at the 2000 Genetic and Evolutionary Computationf€ence. Las Vegas
pages 228-235. Morgan Kaufmann, 2000.

[156] S.Luke. When Short Runs Beat Long RunsPhoceedings of the Genetic and Evo-
lutionary Computation Conference (GECCO 20(dgges 74-80. Morgan Kaufmann,
2001.

[157] S. Luke. Modification Point Depth and Genome Growth ien@tic Programming.
Evolutionary Computationl1(1):67-106, 2003.

[158] S. Luke.Essentials of Metaheuristicd ulu Enterprises, UK Ltd, 2009.

[159] S. Luke and L. Panait. Is the Perfect the Enemy of thed3odn In Genetic and
Evolutionary Computation Conference (GECCO 20(#)ges 820-828, New York,
New York, USA, 2002. Morgan Kaufmann.



BIBLIOGRAPHY 173

[160] S. Luke and L. Panait. A Comparison of Bloat Control hMats for Genetic Program-
ming. Evolutionary Computatianl4:309-344, September 2006.

[161] S.Luke and L. Spector. A Revised Comparison of Crosssand Mutation in Genetic
Programming. InGenetic Programming 1997: Proceedings of the Second Annual
Conferencepages 240-248. Morgan Kaufmann, 1998.

[162] R. Mallipeddi and P. Suganthan. Problem Definitiond &valuation Criteria for
the CEC 2010 Competition on Constrained Real-Parametem@gation. Technical
report, Nanyang Technological University, Singapore hTéep., 2009.

[163] O. Maron and A. Moore. The Racing Algorithm: Model Setlen for Lazy Learners.
Artificial Intelligence Reviewl1(1):193-225, 1997.

[164] R. W. Matthews and J. R. Matthewsisect Behaviar Springer-Verlag, 2009.

[165] C. McGeoch. Toward an Experimental Method for Algomit Simulation.INFORMS
Journal on Computing8(1):1-15, 1996.

[166] R.I. Mckay, N. X. Hoai, P. A. Whigham, Y. Shan, and M. @N. Grammar-Based
Genetic Programming: A SurveyGenetic Programming and Evolvable Machines
11:365-396, September 2010.

[167] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. Feller, and E. Teller. Equa-
tion of State Calculations by Fast Computing Machin@he Journal of Chemical
Physics 21(6):1087-1092, 1953.

[168] M. Michalowski, J. Ambite, S. Thakkar, R. Tuchinda, Khoblock, and S. Minton.
Retrieving and Semantically Integrating Heterogeneouta @am the Web. IEEE
Intelligent Systemd 9(3), 2004.

[169] J. Miller. An Empirical Study of the Efficiency of Leang Boolean Functions Us-
ing a Cartesian Genetic Programming ApproachPioceedings of the Genetic and
Evolutionary Computation Conference (GECCO 19%@Jume 2, pages 1135-1142,
1999.

[170] J. Miller and P. Thomson. Cartesian Genetic Programgmin Genetic Programming
volume 1802 oL ecture Notes in Computer Scienpages 121-132. Springer-Verlag
/ Heidelberg, 2000.

[171] C. R. M’Lan, J. Lawrence, and D. B. Wolfson. Bayesiampke size determination
for binomial proportionsBayesian Analysjs3(2):269-296, 2008.

[172] D. Montana. Strongly Typed Genetic Programmingvolutionary computation
3(2):199-230, 1995.

[173] D. Montgomery.Design and Analysis of Experiment®hn Wiley & Sons Inc, 1984.

[174] D.C.Montgomery and G. C. Rungépplied Statistics and Probability for Engineers,
4th Edition John Wiley & Sons, 4th edition, May 2010.



174 BIBLIOGRAPHY

[175] B. Moret. Towards a Discipline of Experimental Algiwinics. InData Structures,
Near Neighbor Searches, and Methodology: Fifth and SixMACS Implementation
Challengesvolume 59, pages 197-214, 2002.

[176] R. Morrison. Designing Evolutionary Algorithms for Dynamic Environrtsen
Springer-Verlag, 2004.

[177] R. Myers and E. R. Hancock. Empirical Modelling of Gea&lgorithms. Evolu-
tionary Computation9(4):461-493, 2001.

[178] V. Nannen and A. Eiben. Efficient Relevance Estimatiom Value Calibration of
Evolutionary Algorithm Parameters. IEEE Congress on Evolutionary Computation
(CEC 2007) pages 103-110. IEEE, 2007.

