
UNIVERSIDAD DE ALCAL Á
DEPARTAMENTO DEAUTOMÁTICA

RELIABILITY OF PERFORMANCE MEASURES IN

TREE-BASED GENETIC PROGRAMMING:
A STUDY ON KOZA’ S COMPUTATIONAL EFFORT

Dissertation written by
David Fernández Barrero

Under the supervision of
Dr. Marı́a Dolores Rodrı́guez Moreno

Dr. David Camacho Fernández

Dissertation submitted to the School of Computing of
the University of Alcalá, in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

November
2011

Reliability of performance measures in tree-based GeneticProgramming:
A study on Koza’s computational effort

by David Fernández Barrero
is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 2.5

Para mis padres, Manuel y Milagros,
por su amor incondicional

e infinita comprensión

y para Ignacio Criado,
por ensẽnarme que la ciencia

nace de la pasión
por el conocimiento

To kill an error is as good a service as,
and sometimes even better than,

the establishing of a new truth or fact.

Charles Darwin

ABSTRACT OF THE DISSERTATION

Reliability of performance measures in tree-based GeneticProgramming:
A study on Koza’s computational effort

by

David Fernández Barrero

The measure of computational effort was first proposed by John R. Koza in his bookGene-
tic Programming: On the Programming of Computers by Means ofNatural Selection, as a
method to assess algorithm performance. This measure estimates the minimum number of
individuals that have to be processed by a generational Evolutionary Algorithm in order to
achieve at least one success with a certain given probability. Computational effort has had
a strong influence in the Genetic Programming community, andhas been widely used as a
performance measure.

Several researchers have shown some concerns, through informal channels, about the
behaviour of this measure, but there is little evidence in the literature to support this percep-
tion. This PhD thesis is an attempt to determine whether the concerns about the reliability
of Koza’s computational effort are solidand therefore it is a unreliable measure, or, on the
contrary, these concerns have no sound support. In order to answer whether computational
effort is reliable or not, the goal of the dissertation is to model the error associated to the
estimation of this measure. The developed model is essentially theorerical, but some parts
are based on empirical evidence.

The main conclusion of the thesis is thatthere are sound reasons to doubt the reliability of
Koza’s computational effortand should therefore no longer be used. Other simpler measures,
such as the success probability or the average number of evaluations to a solution should be
used instead.

Futher contributions include the proof that the success rate in Evolutionary Computation
is binomially distributed; a characterization of some binomial confidence interval methods; a
new method to estimate the success probability; and a run-time analysis of tree-based Genetic
Programming. In addition, some methods to solve real world problems in the domains of
language induction, RFID and logistics are developed.

RESUMEN AMPLIADO DE LA TESIS

Reliability of performance measures in tree-based GeneticProgramming:
A study on Koza’s computational effort

por

David Fernández Barrero

El esfuerzo computational de Koza es una medida de rendimiento algorı́tmico ampliamente
utilizada en la Programación Genética (PG). Dicha medidaestima el número mı́nimo de
evaluaciones que son necesarios para que un algoritmo encuentre al menos una solución
con una cierta probabilidad. Esta medida, por diversos motivos, ha ejercido una notable
influencia en el desarrollo de la PG como disciplina. Sin embargo, existe una considerable
discrepancia entre la importancia del esfuerzo computacional y el conocimiento disponible
sobre sus propiedades.

A través de canales informales, diversos investigadores han mostrado reticencias debido
a ciertas anomaĺıas observadas en el comportamiento del esfuerzo computacional, aunque
dicha preocupación no está respaldada por evidencia emp´ırica o teórica. Esta tesis en un in-
tento de aumentar el conocimiento sobre dicha media. Más concretamente,se plantea como
pregunta de investigación principal determinar hasta qué punto el esfuerzo computacional
es una medida de rendimiento fiable. Con el fin de poder perfilar una respuesta fundada,
se plantea como objetivo de la tesis obtener una caracterización del error asociado a la esti-
mación del esfuerzo computacional.

Se identifican dos fuentes de incertidumbre en la estimación del esfuerzo computacional:
el operador de redondeo, y el error de estimación. Se demuestra anaĺıticamente, con respaldo
empı́rico, que eloperador de redondeointroduce un error absoluto máximo igual al producto
de la generación y el tamaño de la población. En cambio, entérminos relativos el error de
redondeo está acotado por una función no lineal monótonacreciente con la probabilidad de
éxito del algoritmo. El error inducido por el operador de redondeo tiene una forma trivial de
eliminarse consistente en no utilizarlo.

El error de estimacíon es la única fuente de aletoriedad en el proceso de medida, y es
intrı́nseco al mismo. Su origen se sitúa en la estimación de la probabilidad de éxito, de la que
depende el esfuerzo computacional. Caracterizar el efectode dicha estimación en el esfuerzo
computacional no es trivial, y require un modelo anaĺıticode la probabilidad de éxito. El
modelo propuesto en la tesis se basa en la descomposición dela probabilidad de éxito en dos

términos, que a su vez modelan aspectos distintos de la probabilidad de éxito. Un primer
término modela la probabilidad de que el algoritmo obtengaun éxito al final de su ejecución.
Dicho término no depende del tiempo y por lo tanto lo denominamos estático. El segundo
término modela la evolución de la probabilidad de éxito en el tiempo, y por lo tanto es
dinámico. Deducir las propiedades estadı́sticas del modelo propuesto tiene dos dificultades,
la primera es que se necesita caracterizar el error de estimación de los parámetros de una
distribución binomial, y por otra parte obtener una caracterización estadı́stica del tiempo que
un algoritmo tarda en encontrar una solución.

El término est́atico tiene una naturaleza binomial, y por lo tanto la estadı́stica binomial
puede aplicarse. Siendo más precisos, nos intersa caracterizar la incertidumbre asociada
a la estimación de la probabilidad, y una forma de hacerlo espor medio de intervalos de
confianza binomiales. Como resultado de estudiar cuatro métodos de cálculo de intervalos
binomiales (aproximación a normal, Agresti-Coull, Wilson y “exacto”), se comprueba que
el método de Wilson presenta un buen comportamiento medio,y por lo tanto es una opción
razonable para caracterizar el error de estimación de la probabilidad estática de éxito. Como
aplicación directa del resultado, se obtiene una estimación de la calidad de la medición de la
probabilidad en función de la probabilidad estimada y el n´umero de ejecuciones.

El término dińamiconecesario para modelar la probabilidad de éxito depende del tiempo
que tarda un algoritmo en encontrar una solución, que es desconocido. Afortunadamente es
un problema fácil de solucionar utilizando una aproximación experimental. Utilizando una
serie de problemas clásicos en PG, se determina que existentres distribuciones estadı́sticas
que modelan adecuadamente el comportamiento dinámico de la probabilidad de éxito. La
distribución que aparece en un mayor número de casos analizados, incluyendo aquellos que
podemos considerar más comunes, es la distribución lognormal. En ciertos casos extremos,
también aparecen las distribuciones exponencial y Weibull. La primera aparece en problemas
booleanos difı́ciles, si no se consideran las ejecuciones que encuentran una solución durante
la fase inicial. Por el contrario, la distribución de Weibull aparece asocida al tiempo que los
casos analizados tardan en encontrar la solución en ausencia de presión selectiva.

En base a estas observaciones,se propone un nuevo método para modelar y estimar la
probabilidad deéxito de un algoritmo. Si bien las pruebas experimentales no aportan evi-
dencia de que el nuevo método mejore la estimación clásica de máxima-verosimilitud, al
menos sı́ la iguala en cuanto a la exactitud. Adicionalmentees capaz de interpolar y extrapo-
lar valores de probabilidad, lo que tiene como resultado unafunción de probabilidad menos
abrupta, especialmente cuando el número de éxitos disponibles para calcular la estimación
es reducido. Por lo tanto, dicho modelo presenta unas propiedades razonables para utilizarlo
en la caracterización del error de estimación del esfuerzo computacional.

En base al modelo elaborado, se determina anaĺıticamente que la precisión del esfuerzo
computacional es poco sensible al tiempo de ejecución del algoritmo, pero sı́ aparece una de-
pendencia significativa con la varianza del mismo, tanto mayor cuanto mayor es la varianza.
En todo caso, tanto el modelo anaĺıtico, como los resultados experimentales, muestran que
con el número de ejecuciones habitualmente utilizadas, entorno a50, el error de estimacíon
del esfuerzo computacional suele ser apreciable.

Complementariamente al objeto principal de estudio de estatesis, de carácter básico, se
realiza una investigación aplicada. En particular, se parte de una plataforma de extracción
e integración de información basada en agentes semánticos llamada Searchy, para exten-

derla incorporándole la capacidad de evolucionar expresiones regulares. Como base para se-
leccionar el alfabeto del que se nutre un algoritmo genético, se propone un nuevo algoritmo
inspirado en la ley de Zipf. Por último, se han aplicado técnicas evolutivas en planificación
logı́stica y RFID.

Las operaciones no lineales a las que se somete a la probabilidad de éxito en el cálculo
del esfuerzo computacional induce comportamientos asint´oticos. Por lo tanto se concluye
que, en determinadas circunstancias,pequẽnos errores de estimación de la probabilidad de
éxito, se traducen en errores considerables de la estimación del esfuerzo computacional.
Si se considera el escaso valor añadido que aporta el esfuerzo computacional en relación
a otras medidas de naturaleza más básica, que carecen de estos defectos, concluı́mos que
la utilización del esfuerzo computacional deberı́a de evitarse en la medida de lo posible.
En caso de que el uso del esfuerzo computacional sea necesario, se aconseja eliminar el
operador de redondeo, y ajustar el número de ejecuciones enfunción del error admisible en
la experimentación.

Agradecimientos
Acknowledgements

A lo largo de mi vida he afrontado proyectos pequeños y grandes, ambiciosos y no tanto,
alguno loco y bastantes ingenuos, sin embargo, ninguno de ellos ha sido tan radicalmente
individual como el doctorado. Realizar una tesis doctoral supone un ejercicio de intromisión
singular, propio de la intensidad intelectual que se suponeen un doctorado. Sin embargo, he
aquı́ una paradoja: a pesar de ese ejercicio de radical individualidad, una tesis es a su vez
una obra colectiva. Esto es especialmente cierto en esta tesis, puesto que sin la aportación
de tantas personas, en distinto grado e implicación, nuncahabrı́a podido sustanciarse. De
justicia es reconocer, y agradecer, estas aportaciones.

En primer lugar quisiera mencionar a quienes me han rodeado profesional y académica-
mente en el Departamento de Automática de la Universidad deAlcalá. Mi alma mater, un
lugar en el que me formé gracias a la labor de unos no siempre suficientemente reconocidos
docentes, algunos de los cuales ahora tengo el placer de tener como compañeros y amigos.
Quisiera recordar especialmente a aquellos compañeros que entienden que la Universidad
ejerce una labor fundamental en la generación y transmisi´on del conocimiento, y que, por lo
tanto, se juegan unos siempre difı́ciles equilibros entre la investigación y la docencia.

Siguiendo en el ámbito académico, quisiera reconocer a los integrantes de los grupos
de investigación GSIC de la Universidad de Alcalá: Yolanda, Daniel, Pablo o Miguel, entre
otros; y AIDA, de la Universidad Autónoma de Madrid: Raúl,Héctor, Antonio o Gema.
Tengo el ı́ntimo y sólido convencimiento de que en el seno deambos grupos se está formando
a una brillante generación de investigadores. Quisiera agradecer en particular a Bonifacio,
por su gran paciencia al atender mis dudas matemáticas, y por compartir conmigo la emoción
de encontrar en las Matemáticas la respuesta a tantas preguntas. Sea como sea, espero que en
el futuro podamos seguir disfrutando juntos de la investigación, y que mi tesis sea la primera
de muchas y mejores tesis doctorales.

Mi familia ha jugado un papel tan clave como particular en la elaboración de la tesis. Su
paciencia ante las ausencias, su comprensión, su aliento han sido una pieza clave: Margarita,
Concha, Sergio, Mercedes, Braulio, el otro Braulio, Mila, Angelita, Jorge, Félix,́Alvaro,
Sara, Arturo, Cris o Carlos. Con especial cariño quisiera agradecer el apoyo de mi abuela,
Dolores, que a pesar de no saber muy bien qué es eso de una tesis doctoral, la bastó con saber
que era algo importante para su nieto, para vivir su desarrollo con la intensidad con la que ha
vivido todo este largo proceso doctoral.

Por otra parte, mis amigos, viejos y nuevos. Todos ellos contribuyendo a la realización
de la tesis, bien con su apoyo constante, bien con su paciencia por las ausencias. La lista
es larga: Rubén y Paco, por todos los paseos veraniegos que hemos dado; Janire, por estar
siempre presente en los momentos dı́ficiles, incombustibley paciente; Wendy, por su ilusión,
determinación y fortaleza afrontando con valentı́a una tesis contra toda adversidad, es para

mi un ejemplo a seguir; David y Fu, por los momentos vividos enesa otra aventura que fue
convertirse en ingenieros; a Mentxu, por su pasión, su vitalidad, y su admirable capacidad
de enredar; Noe, a la que deseo la mayor de las suertes en su ruidosa tesis maternal o Reme,
por su persistencia en sus objetivos.

Mención aparte requieren mis amigos nicas, tan lejanos en la distancia como cercanos en
emociones. Los momentos vividos en la UNAN-León fueron la motivación de una transfor-
mación vital que ha acompañado a mi existencia desde que pisé por primera vez mi amada
Nicaragua. Me han enseñado a vivir de otra manera, a vencer miedos, a replantearme ver-
dades que entendı́a como sólidas, a terminar de convencerme de que la educación puede y
debe transformar el mundo en el que vivimos. Ricardo, Raúl,Ernesto, Aldo,Álvaro, Rina,
Valeria, Denis, Johanna, Julio, Santiago y tantos otros, todos muy presentes en el dı́a a dı́a
de mi vida, y espero que sigan estando por muchos años más.

De mi estancia en Portsmouth quisiera destacar los estimulates retos intelectuales pro-
puestos por Julio, quien además me transmitió la emocióndel criptoanálisis, y me descubrió
el yasai yaki soba. Tambien quisiera mencionar a Vaughan, por esas conversaciones sobre lo
humano y lo divino al regreso de la Universidad, y por haber hecho todo lo posible para que
en Portsmouth me sienta como en casa. A la Universidad de Portsmouth tengo que agradecer
el haberme cedido espacio y medios para el desarrollo de una parte importante de la tesis.

Es un placer especial reconocer el papel irremplazable de Ignacio, de quien aprendı́ el
concepto de publicación, alguien que es un referente cientı́fico, humano y moral. Quisiera
agradecerle la aportación decisiva que ha hecho a esta tesis, por aportarme un modelo a
seguir, por transmitirme la pasión por la investigación,el amor al conocimiento, y por su
apoyo constante. Pero sobre todo, quiero agradecerle dos d´ecadas de una amistad ejemplar,
que me ha definido en gran medida como la persona que soy ahora.

Y qué puedo decir de mis padres académicos, Malola y David.Su tutela ha sido, más allá
de los tópicos agradecimientos doctorales, modélica. DeMalola quisiera destacar su calor
humano, su aliento constante, su presencia en todos y cada uno de los muchos momentos
amargos, y también en los momentos dulces. A David le estoy agradecido por haberme
transmitido la pasión con la que investiga, su gusto por el olor a paper por las mañanas, y la
búsqueda incansable de la excelencia. A ambos, les agradezco la oportunidad que me han
brindado de ser doctor, porque sin ellos, sin su buen trabajo, sin su calidad humana, sin su
esfuezo e incluso sin su ilusión, esta tesis no serı́a una realidad.

Por último, y muy particularmente quiero agradecer a mis padres todo, porque todo se
lo debo a ellos. Su vida ha sido un ejemplo de sacrificio y abnegación por su hijo, para
brindarle la mejor educación que pudieron, y que a la postre, ha conducido a esta tesis. Mi
padre, Manuel, que desde pequeño intentó inculcarme en lamedida en que pudo una visión
cientı́fica, estimulando mi curiosidad, las ansias por conocer, por encuentrar respuestas, y
mucho más importante, por encontrar preguntas. Y mi madre,Milagros, una persona hecha
a sı́ misma, superando innumerables dificultades con inteligencia y amor. He necesitado
alcanzar una cierta edad para ser consciente de todo lo que han hecho por mı́, y quisiera
emplear esta tesis doctoral para decirles algo que por simple, por obvio, por evidente, no
digo como deberı́a: Gracias por todo, os quiero.

David Fernández Barrero
Portsmouth, octubre de 2011

Contents

1 Introduction 1
1.1 Darwinian motivation of Evolutionary Computation 1
1.2 Motivation of the dissertation 3
1.3 Problem statement . 3
1.4 Research questions . 6
1.5 Structure of the thesis .. 6
1.6 Publications and contributions 7

2 EC from an experimental perspective 11
2.1 Experimental research .12

2.1.1 The role of experimentation in Computer Science 12
2.1.2 Classification of experimental designs 14
2.1.3 A framework to describe experiments 17

2.2 The first component of experimental designs: Algorithm 18
2.2.1 Trajectory search algorithms .. 19
2.2.2 Evolutionary Algorithms . 21
2.2.3 Swarm Intelligence . 25

2.3 The second component of experimental designs: Problem 26
2.3.1 Test suites . 27
2.3.2 Instance generators . 30
2.3.3 Test suites in Genetic Programming 31

2.4 The third component of experimental designs: Parameters 32
2.4.1 Parameter control . 33
2.4.2 Parameter tuning . 34

2.5 The fourth component of experimental designs: Measures. 37
2.5.1 Classification of measures . 38
2.5.2 Performance measures . 39
2.5.3 Genotypic measures . 43
2.5.4 Specialized measures . 44

2.6 Conclusions . 45

3 EC from an applied perspective 47
3.1 Introduction . 48
3.2 Searchy architecture .. 49
3.3 Mapping and integration in Searchy 51

vii

viii CONTENTS

3.4 Wrapper based on evolved regular expressions 54
3.4.1 Codification . 55
3.4.2 Evolution strategy . 55
3.4.3 Fitness . 56

3.5 Zipf’s law based alphabet construction 56
3.5.1 Preliminary considerations .. 56
3.5.2 Alphabet construction algorithm 57
3.5.3 Complexity analysis . 58

3.6 Evaluation . 59
3.6.1 Parameter tuning . 59
3.6.2 Regex evolution . 59
3.6.3 Data extraction . 62

3.7 Other approaches to distributed Information Integration 63
3.8 Conclusions . 64

4 Estimation of the success rate in EC 67
4.1 The role of success rate .68
4.2 Issues about the estimation of a probability 68
4.3 Determination of the statistical distribution of SR 69
4.4 Binomial confidence intervals .. . 74

4.4.1 Description of the CIs methods under study 76
4.4.2 Discussion about CI methods . 78

4.5 Study on some confidence interval methods performance 78
4.5.1 CIs performance overview . 79
4.5.2 Coverage of CIs . 80
4.5.3 Average CP . 84
4.5.4 Average CIW . 84
4.5.5 Discussion of the results . 86

4.6 Empirical study on the binomial CIs in tree-based GP 87
4.7 Sample size determination of confidence intervals 87
4.8 Conclusions . 90

5 Run-time analysis of tree-based GP 93
5.1 Introduction to run-time analysis 94
5.2 Run-time analysis of tree-based Genetic Programming 95

5.2.1 Run-time behaviour of tree-based GP classical problems 96
5.2.2 Run-time behaviour of tree-based GP with difficult problems 101
5.2.3 Run-time behaviour of tree-based GP with random selection 105

5.3 A simple theoretical model of generation-to-success 107
5.4 A new model of success probability 110

5.4.1 A general model of success probability 111
5.4.2 A specific model of success probability 112
5.4.3 Experimental validation of the model 113

5.5 Run-time analysis in other Metaheuristics 115
5.6 Discussion . 117

5.7 Conclusions . 118

6 Accuracy of Koza’s performance measure 121
6.1 Introduction . 122
6.2 Koza’s performance measures .. 123

6.2.1 Discussion about computational effort mathematicalproperties . . . 124
6.2.2 Constant number of individuals to be processed 126

6.3 Exploratory experimental analysis 127
6.4 Determination of the variability sources 130

6.4.1 Ceiling operator . 130
6.4.2 Estimation error . 132

6.5 Characterization of the estimation error ofI(M, i, z) 135
6.5.1 Relative error induced by the estimation error inI(M.i, z) 136
6.5.2 Relative magnitude ofεI

est . 138
6.6 Characterization of the estimation error ofE 140

6.6.1 Analytical model ofI(M, i, z) andE 140
6.6.2 Experimental validation of the analytical model ofE 140
6.6.3 Using the analytical model ofE to characterize its estimation error 143

6.7 Experimental analysis of Koza’s performance measures 144
6.7.1 Accuracy of̂I(M, i, z) . 146
6.7.2 Accuracy ofÊ . 150

6.8 Conclusions . 154

7 Conclusions and future work 155
7.1 Conclusions . 155
7.2 Future work . 159

Bibliography 161

x CONTENTS

Chapter 1

Introduction

Aqúı expondŕe el por qúe trato primero de lo primero y segundo de lo segundo
y por qúe lo tercero ha de ir antes de lo cuarto y después deéste lo quinto

Amor y Pedagogı́a. Miguel de Unamuno

This chapter motivates and overviews this dissertation. Firstly, we briefly overview Dar-
win’s Evolution Theory as the foundation of Evolutionary Computation. Then, section 1.2
motivates the questions that are addressed later. After that, in section 1.3, Koza’s perfor-
mance measures are briefly introduced in order to provide a basic framework to state the
research questions, that are reported in section 1.4. Finally, the main contributions and the
associated publications are described.

1.1 Darwinian motivation of Evolutionary Computation

The discovery of Evolution Theory is one of the most remarkable achievements of humanity.
This theory shaked the dominant position that men had in nature, where they were in a
priviliged position in relation to the rest of living beings, to one much more humble, to be
just one more species subject to nature’s laws. It is difficult to find a scientifical idea able to
change the world so deeply as Evolution Theory as stated by Charles Darwin in theOrigin
of the Species[63]. In this book, Darwin made a huge step to increase the knowledge of
humanity about humanity. His book, published in 1859, achieved a non comparable success
from an editorial an intelectual point of view, being one of the most influential books ever
written.

Contrary to what is commonly believed, Darwin was not the first person to postulate
that species evolve. The first evolutionary theories date back to some thousands years, in
the pre-Socratic ancient Greece. Several centuries after,more elaborated evolution theories
emerged: Orthogenesis, Saltationism or Theistic Evolution raised as theories that postulated
the existence of forces able to modify the species, or in other words, that species come from

1

2 CHAPTER 1. INTRODUCTION

other species. However, all these theories lacked of a scientifical ground. In Darwin’s time,
evolution was not an strange theory, actually Darwin’s grandfather, Erasmus Darwin among
other naturalists, envisioned the evolution years before the publication of theOrigin.

The great contribution of Darwin was not therefore the creation of the concept of evolu-
tion, but rather a simpler one: natural selection [65]. He identified natural selection as the
driving force in evolution, with other forces such as sexualselection, and took it with all the
consequences claiming that human beings were also under theinfluence of natural selection,
as the rest of the species. To some extent, if Copernicus changed the idea of the human being
as the center of the Universe, Darwin changed the idea of the human being as the center of
nature. Darwinian view of the species represents one of the most notable human achieve-
ments in history, one can hardly visualize an intellectual construction with a similar impact
in all orders of human existence. In this time of intellectual darkness, it is good to remember
the essentials. Darwin gave an extremely simple and elegantexplanation that provided an
unified view of the position of humans in nature [65, 66], not to mention its central role in
several scientifical disciplines, from Geology to Biology,or Psychology.

A surprising discipline where Evolution Theory has been applied with outstanding suc-
cess is Computer Science. More than one century and a half after the publication of the
Origin, Darwin’s theories motivated a new paradigm in computing. Inspired by Darwin’s
work, some early computer science researchers, including Alan Turing [231], envisioned an
application of his theories to create a new paradigm to solveproblems in computing. With
sime several algorithms were developed under the inspiration of Evolution Theory, that later
became what now we call Evolutionary Computation (EC) [79, 8, 86].

EC belongs to a paradigm in computation that takes nature andnatural processes as a
source of inspiration. These algorithms are considered generally as general-purpose stochas-
tic search algorithms, and have excellent performance in high dimensionality problems where
direct domain-specific algorithms fail [79]. In particular, EC takes the darwinian idea of nat-
ural selection as a basis to design algorithms, generally known as Evolutionary Algorithms
(EAs). These algorithms, given a set of potential solutions, modify them, select those fittest
according to an evaluation function, and use these potential solutions to generate a new
population, iterating this process until a feasible solution is found or a budget of resources
wasted. Probably, the most popular EA is Genetic Algorithms(GAs) [110, 95]. However,
the collection of evolution-inspired algorithms is extense, including Genetic Programming
(GP) [136, 192], which plays a central role in this thesis.