[179] R. G. Newcombe. Two-Sided Confidence Intervals forSihegle Proportion: Com-
parison of Seven Method&tatistics in Medicingl7(8):857-872, 1998.

[180] J. Niehaus and W. Banzhaf. More on Computational EfRiatistics for Genetic
Programming. IrProceedings of the European Conference on Genetic Progiagnm
(EuroGP 2003)volume 2610 of_ecture Notes on Computer Scieppages 164-172,
Essex, UK, 14-16 Apr. 2003. Springer-Verlag.

[181] M. H. Nodine, J. Fowler, T. Ksiezyk, T. Perry, M. Tayl@nd A. Unruh. Active In-
formation Gathering in InfoSleuthnternational Journal of Cooperative Information
Systems9(1-2):3-28, 2000.

[182] P. Norvig. Warning Signs in Experimental Design andtetpretation.
http://norvig.com/experiment-design.html.

[183] N.F. Noy. Semantic Integration: A Survey of OntoloBgsed ApproacheSIGMOD
Rec, 33(4):65—70, December 2004.

[184] M. O'Neill and C. Ryan. Grammatical EvolutiofEEE Transactions on Evolutionary
Computation5(4):349-358, August 2001.

[185] M. ONeill, L. Vanneschi, S. Gustafson, and W. Banzi@pen Issues in Genetic Pro-
gramming.Genetic Programming and Evolvable Machin&$(3-4):339-363, 2010.

[186] K. Passino. Biomimicry of bacterial foraging for disuted optimization and control.
Control Systems Magazine, IEEE2(3):52-67, 2002.

[187] N. Paterson and M. Livesey. Performance Comparisdgenetic Programming. In
Late Breaking Papers at the 2000 Genetic and Evolutionamn@atation Conference
(GECCO 2000)pages 253-260, Las Vegas, Nevada, USA, July 2000.

[188] P. Pellegrini and M. Birattari. Implementation Effand Performance: A Comparison
of Custom and Out-of-the-Box Metaheuristics on the VehiRtriting Problem With
Stochastic Demand. IRroceedings of the 2007 International Conference on Engi-
neering Stochastic Local Search Algorithms: Designingylementing and Analyzing
Effective HeuristicsSLS’07, pages 31-45, Berlin, Heidelberg, 2007. Springetfag.



BIBLIOGRAPHY 175

[189] W. W. Piegorsch. Sample Sizes for Improved Binomiahfience Intervals Com-
putational Statistics & Data Analysig6(2):309-316, June 2004.

[190] A. M. Pires and C. a. Amado. Interval Estimators for ad@nial Proportion: Com-
parison of Twenty MethodsStatistical Journal6(2):165-197, Jun 2008.

[191] Plato.The RepublicNTC/Contemporary Publishing Company, Sept. 1997.

[192] R. Poli, W. B. Langdon, and N. F. McPheA.Field Guide to Genetic Programming
Lulu Enterprises, UK Ltd, Mar. 2008.

[193] R. Poli, L. Vanneschi, W. Langdon, and N. McPhee. Thtoal Results in Genetic
Programming: The Next Ten year§enetic Programming and Evolvable Machines
11(3):285-320-320, September 2010.

[194] M. R-Moreno, D. Camacho, D. Barrero, and B. Castafomin Drivers Knowledge
Integration in a Logistics Decision Support Tool.litelligent Distributed Computing
V, volume 382 ofStudies in Computational Intelligencpages 227-236. Springer-
Verlag / Heidelberg, 2011.

[195] M. D. R-Moreno, D. Camacho, D. F. Barrero, and M. Guigz. A Decision Sup-
port System for Logistics Operations. 8oft Computing Models in Industrial and
Environmental Applications, 5th International Worksh&@OCO 201Q)volume 73 of
Advances in Soft Computingages 103-110, Guimaraes, Portugal, 2010. Springer-
Verlag.

[196] M. D. R-Moreno, B. Castafio, M. Carbajé, Moreno, D. F. Barrero, and P. Mufioz.
Multi-Agent Intelligent Planning Architecture for Peoplscation and Orientation
Using RFID.Cybernetics and Systep#2(1):16-32, Jan 2011.

[197] P. Rabanal, I. Rodriguez, and F. Rubio. Using Riveniaiion Dynamics to Design
Heuristic Algorithms.Unconventional Computatiompages 163-177, 2007.

[198] E. Rahme, L. Joseph, and T. W. Gyorkos. Bayesian SaBipke Determination for
Estimating Binomial Parameters from Data Subject to Missifecation. Journal Of
The Royal Statistical Society Series49(1):119-128, 2000.

[199] M. Ramilo Araujo. Politicas publicas, instituciones y actores para la promati
de la sociedad de la informacion y/o del conocimiento. Ualiais comparado de
Catalunya y EuskadiPhD thesis, Universidad del Pais Vasco, 2009.

[200] W. Rand and R. Riolo. Measurements for understandiegotehavior of the genetic
algorithm in dynamic environments: a case study using tlexphadder Hyperplane-
Defined Functions. IfProceedings of the Workshops on Genetic and Evolutionary
Computation (GECCO 2005pages 32—-38. ACM, 2005.

[201] R.L.Rardin and R. Uzsoy. Experimental Evaluation eirstic Optimization Algo-
rithms: A Tutorial. Journal of Heuristics7:261-304, May 2001.



176 BIBLIOGRAPHY

[202] I. RechenbergEvolutionsstrategie : Optimierung technischer Systerna iRxinzip-
ien der biologischen Evolution Number 15 in Problemata. Frommann-Holzboog,
Stuttgart-Bad Cannstatt, 1973.

[203] C. R. Reeves and C. Wright. Genetic Algorithms and Tlesign of Experiments. In
Proceedings of the IMA Fall Workshop on Evolutionary Algums 1996.

[204] G. Reinelt. TSPLIB-A Traveling Salesman Problem kityr ORSA Journal on Com-
puting, 3(4):376—384, 1991.

[205] C. C. Ribeiro, I. Rosseti, and R. Vallejos. On the Usd&kah Time Distributions to
Evaluate and Compare Stochastic Local Search AlgorithmsPrdceedings of the
Second International Workshop on Engineering Stochast@al.Search Algorithms.
Designing, Implementing and Analyzing Effective Hewss{iSLS’09) pages 16—30.
Springer-Verlag, 2009.

[206] E. Ridge. Design of Experimetns for the Tuning of Optimization Algoris PhD
thesis, The University of York. Department of Computer 8ces October 2007.

[207] T.D. Ross. Accurate Confidence Intervals for Binondedportion and Poisson Rate
Estimation.Computers in Biology and Medicin83(6):509-531, 2003.

[208] F. Rothlauf. Representations for Genetic and Evolutionary Algorithn&pringer-
Verlag, Heidelberg, New York, 2nd edition edition, 2006.

[209] B. Russell. A History of Western Philosophyfouchstone, 1945.

[210] S. Russell and P. NorvidArtificial Intelligence: a Modern ApproachPrentice hall,
2010.

[211] A.D. Sarma, X. Dong, and A. Halevy. Bootstrapping Rayyou-go Data Integration
Systems. InProceedings of the 2008 ACM SIGMOD International Confegean
Management of Data (SIGMOD 2008)ages 861-874, New York, NY, USA, 2008.
ACM.

[212] H. Schwefel.Evolution and Optimum Seeking: The Sixth Generatitwhn Wiley &
Sons, Inc., 1993.

[213] H. Shah-Hosseini. The intelligent water drops aldpon: a nature-inspired swarm-
based optimization algorithmIinternational Journal of Bio-Inspired Computatipn
1(1):71-79, 2009.

[214] R. Sharma. Bayes Approach to Interval Estimation ofreoBiial ParameterAnnals
of the Institute of Statistical Mathematj&7(1):259-267, 1975.

[215] S. Silvaand E. Costa. Dynamic Limits for Bloat ConirolGenetic Programming and
a Review of Past and Current Bloat Theori€senetic Programming and Evolvable
Machines 10(2):141-179, 2009.



BIBLIOGRAPHY 177

[216] S. Smit and A. Eiben.Experimental Methods for the Analysis of Optimization Al-
gorithms chapter Using Entropy for Parameter Analysis of EvoludignAlgoirthms,
pages 287-308. Springer-Verlag New York Inc, 2010.

[217] S. Smit and A. Eiben. Parameter Tuning of EvolutionAtgorithms: Generalist
vs. Specialist. IrApplications of Evolutionary Computatipwolume 6024 ot ecture
Notes in Computer Sciengeages 542-551, Berlin, Heidelberg, 2010. Springer Berlin
/ Heidelberg.