GP involves a collection of algorithms whose search is performed in the program search
space. More than a theoretically coherent collection of algorithms, GP deals with the pro-
blem of program induction [158]. Many different approximations have been used in GP. In
particular, the most popular and widely known GP algorithm is the one originally described
by John R. Koza in his seminal book [136]. Koza proposed usingtrees in order to represent
programs, without a difference between the phenotypic and genotypic spaces. Due to its
simplicity and good results [135], this form of EA has been widely used in practice, and has
attracted much research interest, which is translated intoa large corpus of literature devoted
to this issue, specialized journals, congresses and doctoral dissertations.

1.2. MOTIVATION OF THE DISSERTATION 3

1.2 Motivation of the dissertation

Despite the algorithmic simplicity of most EAs, their analytical study is extremely diffi-
cult [193, 185]. Hence, in order to ease the problem and address a tractable complexity, seve-
ral assumptions have to be made, limiting the practical suitability of theoretical results [25].
Therefore, research on EC has been heavily supported by experimental approaches, where re-
search is driven by data collection and analysis in controlled environments [59]. In this way,
an EA with a certain parameter setting is run to solve a given problem while the experimenter
observes the behaviour of the algorithm collecting data forfurther analysis. Therefore, ob-
servation plays a central role, and in a scientifical context, observation means measuring.

In order to understand the behaviour and the performance of EAs, several measures have
been proposed and used. These measures capture some characteristic of the algorithm under
study, and, depending on the experimenter purposes, measures have to be determined within
the experimental design. There is a notable lack of consensus about which measures should
be collected [23]. To some extent, it is a logical consequence of the large number of different
purposes that the experimenter might have, and the complexity of the EAs.

The lack of consensus when selecting measures has several drawbacks. Comparability of
results among experiments reported in the literature is difficult, when not impossible. It also
difficulties the understanding and interpretation of the algorithm behaviour through a stan-
dard set of measures, that would eventually guide in the algorithm design process. Perhaps
more importantly, the lack of “standardized” measures is accompanied by a lack of interest in
understanding how the measure itself behaves. Some measurements have side effects whose
undertanding is needed in order not to introduce bias in the conclusions. Hooker clearly
described this issue, “the problem is one of distinguishingthe phenomenon (here, the algo-
rithm) from the apparatus used to investigate it (here, the data structures, code, etc)” [112].
A better knowledge about which tools are used to observe and analyze algorithms behaviour
is needed to draw more solid conclusions.

Indeed, the lack of methodological concerns found in the literature is surprising. Many
research is devoted to what Hooker named “algorithm race” [112], with quite limited scien-
tifical added value, while these issues, which have a direct impact into research and prac-
tice, have attracted little interest [25]; but fortunatelythere is a change of tendency with
an increasing number of publications concerned by methodological and experimental is-
sues [26, 25, 37, 76]. This PhD thesis is an attempt to providea step forward in this direc-
tion, towards a better knowledge about the tools needed in order to improve research in EC.
In particular, we address the realiability of a performancemeasure widely used in GP,Koza’s
computational effort.

1.3 Problem statement

One important performance measure widely used by the GP community is thecomputational
effort. This measure was originally proposed by John R. Koza in the fourth chapter of his first
book [136] among other measures, and was used by him to measure algorithm performance
through his books [134, 138, 137]. The impact of this measurehas been notable in the GP
community. Nonetheless, we can observe that the use of this measure has been decreasing

4 CHAPTER 1. INTRODUCTION

0 10 20 30 40 50

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

P
(M

,i)

Koza’s performance curves

Generation

0e
+

00
2e

+
05

4e
+

05
6e

+
05

8e
+

05
1e

+
06

I(
M

,i,
z)

P(M,i)
I(M,i,z)

13: 117000

Figure 1.1: Example of Koza’s performance curves. Success probability (P (M, i)) is repre-
sented in dotted line, whileI(M, i, z) is the solid line. Computational effort and generation
where it is found are also represented.

in the last years. Perhaps, the reason behind this fact can befound in that the researchers are
loosing confidence in Koza’s measure.

Several researchers have shown their concerns about the reliability of computational ef-
fort though informal channels, such as chats in conferencesand distribution lists. But sur-
prisingly, these concerns have little support in the literature.This work is an attempt to check
out whether concerns about Koza’s computational effort aresound or on the contrary it is
a reliable measure. A detailed description of Koza’s computational effort canbe found in
chapter 6. In order to provide a background needed by the description of the objectives and
research questions, we first need to introduce the measure that is the object of our study.

Koza definedcomputational effort(E) as the minimum number of individuals that the
algorithm has to process to achieve, at least, one success with a given probabilityz. Some-
times this probability is provided using a valueε such asz = 1 − ε. If the population is
composed byM individuals, and the probability of finding a feasible solution at generation
i = 1, ..., G is P (M, i), then the computational effort is given by

E = min
i

{
Mi

⌈
ln(1 − z)

ln(1 − P (M, i))

⌉}
(1.1)

Where⌈. . .⌉ stands for the ceiling operator. If the minimum operator of (1.1) is removed, the
remaining function is usually denoted byI(M, i, z), soE = min

i
I(M, i, z). It is clear that

E andI(M, i, z) are closely related.
Even though computational effort is a scalar value, Koza used a graphical method to

report its value. This method, which we name as Koza’s performance curves, plots the value

1.3. PROBLEM STATEMENT 5

of two related functions that are used to estimateE; in particular the accumulated success
probability, P (M, i), andI(M, i, z). These two functions are plotted overlapped, and the
minimum value ofI(M, i, z), which isE, is placed there, together with the generation in
which this value is found. An example of Koza’s performance curves is in Figure 1.1.

A number of non-trivial statistical issues arise when (1.1)is analyzed in more detail.
In practice, the valueE cannot be known exactly because it has to be measured, and all
measure has an associated measurement error. This claim holds specially for EAs, which
have an intrinsic stochastic nature.

Measures are random variables, and thus they are subject to variability. In particular, a
closer look to (1.1) shows that all the values involved in thecomputation ofE are known,
exceptP (M, i). The ceiling operator removes information, and, dependingon the context,
might introduce a deterministic bias in the computation ofE, but it is not random. So, in
practice, the definition ofE described by equation (1.1) is replaced by

Ê = min
i

{
Mi

⌈
ln(1 − z)

ln(1 − P̂ (M, i))

⌉}
(1.2)

which is what can actually be measured, and in general,E 6= Ê.
Given that the only source of randomness ofÊ is given byP̂ (M, i), the accuracy of̂E

depends directly on the accuracy ofP̂ (M, i). The method to quantify this dependence is
well known, by using error propagation. Taking differencesin (1.1) w.r.t. P (M, i), we can
deduce how an estimation error ofP (M, i) would affectE,

∆E =

∣∣∣∣
∂E

∂P

∣∣∣∣∆P (1.3)

However, a couple of problems are found when this expressionis applied. First, calculating
the differential is not trivial given that the analytical form of P (M, i) is unknown. Sec-
ondly, it is not clear which∆P value should be used, since the estimation error associated
to P (M, i) is also unknown. Therefore, in order to understand the performance of computa-
tional effort, it seems clear that we have to address the morebasic (and general) problem of
understanding the statistical properties of estimating success probability.

The characterization of the probability function̂P (M, i) can be decomposed in two dif-
ferent problems. The maximum-likelihood estimator ofP̂ (M, i) is k(i)/n, wherek(i) is the
number of successful runs in generationi, andn is the number of runs executed. Hence,
P (M, i) provides information about two facts: How many runs where successfull and when
they achieved success. Subsequently, the statistical properties ofP (M, i) depend on whether
time is considered or not. For convenience, we refer thestatic behaviorof P̂ (M, i) as the
behaviour of the success probability at timei0, i.e., P̂ (M, i0) with i0 ∈ {1, ..., G}. On
the other hand, thedynamic behaviourrefers to the run-time behaviour of̂P (M, i), which
takes a more complex form since success probability is no longer a random variable, but a
discrete-time stochastic process.

The distinction between the static and dynamic behaviour ofthe success probability is
critical in the structure of the thesis. As will be explainedin detail in section 1.5, the disser-
tation core is composed by three chapters: one is dedicated to study the static properties of
the estimation of success probability (chapter 4), anotherstudies the dynamic properties of

6 CHAPTER 1. INTRODUCTION

the success probability (chapter 5) while the third one (6) uses the previous results to char-
acterize the error associated to the measurement of Koza’scomputational effort. With this
background, we can state the research questions.

1.4 Research questions

The mainresearch questionthat is faced in this PhD thesis can be described as follows.

Koza’s computational effort has been widely used by the GP community. De-
spite the concerns shown by several authors about the strange behaviour of this
measure, little research has been performed to analyze whether computational
effort is reliable or not. The main research question of thisdissertation is to de-
termine whether Koza’s computational effort is a reliable measure of algorithm
performance.

In order to answer the main research question, we first need todecompose that question
into somespecific research questions:

• Q1: Which factors influence the reliability of the computational effort?

• Q2: Which statistical properties the static estimation of the success probability has?

• Q3: Which statistical properties the dynamic estimation of thesuccess probability
has?

• Q4: Can the success probability be anatically modeled?

• Q5: Does the run-time behaviour provide information about the algorithm?

Based on the previous research questions, we can state themain goal:

Characterize the estimation error of the computational effort

Specific research questions are addressed in different chapters, as it is described in the
following section.

1.5 Structure of the thesis

The dissertation is divided into seven chapters. The first three chapters are introductory. The
first chapter is dedicated to introduce the main research question and thesis structure, while
the second chapter provides a conceptual framework that helps locating the contributions
of this dissertation in the context of EC. Chapter 3 takes an applied perspective and it is
dedicated to develop solutions based on EC to some real worldproblems. This chapter
provided the necessary background that motivated the main research question. The chapters
that address the research questions are 4, 5 and 6. Following, a more detailed description of
the dissertation structure is shown.

1.6. PUBLICATIONS AND CONTRIBUTIONS 7

• Chapter 1: Introduction. It provides a general background, context and motivations.
The main objectives and research questions are stated, as well as the dissertation struc-
ture, main contributions and publications.

• Chapter 2: Evolutionary Computation from an experimental perspective. This
chapter is devoted to contextualize the contributions of the PhD thesis. It discusses the
role of experimental methods in EC research, and overviews some of the most impor-
tant issues regarding the experimental design. In particular, this chapter identifies and
discusses four components of an experiment: algorithm, parameter setting, problem
and measures.

• Chapter 3: Evolutionary Computation from an applied perspective. It is an appli-
cation chapter dedicated to develop methods to evolve regular expressions using GA.
The solution proposed uses a semantically driven agent-based information extraction
and integration platform named Searchy, which is also introduced.

• Chapter 4: Estimation of the success rate in Evolutionary Computation. The
statistical properties of the static estimation of the success probability are studied.
In particular, the binomial nature of the success rate is investigated. In addition, an
extensive study of binomial confidence intervals in the context of EC is provided. This
chapter addresses the specific research question Q2. The binomiality of the success
rate is used in chapter 5 to characterize the estimation error of the computational effort.

• Chapter 5: Run-Time analysis of tree-based Genetic Programming. The statistical
properties of the dynamic estimation of the success probability are studied. To be more
specific, the time required by a canonical tree-based GP algorithm to find a solution is
investigated. As a result of this analysis, an analytical model of the success probability
is proposed. This model is used in chapter 5 to provide a closeanalytical form of the
computational effort. Questions Q3, Q4 and Q5 relate to thischapter.

• Chapter 6: Reliability of Koza’s performance measures.The main research ques-
tion is addessed providing a characterization of the error associated to the measure-
ment of the computational effort. Additionally, the measurement error ofI(M, i, z)
is also characterized. This chapter strongly depends on theresults obtained in chapter
3 and 4. The specific research question Q1 and the main research question are both
addressed in this chapter.

• Chapter 7: Conclusions. Research questions are addressed again under the light of
the results obtained in the PhD thesis, the conclusions are reported, and some open
research lines described.

1.6 Publications and contributions

Along the development of this work some publications were generated. In the following, we
report them, grouped by the chapter where they appear. In addition, the main contributions
are briefly summarized.

8 CHAPTER 1. INTRODUCTION

• Chapter 3: Evolutionary Computation from an applied perspective. This chapter
contains some preliminary investigation performed in the context of the dissertation.
Despite its objectives are far from the main ones, it served us to acquire experience
using EAs, and more importantly, it motivated the main research question the PhD
thesis. We have worked in several domains: a logistic application that optimizes the
drivers routes [194, 195], generate routes inside a buldingusing RFID [196], language
induction [98] and data information extraction [49]. For this last application, we have
used an agent-based data extraction and integration platform named Searchy [17, 22].
It was used to tune parameters of a GA [13, 17], and simulate a Variable-Length Gene-
tic Algorithm using an island model with immigrants [14]. Finally, evolutive methods
to automatically learn regular expresions from a set of positive and negative examples
were developed [18, 20].

– D. F. Barrero, M. D. R-Moreno, and D. Camacho, “Adapting searchy to ex-
tract data using evolved wrappers”,Expert Systems with Applications, To appear,
2011.

– M. D. R-Moreno, B. Castaño, M. Carbajo,Á. Moreno, D. F. Barrero, and P. Muñoz,
“Multi-agent intelligent planning architecture for people location and orientation
using RFID”,Cybernetics and Systems, vol. 42, pp. 16–32, Jan 2011.

– D. F. Barrero, A. González-Pardo, D. Camacho, and M. D. R-Moreno, “Dis-
tributed parameter tuning for genetic algorithms”,Computer Science and Infor-
mation Systems, vol. 7, no. 3, pp. 661–677, 2010.

– D. F. Barrero, M. D. R-Moreno, D. Camacho and B. Castaño “Human drivers
knowledge integration in a Logistic Decision Support Tool”, in Proceedings
of the 5th International Symposium on Intelligent Distributed Computing (IDC
2011), vol. 382/2012 ofIntelligent Distributed Computing, (Delft, The Nether-
lands), pp.227-236, Springer-Verlag. 5-7 October 2011.

– D. F. Barrero, M. D. R-Moreno, and D. R. López, “InformationIntegration in
Searchy: an Ontology and Web Services Approach,”International Journal of
Computer Science and Applications (IJCSA), vol. 7, no. 2, pp. 14–29, 2010.

– M. D. R-Moreno, D. Camacho, D. F. Barrero, and M. Gutiérrez,“A Decision
Support System for Logistics Operations”, inSoft Computing Models in Indus-
trial and Environmental Applications, 5th International Workshop (SOCO 2010),
vol. 73, (Guimarães, Portugal, June 2010), pp. 103–110, Springer-Verlag, 2010.

– D. F. Barrero, A. González, M. D. R-Moreno, and D. Camacho, “Variable Length-
Based Genetic Representation to Automatically Evolve Wrappers”, inProceed-
ings of 8th International Conference on Practical Applications of Agents and
Multi-Agent Systems (PAAMS 2010), (Salamanca, Spain), pp. 371–379, Springer-
Verlag, April 2010.

– A. González, D. F. Barrero, M. D. R-Moreno, and D. Camacho, “A case study
on grammatical-based representation for regular expression evolution”, inPro-
ceedings of 8th International Conference on Practical Applications of Agents and
Multi-Agent Systems (PAAMS 2010), (Salamanca, Spain), pp. 379–386, Springer-
Verlag, April 2010.

1.6. PUBLICATIONS AND CONTRIBUTIONS 9

– D. F. Barrero, D. Camacho, and M. D. R-Moreno. “A framework for agent-based
evaluation of genetic algorithms”, inProceedings of the 3rd International Sym-
posium on Intelligent Distributed Computing (IDC 2009), (Ayia Napa, Cyprus),
pp. 31–41, Springer-Verlag. 13-14 October 2009.

– D. F. Barrero, D. Camacho, and M. D. R-Moreno,Data Mining and Multiagent
Integration, ch. Automatic Web Data Extraction based on Genetic Algorithms
and Regular Expressions, pp. 143–154. University of Technology Sydney, Aus-
tralia, Springer-Verlag, July 2009.

– D. Camacho, M. D. R-Moreno, D. F. Barrero, and R. Akerkar, “Semantic wrap-
pers for semi-structured data,”Computing Letters (Cole), vol. 4, pp. 21–34, De-
cember 2008.

• Chapter 4: Estimation of the success rate in Evolutionary Computation. The
binomiality of the number of successful runs in EC is proven,with theoretical and
empirical support [21, 15]. The usage of confidence intervals to estimate the success
rate is discussed [15], and the statistical properties of four binomial confidence interval
methods are analyzed in detail [21]. A method to determine the number of runs needed
to estimate the success rate with a certain error is proposed[21].

– D. F. Barrero, M. D. R-Moreno, and D. Camacho. “Statistical Estimation of
Success Probability in Evolutionary Computation”,Applied Soft Computing. To
appear. 2011.

– D. F. Barrero, D. Camacho, and M. D. R-Moreno. “Confidence Intervals of
Success Rates in Evolutionary Computation”, inProceedings of the Genetic and
Evolutionary Computation Conference (GECCO-2010), (Portland, OR, USA),
pp. 975–976, July 2010.

• Chapter 5: Run-Time Distribution analysis of tree-based Genetic Programming.
The run-time behaviour of tree-based GP is analyced [16], finding that the time re-
quired by GP to find a solution is usually follows a lognormal distribution. Based
on this observation, an analytical model of success probability is proposed and vali-
dated [16]. In order to place this result in the framework of atheory and generalize it,
a theoretical model of EA based on Discrete-Time Markov chains is proposed. This
model is used to proof that exponentially distributed run-times are a consequence of a
memoryless algorithm.

– D. F. Barrero, B. Castaño, M. D. R-Moreno, and D. Camacho, “Statistical dis-
tribution of generation-to-success in GP: Application to model accumulated suc-
cess probability”, InProceedings of the 14th European Conference on Genetic
Programming, EuroGP 2011, vol. 6621 ofLNCS, (Turin, Italy), pp. 155–166,
Springer-Verlag, April 2011.

10 CHAPTER 1. INTRODUCTION

• Chapter 6: Reliability of Koza’s performance measures.The two factors that de-
termine the reliability of thecomputational effortare identified. Based on the results
of the chapters3 and4, the boundaries of the error associated to the measurement of
I(M, i, z) and the computational effort are deduced. An experimental validation of
these results is also provided in [19]. It is proven that the existence of memory in the
algorithm induces a non-constantI(M, i, z).

– D. F. Barrero, M. R-Moreno, B. Castaño, and D. Camacho, “An empirical study
on the accuracy of computational effort in Genetic Programming”, in Proceed-
ings of the 2011 IEEE Congress on Evolutionary Computation, (New Orleans,
LA, USA), pp. 1169–1176, IEEE Press, June 2011.

Chapter 2

Evolutionary Computation from an
experimental perspective

For to be possessed of a vigorous mind is not enough; the primerequisite is rightly to apply
it. The greatest minds, as they are capable of the highest excellences, are open likewise to

the greatest aberrations; and those who travel very slowly may yet make far greater
progress, provided they keep always to the straight road, than those who, while they run,

forsake it.
Discourse on the Method. René Descartes

This section is devoted to contextualize the contributionsof the core chapters of this
dissertation, providing a general perspective on the use ofthe experimentation in the context
of EC research. It is not our interest in this chapter to describe a full state-of-the-art on
experimental methods, but rather to offer a framework that might help to place the work
developed in the core chapters. Indeed, one can hardly talk about a state-of-the-art in this
field, as there are some research lines related with some concerns in experimental design,
and only a limited number of publications related to the maintopic of the dissertation can be
found. Nonetheless, the dissertation involves some different research areas. A review of the
related literature is reported together, with the contributions.

The chapter begins discussing the role of experimental research in Science in general, and
in Computer Science in particular. It motivates the need of using experimentation as a basic
tool in research. Then, a classification of the experimentaldesigns in EC is proposed with a
four-components framework to describe experiments: Algorithm, problem, parameters, and
measures. Then, each one of the components is briefly introduced finishing with measures,
the component more closely related to this PhD thesis. Finally, some general conclusions are
presented.

11

12 CHAPTER 2. EC FROM AN EXPERIMENTAL PERSPECTIVE

2.1 Experimental research

Basically, there are two approaches in Science to answer a research question: a theoretical
and an experimental approach [25]. These two approaches canbe related to the two main
philosophical approaches to Epistemology, a topic addressed by philosophers for centuries,
from the first Greek philosophers, until Enmanuel Kant and the raise of modern philoso-
phy [123]. Roughly speaking, there were two opposed views. One was initialized by Thales
of Miletus and the Ionian school. Thales tried to explain natural phenomena using obser-
vation and rejecting any mythological explanation, indeed, it is said to be the first attempt
to understand the word with a scientifical basis [209]. Many pre-Socratic philosophers be-
longed to this school of thought, including Anaximenes, Heraclitus or Anaxagoras.

After Socrates, the position of many philosophers to the problem of how to acquire
knowledge changed radically. In particular, Plato’s Theory of the Ideas influenced the ongo-
ing philosophy for centuries. Plato saw a natural world as a distorted view of the real word,
which is the World of the Ideas, and thus he dismissed observation as a source of knowl-
edge. Following Plato, our senses deceive us from the true. This idea is well represented
by the famous Allegory of the Cave [191]. Plato’s strong influence in Aristotle and through
him to the Schoolmen in the Middle Ages pushed away observation as a source of knowl-
edge. Fortunately, this way of thinking changed in the Renaissance, thus emerging modern
Science.

The time dedicated by philosophers to meditate about this topic was necessary to the raise
of Science, which has proven to be most effective method to generate knowledge. From a
scientifical perspective, observation and abstraction arenot two opposing forces, but instead
they are complementary. Observation motivates new theories, and new theories motivate
new observations. Additionally, observation is used in science as a test of theories, any
theory must be consistent with the observations in order to be accepted by the scientific
community. In any case, to some extent, the dichotomy between observation and theory
remains, and the exact role of each approximation still generates debate. Computer Science
is not an exception [70].

2.1.1 The role of experimentation in Computer Science

In Computer Science and Artificial Intelligence (AI) researchers may use theoretical or expe-
rimental approaches [111, 11]. From an historical perspective, the first research in Computer
Science was almost purely theoretical, perhaps because of the academic backgroud of the
early AI researchers, most of them coming from Mathematics and Physics, and the hardware
limitations of the time. The theoretical origins of Computer Science and AI had a strong
influence in these disciplines. In the context of algorithm research, some key authors such
as Donald Knuth, in his classical and influential series of books The Art of Computer Pro-
gramming, encourage using analytical analysis of the algorithms [122]. This approach has
been so influential that has been the strategy generally followed in algorithm analysis until
recently.

Nowdays, the analytical study of algorithms has attracted notable criticism due to its
difficulty [175, 25], among other less obvious -and more substantial- drawbacks. Typically,
analytical analysis of algorithms use worst-case and average case scenarios [201]. The worst-

2.1. EXPERIMENTAL RESEARCH 13

case study takes some assumptions that eases the problem, however, by definition the worst-
case is a pathological case and therefore it does not represent a realistic scenario [201]. From
another perspective, average-case studies are more realistic, but also more difficult, and thus
it forces to simplify the problem making it less realistic.

Additionally, these kind of theoretical approaches do not consider details concerning the
platform and/or the implementation, which might introducenew elements that potentially
can alter the behaviour of the algorithm. This idea was nicely expressed by Hooker, “study-
ing algorithms at a level of a formal system presupposes a form of reductionism, which is
the view that one can and should explain a phenomenon by reducing it to its ultimate con-
stituents. Reductionism works in some contexts but fails miserably in others, and I think it
often fails in algorithmic science” [111]. Experimentation is a way to overcome those lim-
itations. It is therefore not surprising that algorithmic studies have included experimental
methods in their toolbox [59].

Recently, stochastic search algorithms such as Metaheuristics have gained higher pop-
ularity. This type of algorithms are particularly difficultto analyze from a theoretical per-
spective [193, 9, 151]. Despite its algorithmic simplicity, theoretical models and results are
scarce and difficult to obtain. The stochastic nature of Metaheuristics introduce a new layer
of complexity to analytical studies of this class of algorithms. Actually, there are several
authors that complain about the few theoretical works that provide practical results [9], and
it is generally assumed that there is no theoretical basis toexplain the good performance of
Metaheuristics.

Then, due to the challenging complexity and limitations of theoretical approaches, expe-
rimental methods have emerged as an alternative to study these algorithms, attracting an in-
creasing research interest. There were several methodological lagoons in early research [31]
that motivated to some authors in mid-90s to complain about it, and encouraged using more
robust experimental methods. Probably, the most influential work of these early warning
papers was written by Hooker [112]. Then, several papers were concerned about the ex-
perimental methods [11, 236], tutorial-like papers [92] and even lists of tips to improve
experimentation [92, 182].

There are still many methodological concerns about experimentation in EC that moti-
vated more recent publications with similar arguments [76]. In recent years, there has been
a considerable effort from several authors to improve experimental methods used in EC re-
search. This increasing interest in experimental methods is materialized in a series of tutori-
als about experimental methods in the main EC events [248, 249, 31], PhD thesis [206, 36]
and monographs [26, 25].

Experiments are undertaken when research questions cannotbe answered by direct means
[165]. However, it should not be confused with observation.Experiments need observation,
but not every observation comes from an experiment. That is the difference betweenex-
perimentalandempirical research. Data collection makes something empirical [59].This
data is obtained by observing some phenomena, this approachis quite common in some
disciplines such as Social Sciences [60, 199]. On the contrary, in experimental research, the
researcher manipulates the object of study to test it in somedesirable conditions, so, the basis
of experimentation is not observation, but manipulation [175]. We should mention that this
terminology is not generally used, and different terms withsimilar meanings have been pro-
posed. For instance, Cohen mention observation and manipulation experiments [59] to mean,

14 CHAPTER 2. EC FROM AN EXPERIMENTAL PERSPECTIVE

respectively, empirical and experimental methods. Similarly, McGeoch [165] distinguishes
application and simulation programs. In the following, we will use the term experimental
to mean control over the object of study, while empirical will be used as any method that
involves observation.

The definition of experiment given by Barr underlines the need of manipulation, “an
experiment is a set of tests run under controlled conditionsfor a specific purpose: to demon-
strate a known truth, to check the validity of a hypothesis, or to examine the performance of
something new“ [11]. But this definition also mentions an important topic: an experiment is
just a piece in a more complex machinery that involves research questions, hypothesis, etc.
This machinery is named scientific method.

The importance of the method is a general concern in all the scientific disciplines. How-
ever, the role of the method in Computer Science in general, and in EC in particular does not
seem to generate much debate. Some authors in EC have been concerned about methodolog-
ical issues, emphasizing, for instance, the sequential nature of experimentation, where an ex-
periment suggests new research questions that, again, suggest new experiments [165]. These
methodological considerations are out of the scope of this dissertation, however, some papers
about this topic in the context of Metaheuristics and EC can be found in [46, 92, 206, 11, 41].

Despite the lack of an extense literature in EC about these topics, several publications re-
lated to Metaheuristics about experimental research can befound. These publications lack a
common theoretical background, and they refer similar concepts with different terminology,
or use different conceptual frameworks. In the following, we survey the different perspec-
tives used in the literature to refer experimentation, and propose a general framework that
summarizes and unifies the terminology about experimental research in EC.

2.1.2 Classification of experimental designs

The growing interest in experimental methods in computing has been reflected in an in-
creasing number of publications addressing this topic. As aconsequence, the experimental
methods reported by the literature in the last years have been enhanced, and at least some of
the more obvious pitfalls are generally avoided [26]. Hovewer, this topic has attracted little
interest from a purely research perspective, leading to a lack of a shared terminology. In this
section we survey this topic, trying to provide a unifying perspective.

In general, we can identify four non-exclusive criteria used in the literature to classify
experimental designs, depending on itsobjectives, problemthat is addressed, thefactor that is
studied, andothercriteria that does not belong to any of the previous ones. In the following,
we review the literature according to this classification. In particular, this topic has been
studied with more intensity in Metaheuristics than in EC, so, the following review involves
both fields.

A common criteria used by many authors to classify experiments is based on theobjec-
tive that the experimenter wants to accomplish. It is closely related to the difference between
engineering and science. Rardin [201] distinguishes between researchand development.
The objetive of research is to acquire new knowledge about the algorithm, its behaviour,
the relationship between the performance and its components. This perspective is obviously
scientific. On the contrary, development relates to an engineering perspective, the goal is
to create or use an algorithm that solves a certain problem. Rardin and other authors [69]

2.1. EXPERIMENTAL RESEARCH 15

maintain the idea that many problems in EC are a consequence of the lack of a clear dis-
tinction between research and development. This fact can beobserved, for instance, in the
strong criticism made by several authors [112, 201] to the high number of publications fo-
cused on algorithm comparison instead of understanding whyan algorithm performs better
than other. Hooker is in an extreme position claiming that this emphasis in competition is
“fundamentally antiintelectual” [112].

Eiben also implicitly assumes the difference between research and development in [76],
where he states that there areoptimization experimentsandunderstanding experiments. In
the same line, but seen from the perspective of parameter tuning, Eiben [78] distinguish be-
tween optimization experiments, that set the parameters toachieve the best solution, and
understanding experiments, that analyze the dependence between performance and parame-
ters. This perspective is also very close to the one exposed in [11] by Barr, who classifies
goals in experimentation ascomparisonanddescription.

The classification in base of the experimental design objective made by Johnson in [122]
is more detailed. He assumes that each type of experiment canbe associated to one partic-
ular type of paper -and, to some extent, assuming that experimentation only has interest for
researchers-. He identifies four types of papers (or experiments). Theapplication paperis,
as its name suggests, a paper whose objective is to apply an algorithm to solve a problem of
interest; thehorse race papertries to compare two or more algorithms as function of any of
their performance measures in a competitive way, the objetive is to claim that algorithm A is
better than algorithm B; anexperimental analysis paper, which tries to better understand an
algorithm and finallyexperimental average-case paper, which performs experimentally an
average-case analysis of the algorithm when the analyticalapproach is too complex.

Other authors use the context (or scenario) where the algorithm is run to classify it, or,
in other words, the type of problem that the algorithm has to face. Eiben in [79] identifies
three scenarios or problems, which are design problems, repetitive problems, and online
control problems. This classification can be considered as arefinement of the development
scenario used by Rardin [201]. Indesign problems, the practitioner is interested in one
solution of the highest quality, once this objective has been satisfied, the algorithm is no
needed anymore. For instance, we can identify as design problems classical applications
of EAs in engineering, such as antenna design or production chain optimization. On the
contrary, repetitive problemsare those ones where the interest is a sequence of solutions,
usually drawn at different time intervals. A classical example of this type of scenario is the
optimization of routes of a logistics company [194]. As a special case of a repetitive problem,
Eiben identifies theon-line problems, which have stronger time constrains, typically because
they are used in control tasks where the time dedicated to finda solution is limited. The route
selection of a rover might be another example of this type of application. Finally, Eiben also
identifies research as an scenario for EAs, however, he does not discuss this class of scenario
in his papers.

There are authors that use the factor of study as a criteria toclassify experimental designs.
Depending on the number of variables considered in the study, Chiarandini in [52] identifies
univariableandmultivariableexperiments. With the same idea, but different terminology,
Rardin uses the tuning method considering whether it uses ornot Design of Experiments
[201]. If it tunes one parameter each time, she defines the experiment assequential, but if
parameters are tuned using Design of Experiments, she namesit factorial design. On the

16 CHAPTER 2. EC FROM AN EXPERIMENTAL PERSPECTIVE

Table 2.1: Summary of classification schemes proposed in theliterature.
Author Publication Adjectives

C.C. McGeoch [165] Dependency study
Robustness study
Proving study

A. E. Eiben [79] Design
Repetitive
Control (particular case of repetitive)

J. Derrac [71] Single problem analysis
Multiprogram problem analysis

M. Chiarandini [52] Univariable
Multivariable

R. L. Rardin [201] Scientifical/development
Design/planning/control
Sequential/factorial

P. R. Cohen [59] Exploratory / confirmatory
Manipulation / observation

Several [59, 165, 59] Pilot or exploratory

contrary, Derrac et al. [71] use the number of problems that are introduced in the experimen-
tation, in this way if there is only one problem they name it assingle-problem analysisand
multiprogram analysisotherwise.

Finally, several authors use criteria that hardly can be classified in the previous categories.
McGeoch, in [165] classifies experimentation in three groups or types of studies, depending
on the research question. The first one is thedependency study, which is characterized by the
interest to discover the relationship between the algorithm parameters and its performance.
The second one is therobustness study, which tries to characterize statistically the variation
of the algorithm properties. Basically, dependency studies use central tendency measures
while robustness studies use variability measures. Finally, there areproving studies, where
the components of the algorithm are studied in relation to their impact in the performance. As
Ridge pointed out in [206], this classification has some similarities with the one introduced
by Barr in [11], in particular, dependency studies are equivalent to average-case studies as
well as proving studies are equivalent to an analysis paper.

Finally, several authors identify pilot or exploratory experiments as a mean to gather a
basic understanding about the algorithm [59, 165, 59]. Thisexploratory experimentation
has a limited scope, since its goal is not to gather evidence in order to support any claim.
Usually it is carried out in a preliminary stage of the experimentation, and serves to gather
basic information needed to design and perform the experimentation. It serves to estimate
the computational resources needed by the experiment, identify factors, get a basic under-
standing about the algorithm and its performance. With all this information, the experiment
can be planned and the research questions might be reframed.Ideal exploratory experiments
should be limited, using few computational resources and time.

In order to be clear, Table 2.1 shows a summary of the terminology used in the literature

2.1. EXPERIMENTAL RESEARCH 17

to describe experiments. It should be underlined that, to the authors’ knowledge, there have
not been attempts to propose formal classification schemes,and the terms showed in the table
have been used in an informal way. As it can be seen, many termsrefer to the same concept,
and different attributes of the experiments are used to describe them, which is confusing. In
order to try to clarify this situation, and provide a generalframework to contextualize the
contributions of the dissertation, the next section tries to provide a general framework to
describe experiments.

2.1.3 A framework to describe experiments

Given the lack of unified criteria to classify experiments, it is not surprising that this problem
is also present in the description of an experiment. Severalauthors have provided a theoret-
ical background about the components of an experiment, however, there is still a lack of a
general framework able to describe the different elements that compose an experiment. In
this section we briefly review some literature and use it to propose a framework that system-
atize the description of an experiment.

In any case, the distinction between the classification of anexperiment and its descrip-
tion is far from being clear, and actually, the framework that we propose takes into account
elements from the classification schemes previously described. The experimenter motiva-
tion, the type of research question, and the objectives of the experiment have a direct impact
in how the experiment is designed. And, on the contrary, the result of the experiment might
motivate changes in the questions that drive the experiment. There is an interdependence be-
tween objectives and design. So, it seems to us as reasonableto take into consideration these
motivations (to some extent already reviewed in the previous section) and the elements that
build the experimental design. With these precedents, we can propose that the description of
an experiment should consider the researcher perspective,and the experiment design as well.

• Objective. Which is the objective that motivates the experiment? It might beresearch
when the objective is to acquire knowledge;developmentwhen there is an engineering
motivation, where the interest is not acquiring new knowledge but to solve a given
problem;comparisonwhether the experimenter is interested to compare two or more
algorithms, and finallyexploration, if it is a preliminary experiment with a limited
scope carried out to gather data needed to design the final experiment.

• Experimental design. An experimental design is the set of elements needed to plan
an experiment in the context of the objectives defined by the researcher. In the context
of EC, the elements to define an experiment are thealgorithm, theparameter setting
in very likely case that the algorithm is parametizable, andthe probleminstance. In
addition, in order to be able to observe the object of study, it is necessary to measure
it, and thus, depending on the objective and research question the experimenter has
to choose a set ofmeasures. The proposed composition of the experimental design is
based on the work of some authors. Barr [11] identified three factors in an experiment:
the problem, the algorithm, and the test environment. Similarly, Bartz-Beielstein states
that an experiment is composed of a problem, an algorithm anda quality criteria [24].
In the same line, Smit distinguishes three design layers corresponding to an application
layer, an algorithm layer and a tuning layer [217].

18 CHAPTER 2. EC FROM AN EXPERIMENTAL PERSPECTIVE

Figure 2.1: Framework for the description of the experiments. It involves two dimensions,
the objective that motivates the experimenter and the experimental design, that includes all
the elements needed to plan an experiment. These two dimensions are not independent but
actually they should be linked.

The objective and the experimental design are different dimensions of experimentation, but
they are not uncorrelated. Some objectives are linked more closely to some elements of
the experimental design than others. For instance, an engineer interested in solving a cer-
tain problem efficiently has a development objective and will be likely interested to find the
best algorithm for that class of problem, or, given an algorithm he will try to find the best
parameters. A graphical representation of this framework is shown in Fig. 2.1.

In summary, the objectives that motivates the researcher tocarry out an experiment, as
well as its design are necessary in order to fully describe anexperiment. The experimenter
objectives might try to answer a research question, to find a solution to a problem, compare
algorithms, or gather data in order to design the experiment. Additionally, the experimental
design is composed by the elements needed in order to carry out the experiment: an algo-
rithm, a parameter setting, a problem and measures. In the following sections we briefly
describe each of the elements that compose the experimentaldesign.

2.2 The first component of experimental designs: Algorithm

Metaheuristics are a set of stochastic search algorithms with a wide range of applications.
The exact definition of what is exactly a metaheuristic is farfrom being trivial, and the
name might be confusing, since it suggests a similar meaningto metamodel or metaalgo-
rithm [158], which is not the case. Informally we can identify a metaheuristic as an algorithm
that sample the search space using some degree of randomnessand use the collected infor-
mation to place new samples, and repeat it until an end condition is satisfied. Metaheuristics
have been an intense research topic in AI and there is a large corpus of publications. Several
surveys are available in [236, 226, 158, 43, 7].

Metaheuristics is a term that involves a large set of algorithms, and setting a complete

2.2. THE FIRST COMPONENT OF EXPERIMENTAL DESIGNS: ALGORITHM 19

classification is a complex task, due to their diversity and large number of algorithms. Sean
Luke divides Metaheuristics in two branches, depending on the number of samples that the
algorithm draws on each iteration [158]. So, if only one sample is taken, the algorithm
is trajectory-based. This names comes because if the samplepoints are represented in the
search space, they trace a path. On the contrary, if the algorithm draws several points in each
iteration, it is a population-based algorithms. A graphical representation of a classification
of stochastic search algorithms, with emphasis in Metaheuristics, can be found in Figure 2.2.

It is possible to group population-based Metaheuristics into two sets depending on how
new samples are located in the search space. When the algorithm places each new samples
based on a limited number of previous samples, it is said to bean EA [79], while if all the
samples in the previous iteration of the algorithm influencethe allocation of new ones, it is
said to be a Swarm Algorithm [42]. The first category is inspired by the Evolution Theory,
where natural selection forces an evolution in the population and new individuals inherit
their parents characteristics. Similarly, Swarm Algorithms are inspired by natural processes,
many of them in swarms or flocks of animals, like social insects [164].

Curiously, from the perspective of the experimental design, all these algorithms can be
envisioned as a black box, where an evaluation function is placed, and the algorithm op-
timizes it with no need of domain knowledge. For this reason,Sean Luke suggests that
black-box optimization would be a good name for Metaheuristics. This reason motivates us
to provide in the following a broad (and brief) description of Metaheuristics, although the
main contributions of this PhD thesis are placed in GP.

2.2.1 Trajectory search algorithms

Trajectory search algorithms are a type of Metaheuristic than sample a single point in the
search space in each iteration. Depending on how the point islocated in each iteration we
can distinguish a large number of trajectory search algorithms. This class of algorithms are
generally for local search, they are good finding good local maxima, but not so good finding
new promising regions in the search space [158]. For this reason this property has been
exploited mixing this type of Metaheuristic with more explorative algorithms, usually based
on populations. Algorithms that take this hybrid approach have been denominatedmemetic
algorithms. The adjective memetic comes from the idea of meme, developed by Richard
Dawkins in his bookThe selfish gene[65]. A meme is a unit of cultural transmission, that,
in the same way than genes, is able to replicate and transmit itself.

The most simple trajectory search algorithm ishill-climbing, which is indeed a well
known method in classical AI [210]. It begins by sampling a point at random, then takes an-
other point in the neighborhood of the first one, and, if the new point is fitter, it is selected and
the process is repeated, if not, another point in the neighborhood is selected and evaluated.
This is a well known local search algorithm, but since it onlysearches in a limited region, it
easily suffers stagnation, which limits the performance ofthe algorithm. We should point out
that hill-climbing is, with the gradient ascent, the most extreme exploitative algorithm, since
it only moves to better solutions in the same region that is being explored and the presence
of randomness is very restricted.

One of the oldest and best studied trajectory search algorithms, proposed in the eighties,
is Simulated Annealing(SA) [131]. This algorithm is itself based on an even older algorithm

20 CHAPTER 2. EC FROM AN EXPERIMENTAL PERSPECTIVE

Figure 2.2: Hierarchy of Metaheuristics, including Evolutionary Algorithms, Swarm Intelli-
gence and trajectory methods.

2.2. THE FIRST COMPONENT OF EXPERIMENTAL DESIGNS: ALGORITHM 21

named Metropolis [167]. The idea behind SA is to simulate theprocess of metal annealing,
which consists on controlled cycles of heating and cooling to produce more stable molecular
structures in the metal. In practical terms, from a ComputerScience perspective, SA is a
hill-climbing algorithm that can move towards worse solutions with a certain probability that
depends on a parameter named, following its physical inspiration, temperature. The value
of the temperature is reduced with time, reducing also the probability of moving to worse
solutions. The goal is to benefit exploration in the beginning of the algorithm course, and to
reduce it to make the algorithm more exploitative in older stages of the run. Depending on
how the temperature is modified, there are a number of variations of the basic SA algorithm.

Another strategy designed to benefit exploration without a significant loose of exploita-
tion is tabu search(TS) [93]. To this extend, this algorithm includes memory. The basic idea
of TS is to keep a list of the regions already visited without success to avoid visiting them
again in a near future, this list named tabu list. Again, depending on the length of the list
and how it is managed, there are a large number of variations of the algorithm. This is far
from being trivial, the size of the search space might produce huge tabu lists, which requires
subconsequently to define a method to manage it.

It was shown that hill-climbing is prone to stagnation, which seriously limits its perfor-
mance. A more intelligent version of hill-climbing that tries to solve this problem isIterated
Local Search, or simply ILS [32]. This algorithm is basically a hill-climbing with random
restarts, but these restarts do not begin at random, but using acquired knowledge about the
search space. In this way, restarts are more intelligent selecting the starting points. In partic-
ular, it keeps the best region of the search space so far found, when the algorithm is restarted,
ILS chooses a point in the vicinity of that region, not too farto be within the good region,
but not too close, where a local maxima would be reached again. As a result, ILS mixes
two types of search, a global search to locate good regions but also a local search to exploit
promising regions, for this reason ILS sometimes is mixed with other algorithms, such as a
TS of SA.

The list of algorithms belonging to this class of Metaheuristics is extense, some other less
known trajectory based methods are Guided Local Search (GLS) [237], Variable Neighbor-
hood Search (VNS) [104] and Greedy Randomized Adaptive Search Procedure (GRASP) [83],
among others. Trajectory search algorithms are closely related to the other great branch of
Metaheuristics, population-based algorithms, whose mostpopular family of algorithms are
EAs.

2.2.2 Evolutionary Algorithms

EAs are a class of population-based metaheuristic inspiredby the biological process of Dar-
winian evolution [79]. Probably, the most characteristic feature of EAs is their capability
to combine components of solution candidates though crossover. Unlike other population-
based methods, mainly Swarm Algorithms, EAs place new sample points in the search space
by combining the information contained in at least two previous sample points selected us-
ing a mix of fitness assessment and randomness, simulating the sexual reproduction found
in nature. Swarm Algorithms, on the contrary, use the whole population to generate each
candidate solution.

Depending on how the candidate solutions are represented ata genotypic level, the type

22 CHAPTER 2. EC FROM AN EXPERIMENTAL PERSPECTIVE

of genetic operator used, and attending historical reasonsas well, there are four big fam-
ilies of EAs: Genetic Algorithms, Genetic Programming, Evolutionary Programming and
Evolution Strategies. Recently a new approach to EC named Estimation of Distribution Al-
gorithms (or EDAs) has emerged attracting notable interest, however, this approximation has
some particularities that make it hard to classify. In the following, we briefly introduce the
two algorithms more strongly linked to this dissertation, and enumerate other EAs to better
contextualize this work.

It is important to point out that these branches were createdindependently by different
research groups, and they evolved on their own with different objectives and backgrounds.
Only some time after their creation, along the nineties, they begun to be seen as algorithms
that share many characteristics, and EC was coined as a name to refer to this field of AI.

2.2.2.1 Genetic Algorithms

Probably the most popular family of EAs is Genetic Algorithms, or GAs, which was first
introduced by Holland [110] and then popularized by a set of books, beginning with the one
written by Goldberg [95]. A good, but outdated, introduction and survey on GA can be found
in [33, 34, 221]. GAs are inspired, like most EAs, in natural selection, and particularly in
Genetics. Live beings code all the information needed to build them in form of a sequence of
nucleotids, the DNA or RNA. This genetic information is modified though sexual reproduc-
tion and/or mutations, which generate diverse individuals. Natural selection operates at an
individual layer, selecting the fittests ones. GAs imitatesthis, coding the candidate solutions
in a linear string and simulating sexual reproduction and mutation. Actually, much of the
vocabulary used by the GA community comes from this field, terms such as chromosome,
gene, locus or epistasis are commonly used in the GA literature. A formal description of
GAs can be found in [119].

At a genotypic layer, information is stored in strings namedchromosomes. How the
chromosomes are coded depends on the particular GA at hand; binary, integer and even float
codifications are common; more complex codifications [251],some with strong biological
influence [47], are also possible. The way in which the information should be represented in
the chromosome generates some controversy [208]. The main genetic operators in GA are
mutation and crossover, and they have been also object of controversy [220].

The canonical GA entails a fixed-length chromosome with a binary codification. The
reason of the canonical binary representation can be found in Holland’s Theorem [110], as
described in [9], however this issue is controversial [245], and many authors recommend
using the representation that better fits the problem. Holland’s Theorem predicts that GAs
have an implicit parallelism that is maximized when the number of schemata is maximum,
and that happens in a binary codification.

The chromosome is usually divided into chunks or genes that describe one particular
characteristic at phenotypic level; however, there is a lack of agreement about the exact
meaning of gene in the GA community, and even among biologists [65], and this definition of
gene should be handled with care. A gene can take a set of values, each one of these is named
allele while the position where the gene is placed in the chromosome is named locus (plural
loci). We should underline that in biological systems the function of a gene is not determined
by its position in the chromosome. Some proposed GAs imitatethis characteristics, for

2.2. THE FIRST COMPONENT OF EXPERIMENTAL DESIGNS: ALGORITHM 23

instance, messy GA [96].
Mutation in the canonical GA is done by just flipping a random bit in the chromosome

with a certain probability [110]. The standard crossover uses to be one-point crossover,
however there is evidence suggesting that two-point crossover generally yields better perfor-
mance. Given two chromosomes, one-point crossover selectsat random one position in the
chromosomes, cuts them in that position and interchanges the remaining chunks.

Of course, more complex codifications are feasible, some even are required. From the
perspective of this dissertation, the most important variation of GAs arevariable-length ge-
netic algorithms, or VLGAs [117, 147], which are used to evolve regular expressions. In
this type of GAs the chromosome length is a part of the evolution, and hence it can evolve.
The goal is to be able to evolve the complexity of the solutionto self-adapt it to the problem,
ideally, in increasingly complexity.

2.2.2.2 Genetic Programming

Genetic Programming (GP) involves a wide range of algorithms with diverse strategies and
representations, but with a common objective, program induction. As Sean Luke claimed
in [158], GP is more a community sharing a research interest on program induction than a
coherent set of techniques or research background. The termGP covers many techniques that
have little in common, and the research that would be considered common for all these tech-
niques is almost residual. A book about this topic with an excellent review of the literature
can be found in [192].

The term GP usually refers to the canonical tree-based GP, proposed originally by John
R. Koza in his classical book [136]. In this approximation toGP, the population contains a
collection of programs represented by trees, so, in GP terminology, individuals in the popu-
lation are usually named trees. Selective pressure in canonical GP is introduced by a tourna-
ment selection, typically with size seven. As in GA, GP usually uses two genetic operators,
crossover and mutation, however, similarly to GA, their role in GP is not clear, and has been
an intense area of research for years [161, 121, 244, 140].

The basic tree-based GP algorithm uses unconstrained trees, which in many applications
might be a problem. Some programs cannot have any type of nodeas children of certain
nodes, and it would be desirable to introduce some kind of constrain. With this objective in
mind, some variations of the basic algorithm have been proposed, for instance,strongly typed
GP, where the nodes have a type and thus the consistency might bechecked [172]. Another
approximation is using grammatical constrains [166]. Probably, the best known algorithm
based on this perspective is the one introduced by O’Neill in[184], namedGrammatical
Evolution, or GE. This approach uses a variable-length integer linearrepresentation that is
used to select a derivation rules from a grammar provided by the user, usually in a Backus-
Naur form.

One of the main problems in tree-based GP is its poor locality, which yields a lack of cor-
relation between the genotypic and the fitness landscapes [208]. Consequently, it reduces the
capability of the algorithm to exploit the information provided by the landscape, increasing
the search difficulty. Another issue that has been criticized in tree-based GP is the storage
and manipulation cost of the trees, which is from a computational point of view, high. So,
different alternatives have been proposed that do not use trees to represent programs.

24 CHAPTER 2. EC FROM AN EXPERIMENTAL PERSPECTIVE

One of the major alternative approaches to tree-based GP that does not use tree repre-
sentations islinear GP [10]. Linear GP is inspired by the linear nature of machine code or
assembler, where a program is a sequence of instructions that contain the operation and the
operators. In this way, linear GP uses a set of registers and operations that are performed
with them. The communication among the operations are done though registers, the input of
an operation is taken from them, and its output is also storedin the registers.

Another major GP algorithm isCartesian GP[170, 169]. Cartesian GP represents pro-
grams as graphs, but at a genotypic layer the graph is coded ina integer linear chromosome.
Each element in the graph is represented in the chromosome asa set of integers, one rep-
resenting the operation type and others representing its position within the graph forming a
coordinate, that is why this method is named Cartesian GP. The graph oriented nature of the
Cartesian GP makes it easy to represent structures such as circuits.

The list of algorithms that can be classified as GP is extense,and a exhaustive enumera-
tion of them is out of the scope of this chapter. In order to complete the review of algorithms
that can be used in the context of Metaheuristics, we introduce in the next section some other
major EAs with a looser relation to this dissertation.

2.2.2.3 Other evolutionary algorithms

Another major EC paradigm is Evolution Strategies (ES), proposed by Reichenberg and
Schwefel. Curiously, they were working on a problem relatedto Aeronautical Engineering,
wing design, which at first appearance seems far from AI. Withthis motivation they proposed
a self-adapted stochastic optimization method that was named Evolution Strategies. The
focus of ES is the numerical optimization in the space of realnumbers. The solution is
represented by a vector of float values and its main genetic operator is mutation, that is
introduced as a gaussian noise. The parameters of the gaussian noise (mean and variance) is
modified during the course of the evolution, making ES also anearly example of self-adapted
EA. A good intro to ES can be found in [35].

The last major EC paradigm, but the first historically speaking, is Evolutionary Program-
ming (EP), proposed by Fogel [87] in the sixties to simulate learning using evolution. In EP,
the structure that is evolved is a finite automata, perhaps asa consequence of EP roots in
what we could name “classical AI”. Traditionally EP has beenused in prediction [79].

A relatively recent paradigm in EC that has emerged stronglyis Estimation of Distri-
bution Algorithms (EDAs) [146, 152]. Some authors classifyEDAs as a part of GP [192],
however they have some unique properties that make them quite singular and difficult to
classify. EDAs, instead of keeping a population of solutioncandidates, take a completely
different approach trying to characterize the search spaceperforming a probabilistic estima-
tion of the search space, i.e., assigning probabilities to the search space and sampling the
search space according to these probabilities. There are many different proposals of EDAs,
however the basic operation is the same. A population of solutions are sampled from the
search space according to some probability distribution, then they are evaluated, and, as a re-
sult of this evaluation, the probability distribution is updated, providing higher probabilities
to the more promising regions. A strong point in pro of EDAs isthat the resulting probability
distribution provides additional information that can be exploited.

2.2. THE FIRST COMPONENT OF EXPERIMENTAL DESIGNS: ALGORITHM 25

2.2.3 Swarm Intelligence

Swarm Intelligence is a recent branch of Metaheuristics that, as its name suggests, is in-
spired in the emerging intelligent behaviour found in some social insects [164] and animal
flocks, although not all the algorithms considered in this category are biologically inspired.
In Swarm Intelligence, on the contrary than EAs, individuals in the population exhibit a
collective behaviour, each individual affects the whole population and the global behaviour
influences individuals. In EAs, one individual only influences directly its offspring, actu-
ally, depending on the algorithm design, there would be individuals without offspring, and
therefore without influence in the next iteration of the algorithm. The two best known swarm
algorithms are Ant Colony Optimization (ACO) and Particle Swarm Optimization (PSO).

ACO was proposed by Dorigo [72] and exploits the ability of the biological ants to find
good paths between the anthill and the food without a centralintelligence or coordination.
When an ant finds food, it begins to deposit a trail of pheromones that can be detected by
other ants; in that case, the ant follows the trail of pheromones with a certain probability.
Despite the ironic lack of ants in ACO [158], the algorithm follows to some extent this
strategy though a process of pheromones deposit and evaporation. ACO is just one of the
several ant-inspired algorithms such as the Ant System or Min-Max [206].

PSO, on the contrary than ACO, is not inspired in social insect behaviour, but in flocks
[128]. The idea behind PSO is to have a population of candidate solutions, or particles
using PSO terminology, moving across the search space. Thismovement is influenced by
the position of the best particle so far, and to avoid premature convergence particles have
an inertia. In this way a particle in PSO is characterized by its velocity and its position and
the resulting behaviour is similar to a flock. PSO is closely related to a recent EA named
Differential Evolution (DE) [223, 64].

There is a large amount of algorithms inspired in swarms and nature, moreover, it is a hot
research topic and new algorithms are emerging continuously. Some of the latest swarm al-
gorithms are Artificial Bee Colony optimization (ABC) [124], Firefly Algorithm [252], Bac-
terial Foraging Optimization (BFO) [186], Glowworm Swarm Optimization (GSO) [139]
and so on. Even though not strictly swarm algorithms, other nature inspired algorithms
are emerging, for instance, Artificial Immune Systems (AIS)[81], River Formation Dy-
namics (RFD) [197], Intelligent Water Drops algorithm (IWD) [213] or Charged System
Search (CSS) [126], just to cite some of them. Another class of algorithms already men-
tioned are memetic and cultural algorithms, which uses a global search algorithm (typically
a population-based algorithm) and a local search algorithm.

So far, an incredibly large number of algorithms have been proposed in Metaheuristics,
with very little in common among them. Regardless of the algorithm at hand, all them are
run in order to solve a problem. Some metaheuristics were born just to solve one type of
problem, others inspired by some natural phenomena. In any case, the relation between
algorithm and problem is very close, and an algorithm cannotbe studied in isolation, it only
takes sense when it is used to solve a problem instance [94]. This issue is addressed in the
next section.

26 CHAPTER 2. EC FROM AN EXPERIMENTAL PERSPECTIVE

2.3 The second component of experimental designs: Problem

It is well known that the choice of the problem determines thealgorithm performance [246,
94]. When the problem is the object of study it is not a great concern, but when other factors
are studied, problem selection becomes a key decision that may bias the results. Designing
a fair experimental plan depends on which problems are selected. Despite the key role of
this issue and the general agreement about the importance ofthis topic [111], with some
exceptions, not much research has been devoted to this topic.

In this point, it is relevant to introduce two terms generally used in this context. It is
necessary to distinguish problem, or problem class, and problem instance [201]. Aproblem
classis a generic set of problems with the same statement, but whose numerical values are
not specific [201]. There are numerous examples of well knownproblem classes, for instance
the TSP, CSP, 3SAT and so on. Each element in the set of the problem class is aproblem
instance.

In order to assess the performance of an algorithm with a certain problem class, it is nec-
essary to run it with several problem instances, otherwise the results cannot be generalized.
How many problem instances are required to be able to claim sound results is not clear, and
probably it is one of the weakest points of experimental research [111]. This problem is
strongly related to dataset selection in Machine Learning,for this reason, Biratti proposed
a strategy inspired by Machine Learning that consists in separating training sets and testing
sets [41]. He claims that the problems used for assessing thealgorithm’s performance should
not be used in the algorithm’s development.

Problem choice is also a challenging problem from a theoretical perspective. Problem
characteristics traditionally used in algorithm analysisfail when they are applied to EAs [192],
and therefore, it is needed a new framework able to capture the elements of a problem that
can make it difficult to a EA. Modality, separability and regularity are probably more ade-
quate adjectives to describe problem classes in the contextof EC. Related to this problem,
once these characteristics were identified, how can we create problem classes [76] specific
to EC that exploit those characteristics? This question makes more sense under the light of
the No Free Lunch Theorem (NFL) [250], which theoretically states that the performance
of any algorithm, when it is averaged to all the problems, remains constant. So, under the
NFL, an effort to find a superalgorithm with an outstanding performance in all the problems
is destined to fail, following that research should be directed to understand which algorithms
perform well under which problem characteristics, and provide design guides [99]. Hooker,
years before the statement of the NFL, claimed the need of bound algorithm analysis to
problem characteristics [111].

Generally, there is a consensus among researchers in this field about how to classify
problem classes. Eiben [76] identifies useless, natural andartificial classes of problems.
Rardin and Uzsoy [201] take a similar view when they identifyfour classes of methods to
obtain problem instances associated to their datasets: real world datasets, random variants
of real datasets, published and online libraries and finallyrandomly generated instances.
Similarly, Bartz-Beielstein in [25] distinguish three types of problems: test functions, real-
world optimization problems and randomly generated test problems. Table 2.2 provides a
summary of these problem classes.

Following Bartz-Beielstein, we identify three groups of problems to test EAs: test suites,

2.3. THE SECOND COMPONENT OF EXPERIMENTAL DESIGNS: PROBLEM 27

Table 2.2: Summary of problem classification schemata proposed in the literature.

Author Publication Classes of problem
A. E. Eiben [76] Useless

Natural
Artificial

R. L. Rardin [201] Real world datasets
Random variants of real datasets
Published libraries
Randomly generated instances

T. Bartz-Beielstein [25] Test functions
Real-world problems
Randomly generated test problems

that contain a fixed number of problem instances; instance generators, that create randomly
problem instances and finally real world problems, that, like its name suggests, are problem
obtained from the real world. A good discusion about advantages and disadvantages of
using synthetic or natural problems can be found in [94]. Thenext sections are dedicated to
describe some widely used problem suites. Due to its specialinterest in the context of this
dissertation, we pay more attention to test suites used in GP.

2.3.1 Test suites

Test suites are public collections of selected problems used to analyze algorithms. Usually,
test suites are used to assess the performance of several algorithms and compare them in
order to determine which one has the best performance. The utility of test suites in EC is
double, on the one hand they provide a set of common problems,enabling the comparison of
the results among different studies. On the other hand, ideally test suites are designed in order
to assess some attributes of the algorithms under study, andthen fine-grained understanding
about their performance can be more easily achieved. However, which properties should
have test suites in EC is still an open problem [193].

Usually, test suites have a strong bias to numerical optimization, and these tests are stated
as a numerical maximization (or minimization) of a certain expression. One remarkable ad-
vantage of this approach is that the maximum (or minimum) of the problem can be known in
advance, and therefore the performance of the algorithm is easily assessed. Another advan-
tage is the existence of parametriced test suites, so some property of the problem is tunable
in such a way that the experimenter can modify, for instance,the level of difficulty or other
characteristic of the problem at will. This is a valuable feature in many experimental designs,
and can be an important help in order to understand and assessthe algorithm.

A good example of test suite is the first one in EC [23], that wasproposed by De Jong
in his PhD dissertation [67]. He proposed five functions forn-dimensional real-number opti-
mization, each one of thes selected according to some special feature that made it interesting
to evaluate. Their definition is shown in Table 2.3, while Figure 2.3 shows the shape of De
Jong’s functions in the bidimensional case. It is interesting to underline that although De

28 CHAPTER 2. EC FROM AN EXPERIMENTAL PERSPECTIVE

x1x2

y

Quartic function with noise

x1x2

y

Rosenbrock

x1x2

y

Sphere

x1x2

y

Step

Figure 2.3: Plots of the bidimensional version of four or thefive De Jong functions test suite:
Sphere, Rosenbrock, step, and quartic function with noise.

Table 2.3: Analytical definition of five De Jong functions.
Function Expression Domain Minimum
Sphere f1(x) =

∑n

i=1
x2

i | xi |≤ 5.12 f(0, . . . , 0) = 0

Rosenbrock f2(x) =
∑n−1

i=1
((1−xi)

2 +100(xi+1−x2
i)

2) | xi |≤ 2.048 f(1, . . . , 1) = 0
Step f3(x) = 25 +

∑n

i=1
⌊xi⌋ | xi |≤ 5.12 f(([−5.12,−5), . . . ,

[−512,−5))) = 0
Quartic f4(x) =

∑n

i=1
(ix4

i) + N(0, 1) | xi |≤ 1.28 f(0, . . . , 0) = 0
Sheckel (2D) f(x1, x2) = 1

0.02+
P25

j=1
1

j+
P2

i=1
(xi−aji)6

| xi |≤ 65.536 f(−32,−32) = 1

2.3. THE SECOND COMPONENT OF EXPERIMENTAL DESIGNS: PROBLEM 29

Jong functions have had a strong influence in EC research, andthey have been widely used,
De Jong now advocates against his own test suite [158]. A brief discussion about these five
functions follows:

1. Sphere. This is a simple and smooth unimodal function whose minimumshould be
easy to find.

2. Rosenbrock. Also known as Rosenbrock’s banana due to its shape in the bivariable
representation. In this case, it forms a valley around a hillwhere algorithms use to
stagnate in a local minima. So, this function evaluates the capability of the algorithm
to reach the global optimum in presence of local minimal and asmooth landscape.

3. Step. This function is characterized by the presence of a high number of plateaus
that difficulties the search process due to the lack of exploitable information in these
regions.

4. Quartic function with noise. This function represents a rather simple surface that is
roughed with a gaussian noise that makes difficult the searchprocess. This function
assesses the behaviour of the algorithms when it is used witha noisy fitness function.

5. Sheckel’s Foxholes. Extreme problem with a plateau that presents several steeppeaks
with many local minima. The coefficientsaji shown in Table 2.3 are given by:

aj1 = {32, 16, 0, 16, 32, 32, 16, 0, 16, 32, 32, 16, 0, 16, 32, 32, 16, 0, 16, 32, 32, 16, 0, 16, 32}
aj2 = {32, 32, 32, 32, 32, 16, 16, 16, 16, 16, 0, 0, 0, 0, 0, 16, 16, 16, 16, 16, 32, 32, 32, 32, 32}

We should mention that many test suites have been proposed, for instance, by Fogel [86],
Schwefel [212] and Eiben [74], which include some of De Jong’s functions. In addition to
these test suites, in the last years several test-suites have emerged under the shelter of com-
petitions holded in the two main EC events, CEC and GECCO, andsome publications [106].

Probably the most used suite case [185] is the one used in the CEC 2005 Competition
on Real-Parameter Optimization proposed by Sugan [225]. Another CEC competition is the
Competition on Large Scale Global Optimization; in the 2010edition [227, 228] the test-
suites were composed by25 functions,5 unimodal and20 multimodal separated in several
categories: basic, expanded and hybrid functions. Most of these functions,22, are non-
separable while2 are completely separable and one is separable near the optimum. Tang
defines a separable function as a function whose maximum or minimum can be solved as
the sum of the minimum of several functions of one variable. The test-suites used by CEC
competitions are probably the most used ones by the researchcommunity. Similarly, GECCO
has also hold several competitions on real-number optimization, among others. GECCO
2009 Black Box Optimization Benchmarking, and subsequent editions, provided noisy and
noise-free functions. The noiseless functions contained24 functions [84, 103].

Test-suites so far described are focused in numerical optimization. Nonetheless, some-
times the object of study is not the algorithm, but rather theproblem for its practical or
academic interest. Usually, these problem classes have attracted a large amount of research,
problems such as the TSP, Knapsack or 3SAT are good examples of this. In order to achieve
comparable research results on this problems, several specific test-suites have been devel-
oped. For instance, we can mention the TSPLIB [204], which isalmost of universal usage

30 CHAPTER 2. EC FROM AN EXPERIMENTAL PERSPECTIVE

in research related to the TSP, the UCI Machine Learning Repository datasets for Machine
Learning applications, or the Tomita test-suite for language induction [229].

There are also specialized domains in EC where classical test-suites are not applicable. A
good example might be multiobjective optimization [133, 192, 79]. Examples of specialized
test suites are constrained real-parameter optimization [149, 162], dynamic optimization or
multiobjective evolutionary algorithms. Many of these problem-specific test-suites are pro-
vided in form of instance generators.

2.3.2 Instance generators

Instances generators take another perspective. If test-suites contain a collection of fixed
problem instances, instances generator create new probleminstances that belong to a certain
problem class. Instance generators are not exclusive of EC,but rather they have a long
tradition in AI, and there are available a long list of instance generator for almost all the most
important AI problems, such as the CSP, SAT, or DFA induction[142]. A good repository of
test instances is kept by Spears in [219].

Using instance generators has several advantages. Firstly, since an arbitrary number of
problem instances may be created, some problems associatedto the limitation of the avail-
able problem instances are solved. As a result, the scale of the experimentation can be
increased and open new experimental approaches. And secondly, many instance generators
are parametizable, and thus they can generate problem instances with different properties like
the problem size or difficulty. It allows to manipulate the algorithm environment in order to
gain more control, and therefore, design better experiments that otherwise could be difficult,
if not impossible, to implement.

In the specific context of EC, instance generators have been closely related to the fitness
landscape [222, 208]. This concept involves a geometric interpretation of the fitness space
associated to an idea of neighborhood. Fitness landscapes have attracted much research
interest because they have served as a basis to characterizeproblems and algorithms. A
hot research topic is the measurement of problem difficulty,which is close related to fitness
landscapes [233, 193]. A particular instance generator that has had a notable impact on
EC research, or more specifically in GA, is the NK-landscapes[4]. This instance generator
creates problem instances with sizen andk epistatic interactions, which means that its size
and difficulty can be tunable.

So far, we have discussed the role of problem instances and instance generators. In
particular, they copy the characteristics of some type of problem, such as numerical opti-
mization, or the TSP, to ease experimentation. We have seen that certain types of algorithms
require specific test-suites, multiobjective algorithms,for instance, require specific problem
instances suitable to exploit their special properties. There are, however, some fields in EC
that, due to historical reasons rather than to technical ones, have been using their own test
suites. One clear example of this is GP. Due to its importancein the research reported in this
dissertation, we discuss this topic in more detail.

2.3. THE SECOND COMPONENT OF EXPERIMENTAL DESIGNS: PROBLEM 31

Figure 2.4: The Santa Fe trail, which is used in the artificialant problem, one of the most
popular GP test problems proposed by Koza (source: Wikipedia).

2.3.3 Test suites in Genetic Programming

GP, in relation to the rest suites used in EC, has, to some extent, some particularities that
make it different. Many of the test suites used in the GP literature do not use the test suites
that are common in the rest of EAs, but rather it is common to find some test problems that
are rarely found outside of the GP community. One possible reason can be found in the type
of problem that is faced by this type of algorithms, but more likely it is due to historical
reasons, and the influence of John Koza in this field.

There are a set of widely used test problems in GP, those proposed by Koza in his first
book [136]. Despite the lack of solid theoretical foundations to choose those problems, Koza
tried to represent several types of problems solvable by GP,for instance, path finding or
boolean problems. Traditionally, these problems have beenwidely used by the GP literature,
and some of them play a key role in this PhD thesis. The four test problems proposed by
Koza that play a major role in this dissertation are described in the following.

1. Artificial ant . This problem deals with the simulation of an ant placed on a grid.
The ant has to move collecting food lying along a trail. Thereare some trails in the
literature with different grid sizes, however, the most used one is the Santa Fe trail,
which is a 32x32 toroidal grid with89 food pellets, as depicted in Figure 2.4. The
fitness is the count of pieces of food found by the ant before itperforms a given number
of steps. Koza reported in his book a timestep value of400, however, there is a strong
evidence suggesting that this value is a typo in the book, andreal maximum number of
timesteps used by Koza is600 [215]. It is said that this problem is hard and the solution

32 CHAPTER 2. EC FROM AN EXPERIMENTAL PERSPECTIVE

is constructed almost randomly [143], nonetheless Christensen was able to solve this
problem in20, 696 evaluations [55]. One interesting point about this problemobserved
by Sean Luke [160], is that many different individuals from agenotypic perspective
may have the same fitness.

2. k-multiplexer . The goal of the k-multiplexer is the design of a boolean function that
implements a k-lines multiplexer. The interpretation of the boolean function might
vary from a program to a digital circuit. The difficulty of this problem depends on k,
obviously, higher k values yields more difficult problems. Typical values of k are6
and11. Luke observed [155] that the 6-multiplexer generates manyinviable code in
comparison to the 11-multiplexer and a high probability of neutral crossover.

3. k-parity . This is, as the k-multiplexer, a boolean problem whose goalis to design
a boolean function. There are two versions of the k-parity, even and odd. An even-
parity function of k lines returns true if its argument has even number of bits. The
odd-parity function, on the contrary, return true if there is an odd number of bits. As
the k-multiplexer problem, difficulty increases with k.

4. Linear regression. Regression is a classical problem in Mathematics, and one of the
problem domains where GP is more popular. Basically, regression deals with, given
a set of n-dimensional points, finding a functionf(x̄) that fits well the given points.
Regression might deal with non-linear models, however, linear regression is widely
used as a test problem for its simplicity. In particular, Koza proposed to fit a quartic
polynomialx4 +x3 +x2 +x+1 given20 points sampled in the domain[−1, 1]. Luke
observed that this problem generates more inviable code in comparison to the two
previous boolean problems. The explanation that he offers is given by the existence of
ratios or products with infinite numbers or NaNs, and decimation (a very big number
that masks another smaller one) [156, 160].

So far, we have described two elements needed in order to carry out an experiment: an
algorithm and a problem. However, almost any algorithm, depends on a set of parameters,
and its behaviour may rely strongly on them. Hence, it makes sense to claim that any rigorous
experimental design must take into account this fact, and not consider the algorithm and
problem in isolation w.r.t. the algorithm parameters. A well defined criteria should be defined
in order to select those parameters. This claim is true specially for Metaheuristics in general,
and EC in particular, since they tend to be algorithms with a high number of parameters. The
next section is dedicated to discuss this important, and often forgotten, topic.

2.4 The third component of experimental designs: Parameters

Parameter selection is one of the most challenging and studied problems in experimental
evaluation of EAs, and probably it is also often ignored in the experimental designs found in
the literature. It is rather common to find papers (includingseveral written by us) that report
in detail some algorithm A, and compare it to another algorithm B, claiming that A is better
than B. The number of methodological pitfalls with this practice is large, and, despite the
extensive literature that warns us against this practice [112, 11, 76, 41], is it still common

2.4. THE THIRD COMPONENT OF EXPERIMENTAL DESIGNS: PARAMETERS 33

practice. One of the most important pitfalls is that the algorithm parameters have been setad
hoc, or the method used to tune the parameters is not reported.

It is well known that, depending on the parameter choice, theperformance of an algo-
rithm may vary in orders of magnitude [8, 187, 78]. Quite often papers only report details
about the algorithm, and not about how the algorithm was configured. Due to the major
influence of parameter setting on the performance, it is possible to better tune algorithm A
than B, and as a consequence experiments will show that A outperforms B. The experimenter
might be tempted to incorrectly conclude that A is better than B. This is, unfortunately quite
common. Much research have generated biased results by devoting more effort to search
good parameters for one algorithm than another. This relationship between algorithms and
parameters has lead Biratti to claim that “the configuracionprocedure becomes an insepara-
ble part of the algorithm” [41], consequently, a balanced and fair amount of effort should be
dedicated to configure the algorithms under study [12].

Despite this methodological concern, there are some other notable problems with the
configuration of parameters. A general practice is to look for the optimum parameters and
then assess the algorithm, but the concept of optimum parameters is questionable. First, what
does optimum parameters mean? The NFL theorem limits the scope of what we can expect
from an algorithm. An algorithm may achieve an outstanding performance on a single pro-
blem instance, or an algorithm with a reasonable performance on a problem class or classes.
In other words, the same algorithm might be specialist or generalist [78] depending on the
algorithm configuration. But even in case that the configuration had been chosen to generate
an specialist or generalist algorithm, the optimum configuration changes during the course
of the run [75], and depends on which performance measure is used [78]. It is interesting
to note that automatically tuned parameters are usually rather different from those selected
using the experience, rules-of-thumb, common sense, or other ad-hocmethods [217].

Due to the importance of this topic, it is not surprising the notable extension of the liter-
ature about this issue despite the complains of some authorsabout the lack of interest in this
area [78]. Subsequently, many different methods to configure an algorithm have been pro-
posed, and classifications of these methods. Examples of authors that have proposed criteria
to classify those methods are Angeline [5] or Hinterding [108]. Following Eiben [75, 78], it
is possible to identify two strategies to address this problem, parameter control and parame-
ter tuning.Parameter tuningdeals with the selection of static values of the parameters,while
parameter controldeals with methods to self-adapt parameters during the course of the run.
We provide more details about these methods in the next subsections.

2.4.1 Parameter control

Parameter control deals with algorithms that are able to self-adapt their parameters. The idea
behind parameter control is using feedback to adapt the algorithm parameters. This is not
a new idea, actually it has been around EC from its beginning.For instance, traditionally
ES has used the 1/5 rule to adapt the mutation rate [202], which is itself a self-adaptation
mechanism. This research line is still a hot topic, and thereis an intense activity on it [97].

There are some solid reasons to use parameter control. As Eiben notes [75], an EA is
a dynamic adaptive process, and thus, using a fixed set of parameters contradicts this spirit.
Using an algorithm that dynamically adapts its parameters is more respectful with the nature

34 CHAPTER 2. EC FROM AN EXPERIMENTAL PERSPECTIVE

of EAs. There are also more practical reasons to use parameter control techniques. The
problem of finding good parameter values is itself a search problem in the parameter space,
which is usually much larger than the solution space, so, finding optimal parameter values is
rather unlikely. Fortunately, it seems that suboptimal controlled parameters performs better
than suboptimal selection of fixed parameters [75]. In addition, it is well known that the
optimum equilibrium between explotation and exploration is dynamic, and thus, the opti-
mal parameter configuration changes along the course of the run [43, 34], so, using fixed
parameters seems clearly suboptimal.

Eiben in [75] proposed a bidimensional classification scheme for parameter control based
on what component of the algorithm is changed and the type of control that is performed.
Despite the difficulty of enumerating all the components of an EA that can be controlled,
Eiben enumerates the followingcomponents: Representation of individuals, fitness function,
variation operators and their probabilities, selection operators, replacement operators and
population. More interestingly, the criteria of type of control deals with the method used to
decide how to change parameters. Eiben identifies three types of control methods.

1. Deterministic parameter control. The control is performed by a set of heuristics
that take deterministic decisions. Given the same conditions, with the exception of the
random seed, these techniques will take the same decisions.Those control methods
that use feedback from the algorithms are excluded from thiscategory. It is interesting
to note that some Metaheuristics belong naturally to this category. For instance, the
basic algorithm of SA modifies its main parameter, the temperature, as a deterministic
function of time, which can be considered as a deterministicparameter control.

2. Adaptive parameter control. It uses feedback from the algorithm and some heuristic
to set the parameters. This is the case, for instance, of the 1/5 rule usually used in ES.

3. Self-adaptive parameter control. The parameters of the algorithm are encoded within
the individuals, and therefore they evolve. In this case, the EA not only searches to op-
timize the fitness function, but also the parameter settings. This type of control method
is the one used in metaevolutionary algorithms, which is an active research area.

In general, using parameter control techniques notoriously improve the algorithm, even
when the control method could be better. The point that is perhaps more used against pa-
rameter control is that these techniques provide little or none information about how the
parameters affect the algorithm behaviour. It is a serious concern in some scientific contexts
when the objective of the researcher is to acquire knowledgeabout the algorithm [24]. This
problem is solved, at least partially, by parameter tuning.

2.4.2 Parameter tuning

Parameter tuning deals with the problem of choosing the parameters that are set before the
algorithm is run and remain fixed along the run. Usuallyad-hocmethods are used to tune
parameters. The most simple one is just using the default parameters found in the algorithm
or its implementation. This is the case, for instance, of tree-based GP, where the parameters
proposed by Koza are widely used even when they can be markedly improved in many cases.

2.4. THE THIRD COMPONENT OF EXPERIMENTAL DESIGNS: PARAMETERS 35

Well based methods to tune parameters are needed, at least, for two reasons, one practical
and another theoretical.

Parameter tuning is important from a practical point of view. The difference between
default parameters and customized ones can be of orders of magnitude. This result has been
widely reported by several authors, perhaps one of the most complete studies performed
by Pellegrini [188], who compared default and tuned parameters in five Metaheuristics (TS,
SA, GA, ITS and ACO), finding strong differences in the performance. Of course, it could be
argued that parameter tuning is a time-consuming task, and some times this additional effort
is not worthy. Other authors counterargument that, due to the availability of several tuning
methods that are quite straightforward to implement, and the performance improvement, not
using parameter tuning does not admit any excuse [78, 25].

But there are also theoretical reasons to use parameter tuning. First, parameter tuning is
intrinsic to EAs design, a fair comparison between two algorithm requires a description of
the algorithms, but the method used to tune the algorithm parameters as well [41]. Secondly,
parameter tuning might provide valuable information aboutthe algorithm internals. As Eiben
noticed [78], one might take two approaches: configure an EA optimizing its parameters, or
analyze an EA studying the dependence between its performance and its parameters. This is
one strong point in favor of parameter tuning in comparison to control methods, it provides
valuable information about the algorithm that could be exploited.

So far, it is not surprising that this issue has attracted notable research. Probably, the
most prolific author in this area is Agoston E. Eiben. He classifies parameter tuning methods
in three categories, depending on the strategy used to save runs [78]. It might try to reduce
the number of parameters to optimize (some authors refer to this as screening), reduce the
number of tests, or both. There is also a fourth category related to reducing the number of
function evaluations, however, Eiben does not know anyone that had used this strategy so
far.

In the following, we will use a classification scheme inspired by the one proposed by
Ridge [206], and briefly summarize some relevant literature. In this classification scheme,
we distinguish between analytical, automated and empirical approaches.

2.4.2.1 Analytical approach

Analytical approaches try to deduce formal models, and use them to determine good parame-
ter settings. This approach has, however, some troubles. For instance, Ridge [206] concludes
that the state-of-the-art of analytical approaches is not ready to address this problem. Ac-
tually, this is a general complain made by researchers abouttheoretical research, theoretical
results are rarely exploitable in practice [193]. A good example of this approach to the rep-
resentation problem [208] is given by Holland’s Theorem. This theorem predicts that the
implicit parallelism found in GA is maximized when the codification contains the maximum
number of schemata, which is obtained with a binary representation. However, this approach
has been widely criticized since it depends on a large numberof assumptions that are not
usually found in practice [203, 245].

36 CHAPTER 2. EC FROM AN EXPERIMENTAL PERSPECTIVE

2.4.2.2 Automated approach

The second approach to parameter tuning is automated approach. Parameter tuning is, ironi-
cally, a search problem in the parameter search space, hencenot surprisingly, classical search
methods, including stochastic and not stochastic methods,might be used [78]. Automated
approaches are, following Ridge, composed by two subcategories, self-tuning, which cor-
responds to Eiben’s control methods, and heuristic tuning,which use search techniques to
tune the parameters before the algorithm is run. Within thiscategory, several approaches can
be taken. For instance, a metaheuristic such as a GA, can be used to search the parameters.
Perhaps, the main drawback with this strategy is the difficulty of interpreting the results in
order to achieve an understanding of the algorithm behaviour. Additionally, there is to some
extent a recursive problem. If we run a metaheuristic to search the parameters, we need to
tune the metaheuristic as well. Other search techniques might be also used [25, Chapter 6].

A radically different approach is taken by Birattari [37], who applied Machine Learning
techniques to tune parameters. He applies a Machine Learning algorithm family generally
known as race algorithms [163], that, given a limited set of evaluations, try to obtain the best
parameters. All these algorithms share the same overall operation. Given a set of candidate
parameter configuration, they are tested a given number of times, and those that are not
statistically significant in comparison with the best configuration found, are removed and the
process is repeated. Depending on the type of statistical test used, different racing algorithms
have been proposed. Probably, the most popular one is F-Race[39, 36], which is based on a
nonparametric Friedman’s two-way analysis of variance by ranks. A survey about this topic
can be found in [40].

2.4.2.3 Empirical approach

The third subcategory proposed by Ridge are empirical approaches, which are characterized
by the use of empirical models that relate the configuration and the algorithm performance.
The model itself is a valuable outcome of this approach sinceit provides information about
how the algorithm performance is influenced by the parameterconfiguration. In this ap-
proach, the algorithm has to be run several times with a controlled environment, then the
algorithm performance is statistically analyzed and modeled.

The most simple, widely used, and perhaps also the most mediocre method, is what
Ridge namesone-factor-at-time(OFAT) [206]. This is usually anad-hocmethod due to
its lack of conceptual complexity. OFAT involves the repetition of the runs in unifactorial
experiments, where only one factor (parameter in EC terminology), is changed each time.
The list of drawbacks is extense [174, Chapter 7]. Since onlyone factor is considered each
time, it is not possible to identify and model interactions between the factors. Additionally,
the points in the parameter space are not optimally sampled,which yields more runs than
the strictly needed; this method is time consuming and parameter configuration obtained are
rarely optimal [75].

This is actually a well studied problem in Statistics and partially solved with theDesign
of Experiments, or DOE [173, 59]. It has been widely applied with notable success in several
domains, such as civil and chemical engineering. DOE is a multifactorial statistical technique
that places, using solid statistical criteria, sample points in the search space in order to be
able to identify iterations among the factors while lowering the number of samples needed to

2.5. THE FOURTH COMPONENT OF EXPERIMENTAL DESIGNS: MEASURES 37

draw statically sound conclusions. Nonetheless, there is anotable corpus of literature using
DOE to study numerous algorithms such as GA [177, 203], PSO [29] or ACO [206]. A
detailed discussion about the use of DOE in EC can be found in [25].

The main drawback of using DOE is its poor scalability when the number of factors to an-
alyze is increased. Another serious problem with DOE is thatit only can, in general, analyze
a tiny region of the parameter space. Let us suppose, for instance, a standard GP algorithm
with, being conservative, ten factors and two levels for each factor. Then, a classical2k full
factorial designwould yield210 evaluation points. Due to the stochastical nature of the per-
formance measure, it would require several runs for each evaluation point. Let us suppose
that each point is evaluated20 times, then DOE would require20480 runs. Even this conser-
vative example, we find a notable need of computational resources. For this reasons, there
are several alternatives to the basic full factorial design, for instance, the2k−p fractional
factorial design. Probably, one of the strongest points in favor of DOE is the statistically
significant information provided about the influence of eachfactor and their iterations to the
algorithm performance. It is useful to select which parameters should be studied. Another
method related to DOE is the one proposed by Adenso-Diaz in [1], named CALIBRA. He
applied Taguchi’s DOE with a further local search.

One problem of DOE is that it places the sample points before the experimentation be-
gins, so, information gathered during the experimentationis not used as feedback to improve
the search. Sequential experimental designs try to solve this problem using feedback during
the course of the experimentation. One of the best known isSequential Parameter Opti-
mization, or SPO, proposed by Thomas Bartz-Beielstein [28] and implemented in SPOT
(Sequential Parameter Optimization Toolbox) [27]. SPO is an iterative method that builds
a metamodel based on the observations made so far, and allocates new sample points in the
parameter space in base of that metamodel. Then, a new set of runs are carried out using the
new parameters and the metamodel is updated. This process isrepeated until the budget of
computational resources are exhausted. An hybrid algorithm between SPO and F-Race was
proposed in [30].

Another tuning method namedRelevance Estimation and VAlue Calibration(REVAC)
was introduced by Nannen and Eiben in [178]. A detailed discussion about this method can
be found in [216]. REVAC is related to EDAs to some extent, it builds for each parameter
an utility distribution, giving higher probabilities to those values of the parameters that are
likely to increase the performance. There are two mayor problems with REVAC. One is that
it cannot handle categorical parameters, i.e., it is limited to numerical parameters in contrast
to SPO. The other problem is that it does not consider iterations among the factors.

Once the algorithm, the problem, and the parameter configuration have been set, the
experiment can be run. However, in order to be useful to the researcher, the course of the
experiment should be observed, in other words, it is necessary to collect data about the
experiment. We have to measure the experiment and thereforewe need measures.

2.5 The fourth component of experimental designs: Measures

In order to be able to observe what is happening in the course of a run, it is necessary to take
measures. One of the intrinsic characteristics of EC is their complex dynamics, that generate

38 CHAPTER 2. EC FROM AN EXPERIMENTAL PERSPECTIVE

large amounts of information, and therefore collecting allthe information would require
large storage and processing capabilities, which in practice limits seriously what information
can be stored. Subsequently, depending on the experiment motivations, measures have to
be selected [165], which is not always a trivial task. In Barr’s words, “perhaps, the most
important decision one makes in an experimental study of heuristics is the definition, or
characterization, of algorithm performance” [11].

Due to the variability of potential research questions, andthe intrinsic complexity of
EAs, it is difficult to find generally accepted measures [23, 24]. Nonetheless, there are some
measures such as the fitness or success probability that are easy to find in the literature, and
some authors have proposed some guidelines to help with the decision of which measures
should be used. For instance, Hooker in [112] suggests measuring only those variables pre-
dicted by the model, given that there were a model of the algorithm, which is not the general
situation in EC. In any case, it cannot be said that there is a shared criteria to select measures,
the decision usually depends on the personal experience of the experiment designer.

Even in case that there were a consensus about which measuresshould be used w.r.t. the
researcher motivations, there are some debate about how they should be used [193]. Eiben et
al. [76, 79] defend that, depending on the goal, we should observe peak or average values. It
is interesting to observe this reasoning in the context of the experiment classification seen in
section 2.1.2. Design domains look for extreme behaviors because they are interested in the
best solution, which is, by definition, an extreme case. On the contrary, in repetitive domains,
average behaviors are more interesting since they involve the whole population, and thus it
is more likely to find a solution in successive runs. Birattari, on the contrary, claims that the
best fitness -an example of extreme behaviour discussed by Eiben- is a biased estimator, and
thus should not be used [38].

A common practice in EC is to execute an algorithmN times and keep the best individ-
ual. Birattari criticizes this practice by arguing that this practice is actually a restart, which
is a particular practice in Metaheuristics, and therefore experimentation using this method is
no longer testing a given algorithm, but that algorithm withrestarts [38]. In other words, the
evaluated algorithm is being changed by the experiment. Although the Birattari’s argument
is convincing, one could counterargument that many times, the restart in the EA is introduced
not just to find the best solution, but rather to obtain metrics that require several samples, for
instance the success rate, or to determine the statistical properties of the measure.

Due to the complex nature of EAs, it is not surprising that there are many measures that
can be collected. The criteria that should be used to select some instead of others is still
unclear. Having a general knowledge of which measures existmight help in this task, so it
is interesting to classify measures in EC, and at the same time might help to place the main
object of study of this dissertation. In the next section we review some classification schemes
informally proposed by the literature.

2.5.1 Classification of measures

Despite there has not been, to the authors’ knowledge, any attempt to formally classify mea-
sures, several authors have informally introduced some measures classification schemes,
most of them only consider performance measures. Almost allthe authors interested in
this topic mention the quality of the solution and the amountof resources needed to reach a

2.5. THE FOURTH COMPONENT OF EXPERIMENTAL DESIGNS: MEASURES 39

solution, indeed these are the two sides of performance measures: the quality of the solutions
and the cost of getting them. Nonetheless, terms used in the literature are not uniform, and
sometimes they represent slightly different semantics that may produce misunderstandings.
We should mention that, even tough performance measures arethe most widely used, there
are several ones that cannot be considered in this group.

Not surprising, all the reviewed authors identify the quality of the solution as a class of
measures. However, the exact meaning of quality of the solution is sometimes unclear. Solu-
tion quality might be identified as a synonymous of individual fit, which would be incorrect.
As Rand advises [200], the solution quality is about the goodness of a solution, while the
fitness is used in the selection phase during the course of theEA. So, solution quality and
fitness might use different elements. To illustrate this point, let us consider two solutions
given by an EA with the same fit, but with different sizes. Usually smaller individuals are
preferred to larger ones because the resulting systems are easier to implement and interpret,
so, the quality of the small solution is higher than the largeone, even when their fit is the
same. Nonetheless, the distinction between solution quality and fitness is rather tricky and
several times they are used interchangeably.

The most general classification scheme so far found in the literature was proposed by
Burke [48], who, depending on which search space the measureis related to, distinguishes
genotypic and phenotypic measures.Genotypic measuresare those measures that consider
any characteristic at genotypic level, i.e., the structures used by the algorithm to represent
the individual; similarly,phenotypic measuresare those ones taken in the fitness space. So
genotypic measures are not affected by the fit of the individuals, but rather by their represen-
tation within the algorithm and serve to know how the population is. Examples of genotypic
measures are diversity [48], or individual size. On the contrary, phenotypic measures are not
directly affected by the representation of the solutions, but by their fit. For this reason, from
our point of view, phenotypic measures can be identified withperformance measures.

So far, we can identify performance measures and genotypic measures. In addition, we
will consider a third group of measures, that we will namespecialized measures. These mea-
sures only make sense in the context of a certain problems or algorithms, due to its nature or
historical reasons, providing information about the algorithm, problem or solution that typi-
cally do not make sense out of that scenario. For instance, measuring how fast an algorithm
can adapt its population to changes in the solution makes sense in dynamic optimization, but
not in more classical scenarios. A graphical representation of this classification scheme can
be found in 2.5. Each category in the proposed classificationis introduced and discussed in
more detail in the following subsections.

2.5.2 Performance measures

The most widely used measures are those that estimate the goodness of an algorithm in terms
of solution quality and resources consumed by the algorithm. Both terms, solution quality
and resources, should be understood in a broad sense. Not surprisingly, this type of mea-
sures have been described more in detail in the literature, and some classification schemes
have been proposed. In general, most of the consulted authors agree in distinguishing be-
tween solution quality and the resources consumed to get thesolution. But there is a lack of
agreement in the terminology, sometimes with slightly different meanings.

40 CHAPTER 2. EC FROM AN EXPERIMENTAL PERSPECTIVE

Figure 2.5: Classification of measures in EC with three categories: Genotypic measures,
performance measures and specialized measures.

We first mention the work of Rardin and Barr [201, 11], both identify two types of per-
formance measures: solution quality and computation time.They implicitly assume that the
run-time can only be measured in time, but for several reasons, measuring run-time in time
units generates several troubles [11]. Another term often used to describe the amount of re-
sources needed to achieve a solution is computational effort, which should not be understood
as the measure introduced by Koza in [136], which is the keystone of this dissertation, was
introduced in the first chapter, and is discussed in detail inchapter 6. Generally speaking,
computational effort is understood in this context in a wider sense. Computational effort
refers to a set of measures that estimate the amount of resources needed to achieve the so-
lution. To avoid ambiguity, along this section we will use computational effort in a broad
sense, and to refer the measure proposed by Koza we will use the term Koza’s computational
effort.

Bartz-Beielstein, Barr and other authors use the term robustness, however, its meaning
strongly changes in function of the context and the author. Bartz-Beielstein uses robustness
as a synonym of effectivity [25], as it will be defined later. On the contrary, for Smit et
al. [217], the term robustness is used to refer the variance of the output of a certain algorithm.
Barr and Eiben use robustness to mean the variation of the algorithm performance when a
factor (parameters, problem instance or random seed) is modified [78, 11]. Eiben, on the
other hand, emphasizes the generality of the term. In a broader sense, the term robustness is
generally used in EC literature to mean the capability of an EA to find efficiently solutions
to different problem classes, i.e., a robust algorithm is a generalist algorithm, and thus it is
able to continue performing well in case of changes in its environment [200].

2.5. THE FOURTH COMPONENT OF EXPERIMENTAL DESIGNS: MEASURES 41

0 1 2 3 4 5 6

0.
1

0.
2

0.
3

0.
4

0.
5

Function evaluations

F
un

ct
io

n
va

lu
e

Efficiency

Effectivity

Figure 2.6: Visual representation of effectivity and efficiency measures (source: [25]).

Probably the most common classification scheme of performance measures was proposed
by Schwefel in [212], and widely advocated and popularized by Bartz-Beielstein [25] and
Eiben [79]. Schwefel’s classification scheme of performance measures distinguishes effec-
tivity and efficiency measures. When gatheringeffectivity measures, the amount of resources
that this algorithm is allowed to waste is limited, and the measure estimates the quality of the
solution that the algorithm is able to find. On the contrary, in efficiency measuresthe solution
quality is fixed in advance, and then it estimates how much effort the algorithm needs to find
a solution with the given quality. Here, the terms effort andresources should be understood
in a broad sense: it might be time, function evaluations, or any other measure able to pro-
vide information about how hard is finding a solution. Figure2.6 represents graphically the
difference between effectivity and efficiency. We can identify a third type of performance
measure that is not effectivity neither efficiency, but rather a combination of both. These
measures are typically a composition of effectivity and efficiency measures, so we will name
themmixed performance measures. Figure 2.6 represents graphically the difference between
effectivity and efficiency .

Effectivity measures are generally related to fitness measurement, we can mention two:
Mean Best Fitness and Mean Average Fitness. TheMean Best Fitness(MBF) is calculated as
the average of the fittest individual in different runs. In other words, the MBF reflects the fit
of the best solution that is found. This measure is particularly important in design domains,
where this type of extreme individuals and high variance aredesirable [79]. Similarly, the
Mean Average Fitness(MAF) is the average fitness calculated for several runs. Probably,
MAF is one of the most used and well known measures. Normalityassumption about the
distribution of MAF is generally done, however it is not always normal [160] and Rand [200]
proposed to express MAF as a ratio between the individuals and the best individual so far

42 CHAPTER 2. EC FROM AN EXPERIMENTAL PERSPECTIVE

obtained. A third way to measure the effectivity of an algorithm is the performance profiles,
proposed by Barreto in [23], which relates the algorithm performance to a set of problems.
Flemming warns about some statistical issues that arise when effectivity measures are nor-
malized and compared [85].

Efficiency measures, instead of being related to fitness, useto be related to the measure-
ment of any resource, typically time. Some common efficiencymeasures are described in
the following.

• Run-time. One of the oldest, and most evident efficiency measures, is the run-time
of the algorithm, i.e., the time, whatever it was measured, that the algorithm takes.
Run-time is also a measure that has generated some debate dueto the concerns that
emerge when it is analyzed in detail. To be specific, several authors have been con-
cerned about the repeatability of this measure [12, 112]. Run-time, measured in time,
is highly dependent on architectural considerations, and also depends on issues re-
lated to the operating system, such as multitasking, page faults, and so on. Barr [12]
suggests removing these times from the measurement. For this reason run-time mea-
sured in one machine is rarely reproducible in other machine[62], even if both had
the same hardware and software. Additionally, even in the case that all these problems
were solved, we find facts that may bias the results: different programming skills,
the amount of time devoted to optimize the code, etc. For these reasons, run-time
units reported in the literature moved forward machine-independent measures, such as
number of evaluations. Sound measurement of run-time is particularly difficult in par-
allel algorithms, with several specific difficulties [12]. Despite all these disadvantages,
Gent still recommends measuring computation times becauseit is useful to compare
different versions of the same algorithm during its development [92].

• Average Evaluations to a Solution (AES). It is the number of individual evaluations
needed, in average, to find an individual of the desired quality [76]. This measure
is independent of the architecture since it is only influenced by the algorithm itself.
Despite this fact, AES is influenced by the random nature of Metaheuristics, and thus
it is a random variable.

• Run-time distributions (RTD) . An RTD is defined as the probability of finding a
solution from the beginning of the run to a certain timet. If time is measured in
number of evaluations or any other specific algorithm-dependent property, it is named
run-time length distribution (RLD). Perhaps, the most notable feature about RTDs are
their ability to completely characterize the statistical properties of the run-time. This
feature is used by Hoos to study the run-time of several metaheuristic algorithms to a
variety of classical problems such as the CSP and 3SAT [113, 114, 224, 115]. Other
authors also used this technique to study Metaheuristics like ACO, among others [53],
or to characterize the CSP problem [205]. A detailed description of RTDs, and a
review of related literature can be found in chapter 5.

• Others. There are alternative efficiency measures, such as MTER [107] or quality-
effort relationship [11].

2.5. THE FOURTH COMPONENT OF EXPERIMENTAL DESIGNS: MEASURES 43

Among the mixed performance measures, probably the most important one isSuccess
Rate(SR), or frequency of the optimum as Ridge names it [206]. There is some doubts about
the classification of SR, some authors claim that it is an efficiency measure, others claim that
it is a effectivity measure, while others argue that SR is both, efficiency and effectivity. The
latter is based on the fact that to measure SR, the experimenter sets a budget of computational
resources and a solution quality, then he verifies whether the algorithm was able to find
or not a solution. On the contrary than other measures, SR is not always defined since it
needs a criteria to identify the solution, so, in the absenceof that criteria SR cannot be
defined [24, 76]. There are also other weakness, some authorstend to interpret SR as a
measure of the solution quality, not taking into consideration the existence of evidence that
shows a lack of correlation between SR and fitness [156]. Chapter 4 is dedicated to study the
statistical properties of SR in EC.

The most important performance measure in the context of this dissertation isKoza’s
computational effort. Koza, in [136, chapter 4] introduced a novel measure to estimate the
computational effort required by an algorithm to find a solution. Despite the generality of
the definition of Koza’s computational effort, that only supposes a generational population-
based algorithm, its usage has been restricted to GP, where has been rather popular. The
main objectives of the thesis is to study the accuracy of computational effort, which is done
in chapter 6. Another example of mixed performance measure is thesuccess effort, proposed
by Walter et al. in [242]. This measure is a simplification of Koza’s computational effort
and it is calculated as the ratio between the mean generationwhen the algorithm finds the
solution and the proportion of runs finding a solution.

Performance measures tell a critical part of the story, thatis simply how well the algo-
rithm performs. However, it is only a part of the whole story,and thus performance mea-
sures alone cannot do all the job, specially when a deeper understanding of the algorithm is
required. In these circumstances, genotypic measures are necessary.

2.5.3 Genotypic measures

There are several issues concerning the structure of the individuals in the population that,
although might not have a direct influence in the quality of the solution that they represent,
may provide valuable information about the algorithm internals. Probably the most popular
genotypic measure is the individual size. Many EAs use fixed-length individuals, such as
canonical GAs or ES, but other branches of EC use variable-size individuals, moreover, there
are algorithms whose population of candidate solution are intrinsically variable-size like in
tree-based GP. Other algorithms, such as GA, have variations to let the population increase
the complexity of the solutions they encode [105, 47, 56].

The reason to use variable-length population is well summarized by Harvey “the most
impressive feature of natural evolution if how over aeons organisms have evolved from sim-
ple organisms to ever more complex ones with associated increase in genotype lengths” [105].
Variable-length algorithms may self-adapt the size of the individuals to the complexity of the
problem, which is an important feature in certain problems.Understanding how the popula-
tion varies its length is fundamental from a practical perspective to fight against one serious
problems in variable-length EAs,code bloat, which is an increase of the size of the indivi-
duals without a correlation with fitness. Code bloat has beenobject of a intense research in

44 CHAPTER 2. EC FROM AN EXPERIMENTAL PERSPECTIVE

GP, and there is a large corpus of theories trying to explain it. Two good reviews of the bloat
theories in the context of GP can be found in [215, 160]. Detailed discussions about these
can be found in [144, 155, 157, 101, 160, 130].

EC literature uses to describe EAs as the action of two opposing forces, exploration and
explotation [77]. In the context of Metaheuristics, sometimes the terms intensificacion and
diversification are used instead of explotation and exploration [43]. Explotation refers to the
capacity of an EA to find promising areas of the search space, while exploration deals with
finding the best solution in a certain area of the search space. It is generally recognized that
the success of an EA depends on a adequate balance between both, which is determined by
how the population is located in the search space. It can be measured using diversity mea-
sures. Several diversity measures have been proposed without a clear winner. An important
point about diversity measures that should be underlined isits close relationship to repre-
sentation, because diversity is measured in the genotypic space. Nonetheless, some authors
have noticed a correlation between diversity at genotypic and fenotypic levels [118]. A good
review about these metrics in GP can be found in [48].

2.5.4 Specialized measures

EC involves a wide range of algorithms and problems, thus notsurprisingly there are a set of
measures that cannot be used in a general case, but instead they only make sense in relation to
specific algorithms and problems. These measures might reflect some specific characteristic
of the algorithm or problem or, less likely, for cultural reasons it has not being used outside
of a certain context. This is the case, for instance, of Koza’s computational effort and hits in
GP. In this section we briefly present some examples of specialized measures.

One well known advantage of EAs is their intrinsic parallelism, which eases addressing
computationally complex problems in parallel architectures. If the measurement of the time
response of sequential algorithms exhibit some non-trivial difficulties, measuring time re-
sponse of parallel algorithms is more challenging. The sameconsiderations made to run-time
measurement might be done to parallel EAs, but new considerations due to the parallelism
arise: there is a need to use new measurements [12]. For instance, a measure that quanti-
fies the improvement of running an algorithm in parallel is the speedup, which is defined
as the ratio between the time required by a serial implementation of the algorithm and the
time required by the same algorithm when is run onp processors. In this way, the speedup
measures the effect of using several processors in comparison with using an alone processor.
Other measures of parallel algorithms can be found in [12].

All the EAs discussed up to this point have in common one characteristic, selection is
done attending only to one criteria. Even tough the fitness function might use several criteria
to evaluate an individual, selection is performed using itsoutput, which is a single value. It
turns out that in nature, survival of individuals is given bya series of factors, such as how fast
a prey can run, how it mimics its environment and so on. The same can be said in many prob-
lems addressed by EAs, where evaluation of individuals might depend on several objectives
and each one has to be maximized or minimized. This behaviourwhere the goal is given
by a set of objectives instead of a single one, is the inspiration of multiobjective algorithms
(MOEAs) [254]. In multiobjective algorithms the fit of an individual is not given by a single
value, but by a vector whose elements describe the fit of the individual in each objetive under

2.6. CONCLUSIONS 45

consideration. Many performance measures used by single-objective algorithms are not suit-
able for MOEAs. In addition, since the fit of an individual is given by a vector, comparison
between algorithms is more complex, and new measures are needed [257, 88, 258].

Another context where many performance measures so far discussed are no longer suit-
able is dynamic optimization [61] (or nonstationaty function optimization [79]). Previous
discussions assumed that the problem and its context were stationary, and therefore they
remained without changes over the course of the run. However, in many applications this
assumption is not valid, the fitness function, or the constrains, might change. Some survey
papers about this topic can be found in [120, 176]. Measuringperformance in this type of
scenarios is a challenging problem. The main problem is no longer finding an optimum in
the search space, but instead is finding a sequence of optimumvalues over time [79], and
thus algorithm performance depends on more factors than in static optimization. Wiecker in
[243] analyzed several measures of EAs in dynamic environments, identifying three charac-
teristics that describe the particularities of measures indynamic optimization. The first one
is accuracy, which is the ability of the algorithm to find candidate solutions close to the the
optimum. Closely related to accuracy is the second characteristic, stability, which relates
how the accuracy changes when the environment is modified. Finally, thereactivity is the
ability of the algorithm to react quickly to changes in the environment.

2.6 Conclusions

There are several reasons why experimental research is needed in EC. The algorithmic sim-
plicity of EAs contrasts to the notable difficulty of their analytical analysis, that make the-
oretical results scarce, and rarely useful in practice. So,experimental methods have been
widely used in EC research. Despite the importance of experimental methods, there is a lack
of research on methodological issues. Much literature has been devoted to describe how to
perform experimental research, and how to design sound experiments. However, much of
these literature is in form of tutorials or lists of tips, andunfortunately there is a lack of at-
tempts to systematize it. It is interesting to note that mostof the papers published around this
topic come from Metaheuristics, only recently authors withan EC background have begun
to publish on this topic.

In an attempt to provide a systematic approximation to experimentation in EC, we have
proposed a framework that eases description of experiments. The proposed framework iden-
tifies three intrinsic components of an experiment: algorithm, parameter setting and problem,
and an extrinsic component, measures. A solid experimentaldesign requires a rational choice
of each one of these components, that should be done according to the research question that
motivates the experiment. In order to be able to observe the experiment, we also need mea-
sures. They are used to collect data, which is the base of any empirical study. We distinguish
three types of measures: genotypic measures, special purpose measures and finally perfor-
mance measures. Performance measures can be divided into three categories. The first one
provides information about the quality of the solution thatthe algorithm is able to find. The
second one informs about the cost of finding a solution of a certain quality. The third cat-
egory of performance measures mixes the two previous categories, providing an aggregate
value. One of the best known mixed performance measures in the context of GP is Koza’s

46 CHAPTER 2. EC FROM AN EXPERIMENTAL PERSPECTIVE

computational effort.
Computational effort, as defined by John Koza, is the minimumnumber of individuals

that have to be processed to achieve a solution of the desiredquality with a given probability.
This is a mixed measure that includes the population size andthe success probability of
the algorithm. Despite its popularity in GP, several researchers have shown some concerns
about this measure, mostly in informal contexts, but there are a lack of documental evidence
supporting these claims. In order to gather data supportingor rejecting these concerns, we
first need a deeper knowledge about the statistical properties of the success rate, which is a
basic component in Koza’s computational effort. In particular, we need a characterization
of the error associated to the estimation of the success probability. The statistical properties
of that estimation, when the time is fixed, is investigated inchapter 4. However, in the next
chapter we will introduce the early work that generated the main research question.

Chapter 3

Evolutionary Computation from an
applied perspective

The alchemist in their search for gold
discovered many other things of greater value

Arthur Schopenhauer

This chapter takes an applied perspective and tries to develop methods for real applica-
tions. Several domains are analyzed, paying more attentionto the agent-based information
extraction and integration platform named Searchy, modifying it to extract data automatically
using evolved wrappers. The research summarized here is thefirst one to be performed in the
context of this PhD thesis, the goal was to use Evolutionary Computation (EC) to solve some
real world applications. The value of this chapter is double, firstly, the research performed
to develop the chapter provided the necessary experience using EC, and secondly, it helped
to find the main research question that is addressed in this dissertation.

We have worked in several problems: a logistic application to optimize the drivers
routes [194, 195], generate routes inside a building using RFID [196], language induc-
tion [98] and data extraction from the Web [50]. In this chapter we mainly focus on data
extraction since it motivated the rest of the PhD thesis.

In order to automatically extract data from the Web, we have used a platform named
Searchy. Through the use of a set of wrappers, it integrates information from arbitrary
sources and semantically translates them according to a mediated scheme. Searchy is ac-
tually a domain-independent wrapper container that eases wrapper development, providing,
for example, semantic mapping. The extension of Searchy proposed in this chapter intro-
duces an evolutionary wrapper that is able to evolve wrappers using regular expressions. To
achieve this, a Genetic Algorithm (GA) is used to learn a regex able to extract a set of positive
samples while rejects a set of negative samples.

This chapter is structured as follows. Section 2 provides a general overview of the sys-
tem architecture. The information retrieval and information integration mechanism used in

47

48 CHAPTER 3. EC FROM AN APPLIED PERSPECTIVE

Searchy are briefly described in section 3.3. The evolved regex wrapper is presented in sec-
tion 3.4 followed by a description of the alphabet construction algorithm. Some experiments
carried out by the regex wrapper are shown in section 3.6. Section 3.7 describes related
work. Finally, some conclussions are summarized.

3.1 Introduction

Organisations have to deal with increasing needs of processautomation, yielding a grown of
the number and size of software applications. As a result there is a fragmentation of informa-
tion: it is placed in different databases, documents of different formats or applications that
hide valuable data. Thus, it originates the creation of information islands within the organisa-
tion. This has a negative impact when users need a global viewof the information, increasing
the complexity and development costs of applications. Usually ad-hoc applications are de-
veloped despite their lack of generality and maintenance costs. Information Integration [102]
is a research area that addresses the several problems that emerge when dealing with such
scenario.

When a bunch of organizations are involved in an integrationprocess, the problems as-
sociated with the integration are increased. Some traditional integration problems, such as
information heterogeneity, are amplified and new problems such as the lack of centralized
control over the information systems arise. One of the most interesting problems in such con-
text is how to ensure administrative autonomy, i.e., limit as much as possible the constrains
that the integration might impose to data sources. We have developed a data integration
solution called Searchy with the intention of addressing those constrains.

Searchy [22] is a distributed mediator system that providesa virtual unified view of
heterogeneous sources. It receives a query and maps it into one or more local queries, then
translates the responses from the local schema to a mediatedone defined by an ontology and
integrates them. It separates the integration issues from the data extraction mechanism, and
thus it can be seen as a wrapper container that eases wrapper development. It is based on Web
Standards like RDF (Resource Description Framework) or OWL(Web Ontology Language).
Thanks to that, Searchy can be easily integrated in other platforms and systems based on
the Semantic Web or SOA (Service Oriented Architecture) andused for other tasks, such as
parameter tuning [17, 13].

Experience using Searchy in production environments has shown that some issues need
to be improved. One of the most successful wrappers in Searchy was the regex wrapper,
a wrapper that extracts data from unstructured documents using a regular expression (or
simply regex). Regex is a powerful tool able to extract strings that matcha given pattern.
Two problems were found related to wrapper-based regex utilization: the need of an engineer
(or a specialized user, which we usually denoted as wrapper engineer) with specific skills in
regex programming, and the lack of automatic way to handle errors in the extraction process.
These problems lead us to adapt the Searchy architecture to support evolved wrappers. That
is, wrappers based on regex that have been previously generated using Genetic Algorithms
(GAs). This wrapper uses supervised learning to generate a regex able to automatically
extract records from a set of positive and negative samples.

3.2. SEARCHY ARCHITECTURE 49

3.2 Searchy architecture

Many Searchy properties are a direct consequence of two design decisions: the MAS ap-
proach [3] and the Web standards compliance. Using MAS givesSearchy a distributed and
decentralized nature well suited for the integration scenario described in the introduction.
Web Services are used by Searchy agents as an interface to access their functionalities,
meanwhile the Semantic Web standards are used to provide an information model for se-
mantic and structural integration [238]. From an architectural point of view agents were
designed to maximize modularity decoupling integration from extraction issues, easing the
implementation of extraction algorithms.

In our architecture, each agent has four components, as can be seen in Figure 3.1. Some
of the key properties of Searchy are directly derived from this architecture. These elements
are the communication layer, the core, the wrappers and the information source. The next
paragraphs describe these components related to the FIPA Agent Management Reference
Model.

Communication layer It provides features related to the communications such as SOAP
message processing, access control and message transport.The Communication layer
is equivalent to the Message Transport System (MTS) in the FIPA model.

Core It contains the basic skills used by all the agents, including configuration manage-
ment, mapping facilities or agent identification. Any feature shared by all the agents is
contained in the core. It presents some of the features defined by FIPA for the Agent
Management System (AMS), however they are not equivalent. AMS are supposed
to control the access of the agents to the Agent Platform (AP)and their life cycle.
Meanwhile the agent core supports the operation of the wrappers.

Wrapper A wrapper is the interface between the core agent and a data source, extracting in-
formation from the mediated data source. Wrappers are a key point in order to achieve
generality and extensibility. Agents in the FIPA model havesome similarities with
Searchy wrappers from an architectural point of view. An AP in the FIPA model may
contain several agents meanwhile each agent in Searchy may contain several wrap-
pers. Both of them are containers for some software asset, agents in case of FIPA or
wrappers in case of Searchy.

Data source It is where information that is the object of the integrationprocess is stored.
Almost any digital information source might be used as data source. Due to the nature
of Searchy, data sources are usually some kind of information system such as a web
server or an index. However any source of digital information is a potential Searchy
data source. There is no equivalent in the FIPA model to data sources.

Figure 3.1 shows the architecture of a Searchy agent with itsfour components. Agent in-
terfaces are published thought the HTTP server, one of the subsystems of the communication
layer. It receives the HTTP request that has been sent by the Searchy client and extracts the
SOAP message. In order to provide a first layer of security, the HTTP subsystem filters the
request using the Access Control Module. This module is an IPbased filter that enables ba-
sic access control. The HTTP server has responsibilities with the SOAP messages transport,

50 CHAPTER 3. EC FROM AN APPLIED PERSPECTIVE

Figure 3.1: Searchy platform architecture, the four components of the architecture are iden-
tified in the figure: Communication layer, core, wrappers anddata sources.

but the processing of these messages is done by their own module, the SOAP Processing
Module. It processes SOAP messages and then transfers operation to the Control Module,
or returns an error message. Once the message has been successfully processed, the Control
Module starts.

The Control Module sets the flow of operations that the different elements involved in the
integration must perform, including the wrappers, the Mapping Module, and the Integration
Module. The Mapping Module is composed of three subsystems,with different responsi-
bilities in the mapping process. The Query Mapping subsystem performs query rewriting,
translating the query from the mediated schema into the local schema, for example, SQL.
Meanwhile, the Response Mapping subsystem translates the response from a local schema
like SQL, into RDF, following a mediated schema defined by an ontology. Both, Query and
Response Mapping subsystems use the Mapping subsystem, that provides common services
related to mappings and rule management to the Query and Response Mapping subsystems.
The way in which the integration and mapping processes operate is described in section 3.3.
Responsibility for Information extraction, as well as communication among the agents, falls

3.3. MAPPING AND INTEGRATION IN SEARCHY 51

in the wrappers.
In our architecture, the coordination among agents is basedon an organizational struc-

turing model with two different discovery mechanisms. In the first mechanism, each agent
has a static knowledge about which agents it must query, where it can find them, and how
to access them. The result is a static hierarchical structure. It is useful in order to adapt a
Searchy deployment to the hierarchy of a organisation, however it cannot take full advantage
of a MAS such as parallelism, the reliability of the whole system is reduced and it is difficult
to integrate in dynamic environments.

To overcome some of these disadvantages, a second coordination mechanism has been
implemented. Using our previous organizational structuring model, relationships among
the agents are not stored within the agents, but externally in a WSDL document that can
be fetched by any agent from a HTTP or FTP server. This agent discovery mechanism is
simpler than using an UDDI (Universal Description, Discovery, and Integration) directory or
a Directory Facilitator (DF) in a FIPA platform. Agents are accessed as another data source,
and thus it is done by a set of wrappers responsible of the discovery and communication
between Searchy agents: the Searchy and WSDL wrappers. These wrappers implement the
coordination mechanism in Searchy, however wrappers’ mainpurpose is to extract data from
data sources.

At the present moment, Searchy includes four ordinary wrappers: SQL, LDAP, Harvest
and regex. By means of SQL and LDAP wrappers, structured datain databases and LDAP
directories may be accessed. Using the Harvest wrapper, Searchy can integrate resources
available in an intranet like HTML, LATEX, Word, PDF documents and other formats. The
support of new data sources is done by the development of new wrappers. There is no
restriction on the algorithm and data source that the wrapper might implement, it may be a
direct access to a database, a data mining algorithm, or dataobtained from a sensor. Mapping
and integration issues are managed by the agent’s core, and thus the wrapper has not to be
concerned by these issues. Next section describes how thesetasks are performed.

3.3 Mapping and integration in Searchy

Integrating information means dealing with heterogeneityin several dimensions [238]. Tech-
nical heterogeneity can be overcame by selecting the properimplementation technology. In
our work, it has been done using Web Services (WS) as an interface to access to the ser-
vice. Addressing information heterogeneity requires the definition of a global information
model, the mediated schema, among all the entities involvedin the integration process, as
well as a mapping mechanism to perform a mapping between the different local information
models and the global information model. Defining this modelis a critical challenge in an
information integration system.

Searchy uses semantic technologies standardized by the WWW-RDF, RDFS and OWL-
to represent the integrated information. RDF is basically an abstract data model that can be
represented using several syntaxes. Searchy uses RDF, serialized with XML, to represent
information. This combination of RDF and XML grants interoperability in a structural level.
Semantic integration requires an agreement about the meaning of the information to deal with
semantic heterogeneity. This agreement is performed by using shared ontologies expressed

52 CHAPTER 3. EC FROM AN APPLIED PERSPECTIVE

in RDFS or OWL. Then, there must be an explicit agreement among all the actors involved
in a Searchy deployment to establish at least one global ontology. A set of mapping rules are
needed in order to map entities according to a local schema into the global schema. Rules
are used to map queries to a local schema, and responses to themediated schema.

Query format is a tuple<attribute, query> of strings, the Query Mapping subsystem
rewrites the query to obtain a valid query for the local data source. The first element in the
tuple is an URI that represents the concept to which the queryis referred, while the query
is a string with the content of the concept that is being queried. The query model is simple
but enough to fulfill the requirements of the application. The translation of the query to the
local schema is performed using the Mapping Module (see Figure 3.1). Mappings are done
by means of a string substitution mechanism, very similar tothe traditionalprintf() function
in C. This mechanism is enough to satisfy the needs in almost all cases. Once a query has
been translated, the response of the local information source must be extracted, mapped to
a shared ontology and integrated, respectively, by the Response Mapping and Integration
subsystems.

Response mappings are done in two stages:

1. The response is mapped semantically, conforming to a shared ontology. It is done
using the same mechanism than the Query Mapping subsystem. Acritical aspect is
to provide a URI identifier for each resource, just like RDF requires to identify any
resource. There is no unified way to do this task: each type of wrapper and user policy
define a different way to name resources.

2. Every response of each wrapper is integrated in the Integration Module. Integration is
based on the URI of the resource, returned by the wrappers. When two wrappers return
two resources identified by the same URI, the agent interprets that they are referred to
the same object, and thus they are merged.

Figure 3.2 shows a simple example of an integration process within Searchy. There are
two data sources: a relational database, and an LDAP directory service. In a first stage, the
wrappers retrieve the information from the local data source, and this is mapped into a RDF
model. The mapping is done by using the terms defined by an ontology and according to
some rules given by the system administrator. The ontologies used within the integration
process must be shared among all agents. In general, a one to one correspondence between a
data field and an ontology term will be defined. Several local fields or fixed texts may com-
pose one value in RDF, this feature aids the administrator todefine more accurate mappings.
The mapping rules defined in the example shown in Figure 3.2 for the database wrapper are
depicted in Example 1.

Example 1Query mapping rules example

rdf:about IS "http://www.example.org/" + name
dc:title IS name + " " + surname
foaf:family_name IS surname

The first rule defines that the RDF attributerdf:about is built with the concatenation of
the string ”http://www.example.org/” and the attribute Person as it is defined in the local

3.3. MAPPING AND INTEGRATION IN SEARCHY 53

Figure 3.2: Example of the integration process in Searchy, with two data sources, one rela-
tional database and a directory.

schema. The rest of rules are defined in a similar way. Meanwhile, the mapping rules for the
directory wrapper can be seen in Example 2.

Example 2Response mapping rules example

rdf:about IS "http://www.example.org/" + uid
rdf:type IS foaf:Person
foaf:mbox IS email
foaf:homepage IS web

The wrappers in the example use two vocabularies: Dublin Core and FOAF. Each object
retrieved from the data source must be identified by an URI, that in this case is built using
local data with a fixed text. The second stage integrates the entities returned by the wrappers.
The agent core identifies the two objects as the same object bycomparing their URI and
merges the attributes, providing a RDF object with attributes retrieved from two different
sources.

Mapping and Integration Modules decouple data integrationand mapping from the ex-
traction, and thus it is possible to develop wrappers in Searchy without any concern about
these issues. Next section shows an example of how a complex wrapper may be developed
using the infrastructure provided by Searchy.

The original architecture of Searchy [14] provided an easy to use extraction and integra-
tion platform. However, it required human supervision in some parts of the process. One of
the most useful wrappers supported by Searchy is the regex wrapper, which is able to extract
data from unstructured documents. One problem associated with this wrapper is the need of
a wrapper engineer skilled in regex programming. Another problem is error detection, that
is, detect when the wrapper is not correctly extracting dataand solve it.

54 CHAPTER 3. EC FROM AN APPLIED PERSPECTIVE

Figure 3.3: Example of a Searchy deployment with extractor,evolutive and control agents.

It lead us to extend the original Searchy regex wrapper able to extract data using a regex
created by the wrapper engineer with an evolved regex agent able to generate a regex from
a set of positive and negative examples using a GA. Figure 3.3depicts the extended archi-
tecture, where the original architecture is extended with control and evolutive agents. The
MAS contains three kind of agents: control, extractor and evolutive agents. The three types
of agents share the same agent architecture depicted in Figure 3.1, they differ from an archi-
tectural point of view in the wrappers they use. Figure 3.3 uses solid lines to represent the
iteration among the agents and resources with the exceptionof iterations that involve regex,
which is represented with dotted lines.

There must be one control agent that receives queries from the user and forwards it
to the extractors, which are agents with a regex wrapper. Regex wrappers in the original
Searchy architecture obtained the regex from the wrapper engineer, who manually generated
the regex. When the wrapper detected a failure in the data extraction, i.e., when it was
unable to extract data from a source, the wrapper notified it to the wrapper engineer who had
to identify the problem and in case the regex was incorrectlyconstructed, generates a new
one.

The new architecture aims to automate this approach, using an evolutive agent that fulfills
some roles of the wrapper engineer. Extraction agents obtain the regex from the evolutive
agents at start-up time, but also when they identify an extraction error. In this case, instead
of requesting a new regex to the wrapper engineer, it would request it to the evolutive agent.
When an evolutive agent is required to generate a new regex, it executes a GA as described
in the next section.

3.4 Wrapper based on evolved regular expressions

The implementation of the evolved regex was done as a Searchywrapper using the Searchy
wrapper API. When an agent with the evolved regex wrapper is run, the wrapper generates a

3.4. WRAPPER BASED ON EVOLVED REGULAR EXPRESSIONS 55

Figure 3.4: Example of chromosome encoding.

valid regex executing the described VLGA with a given training set. Once a suitable regex
is generated, the wrapper can begin to extract records from any text file accessible thought
HTTP or FTP. It does not have to manage any mapping-related issue since the Mapping
Module performs this task.

3.4.1 Codification

Any GA has to set a way to codify the solution into a chromosome. The VLGA imple-
mented in the wrapper uses a binary genome divided in severalgenes of fixed length. Each
gene codes a symbolσ from an alphabetΣ composed by a set of valid regular expressions
constructions, as described in section 3.5.

Some words should be dedicated to how genes code regex. The alphabet is not com-
posed by single characters, but by any valid regex, in this way the search space is restricted
leading to a easier search. These simple regular expressions are the building blocks of all the
evolved regex and cannot be divided, thus, we will call them atomic regex. The position (or
locus) of a gene determines the position of the atomic regex. Gen inposition i is mapped
in the chromosome to regex transformation as an atomic regexin the positioni. Figure 3.4
represents a simple example of how the regexca[tr] could be coded in the GA.

3.4.2 Evolution strategy

Genetic operators used in the evolution of regular expressions are the mutation and crossover.
Since the codifications rely in a binary representation, themutation operator is the common
inverse operation, while the recombination is performed with a cut and splice crossover.
Given two chromosomes, this operator selects a random pointin each chromosome and use
it to divide it in two parts, then they are interchanged. Obviously, the resulting chromosomes
will likely be of different lengths. Selective pressure is introduced by a tournament selection
wheren individuals are randomly taken from the population and the one that scores the
higher fitness is selected for reproduction. An elitist strategy has also been used, where some
of the best individuals in the population are transferred, without any modification to the new
generation. In this way it is assured that the best genetic information is not lost.

56 CHAPTER 3. EC FROM AN APPLIED PERSPECTIVE

3.4.3 Fitness

How the goodness of any solution is measured is a key subject in the construction of a GA. In
our case, for each positive example, the proportion of extracted characters is calculated. Then
the fitness is calculated subtracting the average proportion of false positives in the negative
example set to the average of characters correctly extracted. In this way, the maximum fitness
that a chromosome can achieve is one. This happens when the evolved regex has correctly
extracted all the elements of positive examples while none of the negative examples has been
matched. An individual with a fitness value of one is calledideal individual.

From a formal point of view, the fitness function that has beenadopted in the wrapper
uses a training set composed by a positive and a negative subset of examples. LetP be the
set of positive samples andQ the set of negative samples, such asP = {p1, p2, ..., pM} and
Q = {q1, q2, ..., qN}. Both,P andQ are subsets of the set of all stringsG, and they have no
common elements, soP ∩Q = ø.

Chromosomes are evaluated as follows: Given a chromosome, it is transformed into the
corresponding regexr ∈ R, then tries to match against the elements ofP andQ. The set
of strings thatr extracts from a stringp is given by the functionϕ(p, r) : (S × R) −→
R while the number of characters retrieved is represented by|ϕ(p, r)|. The percentage of
extracted characters ofpi such asi = 0, ...,M is averaged, and finally the fitness is calculated
subtracting the average proportion of false positives in the negative example set to the average
of characters correctly extracted, as expressed by:

F(r) =
1

|P |
∑

pi∈P

|ϕ(pi, r)|
|pi|

− 1

|Q|
∑

qi∈Q

Mr(qi) (3.1)

where|pi| is the number of characters ofpi, |P | the number of elements ofP, |Q| the
number of elements ofQ andMr(qi) is defined as

Mr(qi) =

{
1 if |ϕ(qi, r)| > 0
0 if |ϕ(qi, r)| = 0

(3.2)

3.5 Zipf’s law based alphabet construction

3.5.1 Preliminary considerations

Section 3.4.1 has shown how a classical binary codification is used to select one symbolσ
from a predefined setΣ of symbols or atomic regex. The construction ofΣ is a critical task
since it determines the search space, its size and its capacity to express a correct solution. Of
course, the simplest approach is to manually select the alphabet, however this approach may
devaluate the added value of evolved regex: the automatic generation of regex.

We can state that the construction ofΣ must satisfy three constrains.

1. Σ must besufficient, i.e., it must exist at least an elementr ∈ Σ∗ such asr is an ideal
individual. In other words, it must be possible to constructat least one valid solution
using the elements ofΣ.

3.5. ZIPF’S LAW BASED ALPHABET CONSTRUCTION 57

2. |Σ| must contain the minimum number of elements able to satisfy the sufficiency con-
strain. Of course, being able to satisfy this condition is a challenging task with deep
theoretical implications. From a practical point of view, this constrain can be refor-
muled as trying to keep|Σ| as small as possible.

3. Symbol selection must be automatic, with minimal number of parameters and human
interaction.

3.5.2 Alphabet construction algorithm

To reduce the number of elements ofΣ, and keep the search space as small as possible, we
aim to identify patterns in the positive samples and use themas building blocks. In order to
satisfy the previous constrains we propose the following algorithm. Σ is built as the union
of F , D andT , whereF , is the set of fixed symbols,D the set of delimiters andT the set of
tokens.

Σ = {σi}\σi ∈ F ∪ D ∪ T (3.3)

Algorithm 1 Selection of alphabet tokens.

1 .- P := Set of positive examples
2 .- S := Set of candidate delimiters
3 .- D := T :={ }
4 .-
5 .- for each p in P
6 .- for each s in S
7 .- tokens := split p using s
8 .- numberTokens := number of tokens
9 .-
10.- for each token in tokens
11.- occurrence(token) := occurrence(token) + 1
12.- endfor
13.-
14.- if (numberTokens> 0) add s to D
15.- endfor
16.- endfor
17.-
18.- sort occurrence
19.- add n first elements of occurrence to T

F contains manually created reusable symbols that are meant to be common cross-
domain regex, and thus, once they have been defined they can beused to evolve different
regex. It should be noticed thatF may contain any valid regex, nevertheless it is supposed
to contain generic use regex such as\d+ or [1-9]+ . SinceF is supposed to include common

58 CHAPTER 3. EC FROM AN APPLIED PERSPECTIVE

used complex regex, it contributes to reduce the search space and increase individual fitness
by introducing high fitness building blocks.

The setsD andT are constructed using a more complex mechanism based on Zipf’s
Law [256]. It states that occurrences of words in a text are not uniformly distributed, rather
only a very limited number of words concentrates a high number of occurrences. This fact
can be used to identify patterns inP, and use them to construct a part ofΣ.

Since the tokens do not contain delimiters, the sufficiency constrain cannot be satisfied,
so, each delimiter that appear in the examples is included insetD. The overall process is
described in Algorithm 1. Of course,|Σ| must be equal to the number of elements of the
union ofF , D andT , as is expressed in equation (3.4).

|Σ| = |F ∪ D ∪ T | (3.4)

given that

|F ∩ D ∩ T | = |F ∩ D| = |F ∩ T | = |D ∩ T | = ⊘ (3.5)

3.5.3 Complexity analysis

A better understanding of the algorithm can be achieved by a time complexity analysis. As
can be seen in Algorithm 1, there are two main loops (see Algorithm 1, lines 5 and 6) that
depend on the number of examples|P |, and the number of potential delimiters|S|. The
complexity of the algorithm is given by these loops and the operations that are performed
inside.

Splitting a stringpi ∈ P (line 7) is proportional to the length of the string|pi|, so the
mean time required to perform this operation is proportional to the mean string length|p|.
Lines 19 to 21 include a loop that is repeated as many times as tokens are in the string. A hash
table is accessed inside the loop (line 20), so it makes senseto suppose that its complexity is
given by the computation of the key, a string, therefore its time complexity isn|p|, wheren is
the number of tokens. Finally sortingoccurrence can be performed inntot log(ntot) where
ntot is the number of tokens stored inoccurence. The rest of operations in the algorithm can
be performed in negligible time. We can express these considerations in equation (3.6).

t ∝ |P | · |S| · [|p| + n|p|] + ntot log(ntot) (3.6)

Bothn andntot are unknown and we have to estimate them for the average case.A string
p ∈ P of length |p| can contain approximately|p|2 tokens. We have supposed there is one
delimiter for each token. The maximum number of tokens that can be stored inoccurrences
are |P |·|S|·|p|

2 . Then

n =
|p|
2

(3.7)

ntot =
|P | · |S| · |p|

2
(3.8)

and 3.6 can be expressed as

3.6. EVALUATION 59

t ∝ |P | · |S| · |p|[1 +
|p|
2

] +
|P | · |S| · |p|

2
log(

|P | · |S| · |p|
2

) (3.9)

Some terms can be removed

t ∝ |P ||S||p|
2

log(
|P | · |S| · |p|

2
) (3.10)

Using Big O notation, it yields that the time complexity is given by

O(k log(k)) (3.11)

wherek = |P ||S||p| and hence we can conclude that the time complexity is linearithmic.

3.6 Evaluation

Two phases have been used in the evaluation, a first phase where the basic behaviour of the
GA is analyzed, and a second phase that uses the knowledge acquired along the first phase
to measure the extraction capabilities of the evolved regexwrapper. Measures that have been
used are the well known precision, recall and F-measure. Thesets of experiments described
in this section are focused in the extraction of three types of data: URLs, phone numbers and
email addresses.

3.6.1 Parameter tuning

Some initial experiments were carried out to acquire knowledge about the behaviour of the
regex evolution and select the GA parameters to use within the wrapper. Experiments showed
that despite the differences between phone, URL and emails,all the case studies have sim-
ilar behaviors. In this way it is possible to extrapolate theexperimental results and thus to
use the same GA parameters. Setup experiments showed that best performance is achieved
with a mutation probability of 0.003 and a tournament size of2 individuals. A population
composed by 50 individuals is a good trade-off between computational resources and con-
vergence speed. Initial population has been randomly generated with chromosome lengths
that range from 4 to 40 bits, and elitism of size one has been applied. Table 3.1 summarizes
the parameter values used in the experiments.

3.6.2 Regex evolution

Once the main GA parameters have been set, the wrapper can evolve the regex. Experiments
have used three datasets to evolve regex able to extract records in the three case studies under
scrutiny. Figure 3.5 (left) depicts theMean Best Fitness(MBF) andMean Average Fitness
(MAF) of 100 runs. The fitness evolution of the case studies follows a similar path. The best
MBF and MAF are achieved by the email regex, while the poorestperformance is given by
the URL regex, with lower fitness values.

The dynamics of the chromosome length can be observed in Figure 3.5 (right). It is clear
that there is a convergence of the chromosome length and thuschromosome bloating does
not appear. It can be explained by the lack of non-coding and overlapping regions in the

60 CHAPTER 3. EC FROM AN APPLIED PERSPECTIVE

Table 3.1: Summary of the GA parameters used to evolve regular expressions.

Parameter Value

Population 50
Mutation probability 0.003
Crossover probability 1
Tournament size 2
Elitism 1
Initial chromosome length 4 - 40

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50 60 70

F
itn

es
s

Generations

Email
Phone

URL
 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 0 10 20 30 40 50 60 70

A
vg

. c
hr

om
os

om
e

le
ng

th

Generations

URL
Email

Phone

Figure 3.5: Left: Best and average fitness of phone, URL and email regex. Right: Average
chromosome length.

3.6. EVALUATION 61

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 10 20 30 40 50 60 70

S
uc

ce
ss

 r
at

e
(%

)

Generations

Email
Phone

URL

Figure 3.6: Probability of finding an ideal regex able to accept all the positive examples
while rejecting the negative ones.

chromosome, i.e, if the chromosome has achieved a maximum ithardly can increase its size
without a penalty in its fitness. The longer is the chromosome, the more restrictive is the phe-
notype and it is closely related to the associated fitness. URL regex has a stronger tendency
to local maximum, this fact reflected in Figure 3.5 (right), where lower MBF and MAF are
achieved. This fact also explains why URL chromosome lengthdepicted in Figure 3.5 (right)
is shorter than phone regex: the local maximum of URL regex tends to generate populations
with insufficient chromosome length. Those results are not surprising since URLs follow a
far more complex pattern than phone numbers or emails. The same can be affirmed about
emails in comparison to phone numbers.

Figure 3.5 (right) shows another interesting behaviour. Asthe GA begins to run, the
average chromosome length is reduced until a point where it begins to increase, then the
chromosome length converges into a fixed value. In early generations individuals have not
suffered evolution and thus its genetic code has a strong random nature. Individuals with
longer genotype have longer phenotypes and thus more restrictive regex that will likely have
smaller fitness values. So long chromosomes are discarded atearly stages of the evolutive
process until the population is composed by individuals representing basic phenotypes, then
recombination leads to increased complexity in individuals until they reach a length associ-
ated with a local or global maximum.

Some of the facts found previously are confirmed by Figure 3.6, where the success rate
(SR) [15] is depicted versus the generation. SR is defined as the probability of finding an
ideal individual in a given generation. It should be noted that Figure 3.6 depicts the average
success rate of 100 runs of the experiment. It can be seen thatemail achieves a SR of 91%,
phone numbers 60% and URLs 46% by generation 70. These results are consistent with
those in Figure 3.5 (right), and show that the hardest study cases are URLs, phone numbers,
and emails, in that order. Here the term ”hard” should not be understood in a strict absolute
way since the hardness of the search space is influenced from several factors, such as the
training set, the selection of negative samples, or the chosen alphabet.

62 CHAPTER 3. EC FROM AN APPLIED PERSPECTIVE

Table 3.2: Extraction capacity of the evolved regex. The table shows the F-measure (F),
precision (P) and recall (R) achieved in the three datasets (phone, URL and email addresses).

Phone regex URL regex Email regex
Ph. URL Email F P R F P R F P R

Set 1 99 0 0 1 1 1 - - - - - -
Set 2 0 51 0 - - - 0.24 0.14 0.84 - - -
Set 3 0 0 862 - - - - - - 0.79 0.51 0.62
Set 4 20 77 0 1 1 1 0.27 0.16 1 - - -
Set 5 37 686 0 1 1 1 0.20 0.11 0.97 - - -
Set 6 24 241 0 1 1 1 0.02 0.01 0.37 - - -
Set 7 83 0 88 0.92 1 0.96 - - - 0.92 1 0.96
Set 8 0 51 0 - - - 0.63 0.47 0.96 - - -
Avg. - - - 0.98 1 0.99 0.27 0.18 0.83 0.85 0.79 0.79

3.6.3 Data extraction

Three regex with an ideal fitness of one have been selected by the wrapper and its extraction
capabilities have been evaluated by means of the precision,recall and F-measure. The expe-
riments used a dataset composed by eight sets of documents from different origins containing
URLs, emails and/or phone numbers. Table 3.2 shows basic information about the datasets
and their average records and Table 3.3 contains some evolved regex with their fitness value.
Sets one, two and three are composed by examples extracted from the training set. The rest
of the sets are web pages retrieved from the Web classified by their contents. An extracted
string has been evaluated as correctly extracted if and onlyif it matches exactly the records,
otherwise it has been computed as a false positive.

The results, as can be seen in Table 3.2, are quite satisfactory for phone numbers and
testing sets, but measures get worse for real raw documents,specially the ones containing
URL records. Phone regex has a perfect extraction with a F-measure value close to 1. The
training set used to evolve regex contains phone numbers in asimple format(000)000−0000,
the same that can be found in the testing set, the reduction ofrecall in set 7 is due to the
presence of phone extensions that are not extracted.

On the contrary, measures achieved for URL extraction from raw documents are much
lower. It can be explained looking at the regex used in the extraction,http://\w+\.\w+\.com.
Documents used in the test contain many URLs with paths, so the regex is able to partially
extract them, increasing the count of false positives. The result is a poor precision. An
explanation of the poor recall measures in URLs extraction is found in the fact that the
evolved regex only is able to extract URL whose first level domain is .com, so its recall in
documents with a high presence of first level domains of any other form is worse.

Finally, email regex achieves an average F-measure of0.85. Some of the factors that
limits the URL regex extraction capabilities are also limiting email regex. However in this
case the effects are not so severe for a number of reasons, forinstance the lower percentage
of addresses with more than two levels.

3.7. OTHER APPROACHES TO DISTRIBUTED INFORMATION INTEGRATION 63

Table 3.3: Some examples of evolved regular expressions with their fitness values.

Evolved regex (Phone) Fitness

\w+ 0
\(\d+\) 0.33
\(\d+\)\d+ 0.58
\(\d+\)\d+-\d+ 1

Evolved regex (URL) Fitness

http://-http://http:// 0
/\w+\. 0.55
http://\w+\.\w+\ 0.8
http://\w+\.\w+\.com 1

Evolved regex (Email) Fitness

\w+\. 0.31
\w+\.\w+ 0.49
\w+@\w+\.\com 1

3.7 Other approaches to distributed Information Integration

The use of ontologies [100] has attracted the attention of the data integration community
over the last years. It has provided a tool to define mediated schemas focused on knowledge
sharing and interoperability, in contrast with traditional database centric schemas, whose
goal is to query single databases [232]. The adoption of ontologies has lead to reuse results
achieved by two communities such as the database and the AI communities to solve similar
problems like schema mapping or entity resolution. A deep discussion about the role of
ontologies in data integration can be found in [183].

We can define a collection of semantic solutions based on ontology technologies prior to
the development of the SW. An introduction to this group of solutions can be found in [238].
We can highlight classical literature examples such as InfoSleuth [181] or SIMS [132]. From
these systems, we have to single out InfoSleuth, a solution that uses a MAS.

Semantic integration tools in the last years have adopted WSstandards and technolo-
gies. One of the first ones can be found in [234]. Vdovjak proposes a semantic mediator
for querying heterogeneous information sources, but limited to XML documents; further-
more, this solution relies on a wrapper layer that translates the local entities into XML and
only then the RDF is generated. A step forward is achieved by Michalowski with Building
Finder [168], a domain specific mediator system aimed at retrieving and integrating infor-
mation about streets and buildings from heterogeneous sources, presented to the user within
satellite images. [253] describes an information integration tool that covers all the phases of
integration, such as assisted mapping definition and query rewrite.

Another newcomer into the IT toolbox is the Web Services technology. WS provide a
means to access services in a loose coupling way. Despite WS and the SW face different

64 CHAPTER 3. EC FROM AN APPLIED PERSPECTIVE

Table 3.4: Comparison of semantic information integrationtools.

Platform Agent
support

Semantic
Web

Web Ser-
vices

Interdomain
support

InfoSleuth Yes No No Yes
SIMS Yes No No Yes
Building Finder No Yes No No
SODIA No Yes Yes Yes
Knowledge Sifter Yes Yes Yes Limited
Searchy Yes Yes Yes Yes

problems -one models and represents knowledge while the other one is concerned with ser-
vice provision-, they are related by means of semantic descriptions of WS throught Semantic
Web Services. In this way WS are enhanced with semantic descriptions, enabling dynamic
service composition and data integration [68].

A semantic integration solution based on SOA is SODIA (Service-Oriented Data Integra-
tion Architecture) [255]. It supports some integration approaches such as federated searches
and datawarehouses. By using a SOA approach, SODIA has many of the benefits of using
an agent technology. However, this is a process centric solution and has limited seman-
tic support. The most aligned solution to the one described in this chapter is Knowledge
Sifter [129]. It consists of an agent based approach that uses OWL to describe ontologies
and WS as interface to the agents’ services. Despite the lackof semantic support, WS in-
tegration or distributed nature, we have to mention the system proposed by [211], able to
automate the full integration process by creating the mediated schema and schema mapping
on-the-fly. Another interesting integration suite relatedto bioinformatics domain that could
be mentioned is INDUS [51].

Table 3.4 compares some representative federated ontology-driven search solutions. The
scope of table 3.4 is limited, however some relevant facts are shown. It depicts whether the
integration system is supported by agents, it uses any WS or SW technology as well as the
degree of specialization of the tool.

3.8 Conclusions

We have described a semantically enabled extraction and integration agent-platform named
Searchy. This platform basically works as a wrapper container that can be extended using
almost any extraction algorithm. Using its capabilities, anew evolutive wrapper based on
GAs was introduced. This wrapper, using a set of positive andnegative examples tries to
generate a regex able to accept the positive examples while rejecting the negative ones. Then,
the wrapper is able to extract information using the regex and integrate it. Perhaps the most
relevant contribution of the chapter is an algorithm based on Zipf’s law used to build an
alphabet of symbols that are used in the regex.

However, the results of this chapter should be carefully interpreted. There are some
concerns about the experimental design that should be considered. Firstly, there is a strong

3.8. CONCLUSIONS 65

dependence between the capabilities of the algorithm and the training dataset that feeds it.
In order to make fair experimentation, the effect of the dataset should be taken into account.
For this reason, a common practice in Machine Learning is theuse of cross-validation, but
is has not been applied in the work reported in this chapter, and therefore we cannot exclude
the possibility of biased results by the dataset composition.

There are also more substantial concerns. This chapter had astrong engineering flavor
since it deals with the development of new methods, and it naturally leads to an “algorithm
race” research [112], where the research question deals with which algorithm has better
performance. But this question is naturally evil: there areserious issues about the posibility
to draw a scientifically solid answer to that question. Thereare too many factors to take into
account, such as datasets or parameter settings, to make a fair comparison. Even in the case
that the experimental design was solid, the conclusions that would be obtained could not be
generalized.

In addition to these concerns, there are also some pitfals. For instance, Figure 3.6 de-
picted the success probability of several GAs as a way to compare algorithms. However,
this is not a sound comparison method. The figure shows the central tendency of the success
probability, but does not characterize the variability of the data. Only with the information
provided by the figure, we cannot know if the result if due to the randomness or, on the
contrary, if reflects well the reality. For this reasons, Figure 3.6 should be used with care in
order to support any claim of that nature. More robust statistical methods, like the ones that
are described in chapter 4, are needed.

From the perspective of the algorithm, we have some additional concerns. Despite the
success of this platform as wrapper container, several issues emerge from the use of EC to
evolve regex. Perhaps the most important has a very basic nature: there are a whole set
of domain specific algorithms with good performance able to solve this problem. These
algorithms exploit the underlying nature of regular expressions, which are DFAs. Due to
the No-Free Lunch theorem, it is difficult for a non-specialist algorithm such as an EA to
outperform good specialist algorithms, such as ESDM [142, 141, 153, 57].

In particular, GAs are not well suited for this task. The linear representation used in
GAs does not map naturally to regex. This observation motivated us to move forward to
tree-based Genetic Programming, which has a representation closer to regex. In order to
compare the standard algorithm and some variations that we introduced, we begun using
Koza’s computational effort, and we observed a high variability in the results. Given this
variability, we had difficulties to find differences in the algorithms that we were analyzing.
Intrigued by this fact, we begun to study what was happening,finding that there were several
problems with the measure. In this way, the main research question of the dissertation was
stated. The next chapter begins with the study of Koza’s computational effort, focusing on
one of its fundamental components: the estimation of a probability.

66 CHAPTER 3. EC FROM AN APPLIED PERSPECTIVE

Chapter 4

Estimation of the success rate in
Evolutionary Computation

Oh, people can come up with statistics to prove anything.
14% of people know that

Homer J. Simpson

In this chapter we aim to characterize the statistical properties of the static estimation
of the success probability, which we namesuccess rate(SR). Therefore, SR is the success
probability when the algorithm is run for a certain fixed time. In particular, and without
loss of generality, we consider that SR is the success probability at the end of the run of
an algorithm, when the finish condition is given by a time limit. The characterization of
the SR is interesting by its own, given that this is a measure widely used in Evolutionary
Computation (EC). A better knowledge about the estimation of SR would provide a basis to
introduce more robust statistical methods. In addition, this characterization is used by futher
chapters of this PhD thesis in order to develop a time-dependent model of success probability
(chapter 5), and characterize the error associated to the estimation of Koza’s computational
effort (chapter 6).

Along the chapter we provide theoretical and empirical evidences strongly suggesting
that the number of success runs in an Evolutionary Algorithm(EA) (and therefore the SR)
can be modeled using a binomial distribution. Binomiality of SR implies that all the sta-
tistical tools available for binomial distributions can also be used with SR. We review the
statistical literature about one of these tools, binomialconfidence intervals(CIs) and char-
acterize the quality of several methods in the context of EA.In addition, due to its practical
interest, we provide a brief discussion of a method that determines the number of runs that
an EA should be run to generate CIs with a given quality.

The chapter is structured as follows. Firstly, we motivate the importance of SR in EC,
then we introduce the basic problem of estimating a probability. In section 4.3, we study the
statistical distribution that models SR, and we continue with a description of several meth-

67

68 CHAPTER 4. ESTIMATION OF THE SUCCESS RATE IN EC

ods described by the literature to calculate binomial CIs. Section 4.5 studies the performance
of several CIs methods in relation to the number of samples ofthe experiment and SR. In
section 4.6, we compare binomial CIs applied to some classical GP problems with CIs ap-
plied to theoretical binomial distribution. Section 4.7 briefly describes a method to estimate
the number of runs needed to build CIs of a given quality. We finish the chapter with some
conclusions.

4.1 The role of success rate

Several measures have been used in EC research [23]. The selection of one measure instead
of another one depends on the object of study, the algorithm and the goals of the experiment
designer [61, 257]. However, there are some common measuresthat are heavily used such as
mean best fitness or mean average fitness [79]. One of the most common ones is the SR. Due
to the stochastic nature of EAs, when an EA is run it might, or might not, reach a solution
that solves the problem it was designed for. SR is defined as the probability of an EA to find
such a solution, which is determined by imposing a success predicate, for instance, when an
individual achieves a certain quality. In other words, it isnot possible to use SR if there is
not a criteria to identify an enough good solution [76, 24].

SR should be used with caution. As Luke and Panait [159] noticed, fitness might not be
correlated with SR, and consequently it should not be used asa measure of the population
quality. Nonetheless, finding literature that reports SR asa quality measure of the population
is not too hard. In any case, SR provides an insight to the capabilities of the algorithm to find
a solution. Some times SR is not the measure of interest, but rather it is part of a complex
measure such as thecomputational effort[136] in Genetic Programming (GP). In this case
the accuracy of the complex measure depends on the quality ofthe estimation of SR.

One characteristic of SR as has been defined above is that it isdefined as a scalar, but the
value of the scalar cannot be known in the general case. It hasto be estimated. Angeline [6]
was the first person to observe this fact when working with computational effort, and sug-
gested that a measure about a stochastic process should takeinto account its random nature.
The same can be said of SR, a single point is not enough to characterize the stochastic nature
of this metric, and some additional information about its statistical properties should also be
reported, for instance, CIs. A number of issues arise when the stochastic nature of SR is
analyzed in detail.

4.2 Issues about the estimation of a probability

From the perspective of SR an EA experiment is just a Bernoulli trial: an EA run is just
an experiment whose outcome is a binary random variableX that can take two values, let’s
call them “success” or “failure”. SR is defined as the probability P (X = “success′′) = p,
and is described by the Bernoulli distribution. The most common case in EC is thatp is
unknown, which is precisely the parameter we want to estimate. The procedure to do it is
well known, the EA is repeatedn times yielding a numberk of successes andn− k failures,
then a probabilityp is computed asp = k

n . Actually, we have described a Bernoulli process,
a sequenceXi, i = 1, 2, ..., n of random variables that are the outcome of a sequence of

4.3. DETERMINATION OF THE STATISTICAL DISTRIBUTION OF SR 69

Table 4.1: Simulation of the estimation of the probability of getting heads when 1000 coins
are tossed.

Experiment Successesp̂i

1 483 0.483
2 531 0.531
3 594 0.594
4 521 0.521
5 513 0.513

Total 2642 2642
5000 = 0.5284

independent Bernoulli trials, and therefore they are described by a Bernoulli distribution.
Despite its simplicity, a number of trivial and non-trivialissues arise when this experiment
is analyzed in more detail.

Consider the next naı́ve experiment. We aim to empirically measure the probability of
obtaining head when a coin is tossed. Of course, if the coin isequilibrated and the experiment
is well implemented, that probability is1/2. But we want to study it empirically, so, we
try the experiment3 times and count the number of successes. In this case there are only
four possible outcomes,k ∈ {0, 1, 2, 3}, and thus there are only four probabilities that can
be estimated,̂p ∈ {0/3, 1/3, 2/3, 3/3}. All these estimated probabilities are far off the
expected probability of1/2. This trivial example shows that the real probabilityp cannot be
always known, actually being able to empirically obtain thereal probability is an exception
rather than a rule. It is because the experiment only is able to estimate a valuêp = k/n,
which is supposed to be close to the realp.

Five simulations of the experiment described above withn = 1000 is shown in Ta-
ble 4.1. It can be seen that even with a large number of experiments (1000 experiments), it
is not possible to provide an exact estimation ofp, each one of the five experiments yields
different values of̂p. Even if we average the probability of the five experiments (in this case
n = 5000), p̂ = 0.5284. Thus, providing a fixed value forp without any other informa-
tion is a partial view of the estimator, and one hardly can do sound claims in base of this
estimation [6]. A reference is needed about how far or closep̂ is expected to be fromp. In
order to obtain this information we previously have to studythe statistical properties of the
estimation of a probability, which is a well known problem inStatistics.

4.3 Determination of the statistical distribution of SR

Regardless of the particular nature of the EA under study, the estimation of the success
probability of an EA consists in running the experimentn times, use a heuristic to identify
whether a particular run has been successful, and then countthe number of successful runs
in generationi ∈ N

+, k(i). Finally, the estimation is calculated asp̂(i) = k(i)/n.
We are usually interested inp(i) when the experiment has finished. So, for clarity and

without loss of generality, if the algorithm has been run forG generations, we define SR as
SR = p(G). How p(i) depends on time is a different topic that, for the specific case of GP,
is addressed in [16].

70 CHAPTER 4. ESTIMATION OF THE SUCCESS RATE IN EC

Number of successes (k)

D
en

si
ty

0.
00

0.
10

0.
20

0.
30

0 2 4 6 8 10

n=30
Artificial ant

0.
00

0.
10

0 5 10 15

n=50
Artificial ant

0.
00

0.
05

0.
10

5 10 15 20 25

n=100
Artificial ant

0.
00

0.
04

0.
08

20 30 40 50

n=250
Artificial ant

0.
00

0.
02

0.
04

40 50 60 70 80 90

n=500
Artificial ant

0.
00

0.
02

100 120 140 160

n=1000
Artificial ant

0.
0

0.
2

0.
4

0 2 4 6

n=30
5−Parity

0.
0

0.
1

0.
2

0.
3

0 2 4 6 8 10

n=50
5−Parity

0.
00

0.
10

0.
20

0 5 10

n=100
5−Parity

0.
00

0.
05

0.
10

0.
15

5 10 15 20 25

n=250
5−Parity

0.
00

0.
04

20 30 40 50

n=500
5−Parity

0.
00

0.
02

0.
04

0.
06

40 50 60 70 80

n=1000
5−Parity

0.
0

0.
2

0.
4

0.
6

24 26 28 30

n=30
6−Multiplexer

0.
0

0.
1

0.
2

0.
3

42 44 46 48 50

n=50
6−Multiplexer

0.
00

0.
10

0.
20

90 95 100

n=100
6−Multiplexer

0.
00

0.
10

225 230 235 240 245

n=250
6−Multiplexer

0.
00

0.
04

0.
08

465 475 485

n=500
6−Multiplexer

0.
00

0.
04

940 950 960 970 980

n=1000
6−Multiplexer

0.
00

0.
10

5 10 15

n=30
Regression

0.
00

0.
05

0.
10

0.
15

5 10 15 20 25

n=50
Regression

0.
00

0.
04

0.
08

15 20 25 30 35 40 45

n=100
Regression

0.
00

0.
02

0.
04

50 60 70 80 90 100

n=250
Regression

0.
00

0.
02

120 140 160 180

n=500
Regression

0.
00

0
0.

01
5

260 280 300 320 340

n=1000
Regression

Figure 4.1: Histograms of̂pbest for different simulated sample sizes for Santa Fe Trail
(p̂best = 0.13168), 5-parity (̂pbest = 0.061), 6-multiplexer (̂pbest = 0.95629) and regres-
sion (̂pbest = 0.29462). The binomial density distribution Bin(̂pbest, n) is shown overlapped
with black points.

If we assume that the experiments are independent, which is not a very restrictive as-
sumption, measurinĝp is equivalent to estimating the number of successesk in n indepen-
dent experiments. It is well known in statistics that the numberk of successes is a random
variable described by a binomial distribution, and thus theprobability of gettingk successes
in n trials is given by:

Bin(k, n) =

(
n

k

)
pk(1 − p)n−k

wherep = k/n, C(n, k) = n!
k!(n−k)! andk ∈ {0, 1, 2, ..., n}.

It is straightforward to deduce the binomial distribution function. Givenn experiments,
there will bek successes andn − k failures, if the success probability isp then, by defini-
tion, the probability of failure is1 − p, the probability of gettingk successes ispk and the
probability of gettingn − k failures is(1 − p)(n−k). Therefore the probability of gettingpk

andn− k failures ispk(1− p)(n−k). Moreover, the order in which successes appear is not a
matter, they can appear in any combination of successes and failures, and there areC(n, k)
combinations, so we conclude that the probability of getting k successes inn experiments
when the success probability isp is given byC(n, k)pk(1 − p)(n−k), which is the binomial
probability mass function.

So it can be deduced that the probability of gettingk successes fromn runs in an EA

4.3. DETERMINATION OF THE STATISTICAL DISTRIBUTION OF SR 71

Table 4.2: Tableau for the problems under study: Artificial Ant with the Santa Fe trail, 6-
multiplexer, even 5-parity and symbolic regression without ERC.

Parameter Artificial ant 6-multiplexer 5-parity Regression
Population 500 500 4,000 500
Generations 50 50 50 50
Terminal Set Left, Right,

Move, If-
FoodAhead

A0, A1, A2,
D0, D1, D2,
D3, D4, D5

D0, D1, D2,
D3, D4

X

Function set Progn2,
Progn3,
Progn4

And, Or, Not,
If

And, Or,
Nand, Nor

Add, Mul,
Sub, Div,
Sin, Cos,
Exp, Log

Success predicatefitness = 0 fitness = 0 fitness = 0 fitness ≤
0.001

Initial depth 5 5 5 5
Max. depth 17 17 17 17
Selection Tournament

(size=7)
Tournament
(size=7)

Tournament
(size=7)

Tournament
(size=7)

Crossover 0.9 0.9 0.9 0.9
Reproduction 0.1 0.1 0.1 0.1
Elitism size 0 0 0 0
Terminals 0.1 0.1 0.1 0.1

Non terminals 0.9 0.9 0.9 0.9
Observations Timesteps=600 Even parity No ERC

y = x4 +
x3 + x2 + x
x ∈ [−1, 1]

experiment is described by a binomial distribution. A binomial depends on two parameters,
k andn, and thus the properties of the estimator ofp is independent of the domain and the
type of EA used. We can completely characterize the estimator if the number of runs and
number of successes are known, which is the common situationin EC. More importantly,
the properties of the estimator do not depend on the algorithm internals, following that this
is of general application to any EA.

In order to get empirical evidence to support our claim we have selected four GP prob-
lems: Artificial ant with the Santa Fe Trail, 6-multiplexer,5-parity and a symbolic regression
problem with no ephemeral random constants (ERCs). These are classical problems pro-
posed by Koza [136] and are widely used by GP literature. We have run the experiments
with a standard tree-based GP algorithm using ECJ v18 and itsdefault parameter settings.
The main parameters used in the GP executions are shown in Table 4.2.

Experimentation without any trick would require a huge number of runs, so, we used
bootstrapping [59]. A large number of100, 000 runs were executed (this number is reduced
to 5, 000 for the 5-parity problem due to computational resource limitations), and its result

72 CHAPTER 4. ESTIMATION OF THE SUCCESS RATE IN EC

220 240 260 280 300

22
0

26
0

30
0

Santa Fe trail Q−Q Plot

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

1880 1900 1920 1940

18
80

19
10

19
40

6−multiplexer Q−Q Plot

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

100 120 140

10
0

12
0

14
0

16
0

5−parity Q−Q Plot

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

540 580 620 660

54
0

58
0

62
0

66
0

Regression Q−Q Plot

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s
Figure 4.2: Quantile plot of four classical GP problems (Santa Fe Trail, 5-parity, 6-
multiplexer and regression with no ERC) against a binomial distribution Bin(p̂best, 1000)
(p̂best is, respectively,0.13, 0.06, 0.96 and0.29, see Table 4.3).

stored in a dataset. These datasets are used later to bootstrap p̂ with different values ofn.
Sincep is not known, we have approximated it with a precise estimation p̂best, which used
the whole datasets. This precise estimation was used as the realp for comparison purposes.
Table 4.3 showŝpbest, k, n and confidence intervals forα = 0.05 andα = 0.01 calculated
with different methods introduced in the section section.

We first aim to compare graphically experimental results andthe binomial distribution
Bin(p̂best, n). The procedure is the following one. First, we simulate2, 000 experiments
bootstrapping2, 000 values ofk. Each one of these values is calculated resampling with
replacementn runs contained in the dataset and counting the number of suscessful runs.
This procedure is repeated for eachn ∈ {30, 50, 100, 250, 500, 1000}. After that, there will
be2, 000 simulated experiments withn runs each one, and a total number of2, 000 values
of k. These values ofk were represented in an histogram usingn as a factor.

The histograms of the four problems under study are depictedin Figure. 4.1. The black
points in the figure shows the binomial distributionBin(p̂best, n). It can be seen that the em-
pirical number of successes follows closely the theoretical binomial distribution in the four
problems and all values ofn, even for the small ones, which is an evidence of binomiality.

In order to provide additional graphic evidence to support our claim, Figure 4.2 shows
a quantile plot of the four problems considered in this study. Quantile plots represent the
number of successes of2, 000 bootstrapped values ofk with n = 1000, as was described
above, against the theoretical number of successes obtained from the binomial distribution
Bin(p̂best, 1000). The plots show a linear relationship, which suggests the correctness of the

4.3.
D

E
T

E
R

M
IN

AT
IO

N
O

F
T

H
E

S
TAT

IS
T

IC
A

L
D

IS
T

R
IB

U
T

IO
N

O
F

S
R

73

Table 4.3: Best estimation of success probability (p̂best), number of successes (k) and number of runs (n) for the four GP problems under
study, and their confidence interval (CI) calculated with the standard (Std), Agresti-Coull (AC) and Wilson (Wil) methods using confidence
levelsα = 0.05 andα = 0.01.

Artificial ant 6-multiplexer 5-parity Regression
p̂best 0.13168 0.95629 0.061 0.29462
k 13,168 95,629 305 29,462
n 100,000 100,000 5,000 100,000

CI Stdα=0.05 [0.1295842, 0.1337758] [0.9550228, 0.9575572] [0.05436622, 0.06763378] [0.2917945, 0.2974455]
CI Stdα=0.01 [0.12892566, 0.1344343] [0.9546247, 0.9579553] [0.05228174, 0.06971826] [0.2909067, 0.2983333]
CI ACα=0.05 [0.1295983, 0.1337900] [0.9550051, 0.9575399] [0.05468869, 0.06798535] [0.2918025, 0.2974533]
CI ACα=0.01 [0.12894997, 0.1344589] [0.9545939, 0.9579256] [0.05283056, 0.07033299] [0.2909204, 0.2983469]
CI Wilα=0.05 [0.1295984, 0.1337899] [0.9550052, 0.9575397] [0.05469723, 0.06797681] [0.2918025, 0.2974533]
CI Wilα=0.01 [0.12895008, 0.1344588] [0.9545942, 0.9579253] [0.05284989, 0.07031365] [0.2909204, 0.2983468]

74 CHAPTER 4. ESTIMATION OF THE SUCCESS RATE IN EC

binomial assumption. Quantile plots for other values ofn were depicted (not shown) with
the same result.

We performed a fit-of-goodness study with a Pearson’sχ2 test. This test evaluates
whether a set of samples comes from a population with a given distribution, aBin(p̂best, n)
in this case. Since the measure of Pearson’sχ2 test is random due to the resampling, all the
experiments have been repeated100 times and the p-value averaged. The test was performed
for n ∈ {15, 30, 50, 100, 250, 500, 1000}.

The results of the experiments for the four study cases understudy can be found in
in Table 4.4. It shows the mean p-value with its standard deviation and their difference.
We set the rejection criteria of the null hypothesis (population comes from aBin(p̂best, n)
distribution) asp− value− sd < α, i.e., the difference between the p-value and its standard
deviation was higher than a certain significance level, let us sayα = 0.05. Looking at the
results shown in Table 4.4 we can observe that almost all the p-values are around0.23, but
it tends to get lower values whenn is higher. Similarly, standard deviations get higher asn
increases. Two facts can explain this behaviour. First, therange of values that the random
variableBin(p̂best, n) is wider whenn is high, so it is logical that the dispersion of the p-
value was proportional ton. Secondly, effect size might have a role in the explanation of
the results. We should keep in mind thatp̂best is just an estimation of the real probability
associated to the GP problem, this discrepancy is more apparent whenn is high, so it is
logical that the p-value got lower values.

Looking at Table 4.4 we only find evidence to reject null hypothesis in four cases, all
of them with high values ofn. The results of the testing in the rest of the cases does not
provide enough evidence to lead us to reject our initial hypothesis. Due to the reasons de-
scribed above, we argue that the few cases where null hypothesis is rejected are type-I errors,
concluding that Pearson’sχ2 test supports our claim.

In conclusion, there are strong theoretical reasons to claim that success probability in
EAs is a random variable that can be modeled with a binomial distribution. All the expe-
riments carried out in four classical GP problems supports our claim for GP, histograms,
quantile plots and Pearson’sχ2 test for fit support the binomiality of the number of success-
ful runs in an EA experiment. Therefore, it seems to be reasonable to assume binomiality
until section 4.6, where this issue is resumed and additional evidence provided. One of the
most notable consequences of the binomial nature of SR is that the statistical methods de-
veloped for binomial can be applied to SR in the context of EA.One of these methods is
confidence intervals.

4.4 Binomial confidence intervals

Using a binomial distribution to model the SR of EAs entails several benefits, one of them
is that all the extense literature about binomials can be applied. In particular, the problem of
estimating the SR of an EA can be generalized to the problem ofestimating the parameters
of a binomial distribution, which has been a subject of intense research in Statistics. Any
estimator has a certain associated uncertainty, so, reporting only the value of the estimator
provides only a part of the story. It is necessary to provide additional information about that
uncertainty. A powerful tool to characterize it is CIs. Our goal is to get a basic understanding

4.4.
B

IN
O

M
IA

L
C

O
N

F
ID

E
N

C
E

IN
T

E
R

VA
LS

75

Table 4.4: Pearson’sχ2 goodness-of-fit against a binomial distribution withα = 0.05. 1, 000 p-values were calculated, each one with200

simulated experiments. Average p-values (p − val), standard deviation of p-values (sd) and their difference(diff = p − val − sd) are
shown. Data that drives to reject the null hypothesis (p − val − sd < 0.05) is marked with bold letters.

N
Santa Fe 6-Multiplexer 5-Parity Regression

p − val sd diff p − val sd diff p − val sd diff p − val sd diff
15 0.2275 0.0032 0.2243 0.2206 0.0789 0.1417 0.2211 0.0042 0.2169 0.2331 0.0152 0.2179
30 0.2303 0.0243 0.206 0.2242 0.0060 0.2182 0.2279 0.0041 0.2238 0.2425 0.0203 0.2222
50 0.2374 0.0197 0.2177 0.2293 0.0053 0.224 0.2327 0.0048 0.2279 0.2453 0.0382 0.2071
100 0.2355 0.0535 0.182 0.2342 0.0285 0.2057 0.2383 0.0125 0.2258 0.2316 0.0809 0.1507
250 0.2397 0.1155 0.1242 0.2420 0.0249 0.2171 0.2300 0.06310.1669 0.2132 0.1535 0.0597
500 0.1885 0.1479 0.0406 0.2326 0.0756 0.157 0.2348 0.1044 0.1304 0.1303 0.1629-0.0326
1000 0.1279 0.1813 -0.0534 0.2109 0.1301 0.0808 0.2041 0.1006 0.1035 0.0407 0.1006-0.0599

76 CHAPTER 4. ESTIMATION OF THE SUCCESS RATE IN EC

of how to use binomial CIs in the context of EAs, with a focus ontheir properties.
CIs for binomial distribution is a well studied problem due to its wide range of practi-

cal applications, so, it is not surprising that there are many methods to calculate binomial
CIs [44], and rigorous comparisons have been published [179, 44, 45, 190, 235, 207]. A
binomial distribution is fully described by two parameters: the number of trials (n), and the
number of successes (k). Alternately, the success probabilityp can also be used, which can
be directly calculated fromn andk simply asp = k/n. It is interesting from the perspective
of EC because it decouples its study from the particular EA used. Only these two parame-
ters are needed in order to fully describe the statistic properties of the CI, regardless of the
internal dynamics of the EA and its particularities. One of the parameters in the binomial
distribution,n, is usually known by the EA practitioner, while the SR,p, is usually unknown
and thus it is the parameter that we are usually interested toestimate.

4.4.1 Description of the CIs methods under study

There are numerous binomial CIs calculation methods, and including all in this study would
be unrealistic, so, we have selected those ones that we consider more representative due to its
wide use or its presence in the literature. We have selected four methods: standard, “exact”,
Agresti-Coull and Wilson. A brief introduction to these methods follows.

Standard interval. Also known asasymptotic method, normal approximationor Wald
interval. It is the best known, oldest [145] and extended method, eventhe name represents
how extensive the usage is. It is well known that a binomialBin(p, n), whennp is large
enough (usuallynp > 30), approximates a normal distributionN(np, np(1 − p)) (see Fig-
ure 4.1). Therefore if the binomial approaches a normal, it is possible to generate intervals
with the same method used with the normal distribution [239]. Although this method has
been widely reported to suffer several flaws [44, 179, 240, 241], it is widely used due to its
simplicity and its presence in basic Statistics books. The standard interval is given by

p ± zα/2

√
p(1 − p)

n
(4.1)

wherezα/2 is the upper-α/2 critical point from N(0, 1) and whose values can be found
tabulated in statistical tables as well as statistical packages. One drawback that the standard
interval presents is that this interval cannot be calculated whenp is 0 or 1.

Clopper-Pearson or “exact” interval. This interval is described as “exact”, with quotes,
because it is deduced from the binomial distribution. Ironically, despite its name, its discrete
nature makes this method unnecessarily conservative, and therefore far from being exact.
The limits [L,U] of the ”exact” interval [58] are given by the solution top of the equa-
tionsP (bin(n, pU) ≤ X) ≥ α

2 andP (bin(n, pL) ≥ X) ≥ α
2 , which yields the following

equations:

k∑

k=0

(
n

k

)
pk

U (1 − pU)n−k =
α

2

n∑

k=x

(
n

k

)
pk

L(1 − pL)n−k =
α

2

4.4. BINOMIAL CONFIDENCE INTERVALS 77

The solution of these equations is not trivial and can be expressed using the beta distribution
as follows.

LCP (k) = B(α/2; k, n − k + 1)

UCP (k) = B(1 − α/2; k + 1, n − k)
(4.2)

whereB(α; a, b) stands for theα quantile of aBeta(a, b) distribution. Sometimes the ”ex-
act” interval is expressed as a function of the F-distribution, due to its relationship with the
beta distribution:

LCP (k) =

[
1 +

n − k + 1

kF2k,2(n−k+1),1−α/2

]−1

UCP (k) =

[
1 +

n − k

(k + 1)F2(k+1),2(n−k),α/2

]−1

whereFa,b,c represents the1 − c quantile from the F distribution with degrees of freedoma
andb.

Agresti-Coull interval . Also known asadjusted Wald, a term introduced by the orig-
inal paper of Agresti and Coull [2]. This is a modification of the standard interval where
some pseudo-observations are added to (4.1). In this way, instead of calculating the standard
interval usingn andp computed asp = k/n, Agresti-Coull uses̃p andñ calculated as

p̃ =
(k + 1

2z2
α/2)

(n + z2
α/2)

and
ñ = (n + z2

α/2)

then, the standard interval is calculated as in (4.1), but using p̃ andñ instead ofp andn,

p̃ ± zα/2

√
p̃(1 − p̃)

ñ
(4.3)

It should be pointed out that for a common case whereα = 0.05, thenz2
α/2 ≈ 2 and thus̃p

andñ can be simplified tõp = (k+2)/(n+4) andñ = (n+4). Consequently it is equivalent
to adding two failures and two successes. In this way the probability remains unchanged,
and the calculus of the CI is the same than the standard intervals, but their properties are
significantly improved.

It is interesting to note that the center of the interval is not given byp̂ = k
n , as usual, but

rather byp̂ = (k + 1
2z2

α/2)(n + z2
α/2)

−1, which is not placed in the center of the interval.
Nevertheless, asn is increased (and indirectly alsok), the center of the interval tends to
be closer top