[218] M. F. Smith. Sampling Considerations In Evaluatingo@erative Extension Pro-
grams. InFlorida Cooperative Extension Service Bulletin PEHistitute of Food
and Agricultural Sciences. University of Florida., 1983.

[219] W. M.  Spears. Repository of Test Problem  Generators.
http://www.cs.uwyo.edu/ wspears/generators.html.

[220] W. M. Spears. Crossover or Mutatioroundations of Genetic Algorithms 2:221—
237, 1993.

[221] M. Srinivas and L. Patnaik. Genetic Algorithms: A SeyvComputer 27(6):17—-26,
1994.

[222] P. F. Stadler. Fitness LandscapeBiological Evolution and Statistical Physics
585:183-204, 2002.

[223] R. Storn and K. Price. Differential Evolution-a Sirend Efficient Adaptive Scheme
for Global Optimization over Continuous Spacesternational Computer Science
Institute-Publications-TR1995.

[224] T. Stutzle and H. H. Hoos. Analyzing the Run-Time Babar of Iterated Local
Search for the TSP. Il Metaheuristics International ConferencKluwer Academic
Publishers, 1999.

[225] P. Suganthan, N. Hansen, J. Liang, K. Deb, Y. Chen, Agekuand S. Tiwari. Pro-
blem Definitions and Evaluation Criteria for the CEC 2005 @gleSession on Real-
Parameter OptimizatiorKanGAL Report2005.

[226] E.-G. Talbi. A Taxonomy of Hybrid Metaheuristicdournal of Heuristics8:541-564,
September 2002.

[227] K. Tang, X. Li, P. N. Suganthan, Z. Yang, and T. Weise.n&enark Functions for
the CEC’2010 Special Session and Competition on LargeeSgklbal Optimization.
Technical report, University of Science and Technology bin@ (USTC), School of
Computer Science and Technology, Nature Inspired Comnipataind Applications
Laboratory (NICAL): Héféi, Anhu'i, China, 2009.

[228] K. Tang, X. Yao, P. N. Suganthan, C. MacNish, Y. P. Cl&nyl. Chen, and Z. Yang.
Benchmark Functions for the CEC’2008 Special Session amdp@ttion on Large
Scale Global Optimization. Technical report, Nature IrspiComputation and Appli-
cations Laboratory, USTC, Nanyang Technology UniverSiggapore, China, 2007.



178 BIBLIOGRAPHY

[229] M. Tomita. Dynamic Construction of Finite Automatain Examples Using Hill
Climbing. InProceedings of the Fourth Annual Cognitive Science Conteygages
105-108, 1982.

[230] K. S. Trivedi. Probability and Statistics with Reliability, Queuing and@puter Sci-
ence ApplicationsJohn Wiley and Sons Ltd., Chichester, UK, 2002.

[231] A. Turing. Computing Machinery and Intelligendgind, 59(236):433-460, 1950.

[232] M. Uschold and M. Gruninger. Ontologies and SemariticSeamless Connectivity.
SIGMOD Rec.33(4):58-64, December 2004.

[233] L. Vanneschi.Theory and Practice for Efficient Genetic ProgrammirighD thesis,
University de Lausanne, 2004.

[234] R. Vdovjak and G.-J. Houben. RDF-Based ArchitectureSemantic Integration of
Heterogeneous Information Sources.Workshop on Information Integration on the
Weh pages 51-57, 2001.

[235] S. E. Wollset. Confidence Intervals for a Binomial Retjpn. Statistics in Medicing
12(9):809-827, 1993.

[236] S. VoRR. Meta-Heuristics: The State of the Art. Rroceedings of the Workshop on
Local Search for Planning and Scheduling-Revised Papefs\(E2000) pages 1-23,
London, UK, 2001. Springer-Verlag.

[237] C. Voudouris.Guided Local Search for Combinatorial Optimization Prabke PhD
thesis, Department of Computer Science, University of £sk897.

[238] H. Wache, T. Vogele, U. Visser, H. Stuckenschmidt,S8huster, H. Neumann, and
S. Hibner. Ontology-Based Integration of Information —uav@y of Existing Ap-
proaches. InNMorkshop on Ontologies and Information Sharing (IJCAI 20@hges
108-117, Seattle, Washington, USA, 2001.

[239] A. Wald. Test of Statistical Hypotheses Concerningebal Parameters when the
Number of Observations is Larg&ransactions of the American Mathematical Soci-
ety, 54(3):426-482, Nov 1943.

[240] M. Walker, H. Edwards, and C. Messom. The ReliabilityConfidence Intervals for
Computational Effort Comparisons. Rroceedings of the 9th Conference on Genetic
and Evolutionary Computation (GECCO 200pages 1716-1723. ACM, 2007.

[241] M. Walker, H. Edwards, and C. H. Messom. Confidenceryaiis for Computational
Effort Comparisons. It uroGP, pages 23-32, 2007.

[242] M. Walker, H. Edwards, and C. H. Messom. Success Effod Other Statistics for
Performance Comparisons in Genetic ProgrammingEEE Congress on Evolution-
ary Computation (CEC 2007pages 4631-4638, Singapore, 2007. IEEE.



BIBLIOGRAPHY 179

[243] K. Weicker. Performance Measures for Dynamic Envinents. InParallel Problem
Solving from Nature PPSN Vlbages 64—73. Springer-Verlag, 2002.

[244] D. R. White and S. Poulding. A Rigorous Evaluation ob§sover and Mutation in
Genetic Programming. IRroceedings of the 12th European Conference on Genetic
Programming (EuroGP 2009pages 220-231. Springer-Verlag, 2009.

[245] D. Whitley. An Overview of Evolutionary Algorithms:rBctical Issues and Common
Pitfalls. Information and Software TechnologdB3(14):817-831, Dec. 2001.

[246] D. Whitley, K. Mathias, S. Rana, and J. Dzubera. EwuahgaEvolutionary Algo-
rithms. Artificial Intelligence 85:245-276, 1996.

[247] E. B. Wilson. Probable Inference, the Law of Successand Statistical Inference.
Journal of the American Statistical Associatig@2):309-316, 1927.

[248] M. Wineberg and S. Christensen. Statistical AnalysisEvolutionary Computa-
tion: Advanced Techniques. Proceedings of the 12th annual conference companion
on Genetic and evolutionary computation (GECCO 20p@jges 2661-2682. ACM,
2010.

[249] M. Wineberg and S. Christensen. Statistical AnaljsisEvolutionary Computation:
Introduction. InProceedings of the 12th annual conference companion ont&ene
and evolutionary computation (GECCO 201pages 2413—-2440. ACM, 2010.

[250] D. H. Wolpert and W. G. Macready. No Free Lunch Theoréon©ptimization.|IEEE
Transactions on Evolutionary Computatjdi(1):67-82, Apr. 1997.

[251] A. S. Wu and I. Garibay. The Proportional Genetic Aljon: Gene Expression in
a Genetic Algorithm Genetic Programming and Evolvable Machind&):157-192,
2002.

[252] X. Yang.Nature-Inspired Metaheuristic Algorithm&univer Press, 2010.

[253] J. Yuan, A. Bahrami, C. Wang, M. Murray, and A. Hunt. Ansantic Information
Integration Tool Suite. IfProceedings of the 32nd International Conference on Very
Large Data Bases (VLDB 200®)ages 1171-1174. VLDB Endowment, 2006.

[254] A. Zhou, B.-Y. Qu, H. Li, S.-Z. Zhao, P. N. Suganthand#&p. Zhang. Multiobjective
Evolutionary Algorithms: A Survey of the State of the ABwarm and Evolutionary
Computation1(1):32—-49, 2011.

[255] F.Zhu, M. Turner, |. A. Kotsiopoulos, K. H. Bennett, Russell, D. Budgen, P. Brere-
ton, M. R. John Keane and, and J. Xu. Dynamic Data Integréiging Web Services.
In IEEE International Conference on Web Services (ICWS'fdyes 262—-269, San
Diego, California, USA, June 2004. IEEE Computer Society.

[256] G. K. Zipf. The Psychobiology of Languagdoughton-Mifflin, New York, NY, USA,
1935.



180 BIBLIOGRAPHY

[257] E. Zitzler, K. Deb, and L. Thiele. Comparison of Multiective Evolutionary Algo-
rithms: Empirical ResultsEvolutionary Computatign:173—-195, June 2000.

[258] E. Zitzler, L. Thiele, M. Laumanns, C. Fonseca, and&/Fdnseca. Performance As-
sessment of Multiobjective Optimizers: An Analysis and iRev IEEE Transactions
on Evolutionary Computatiqrv(2):117-132, 2003.



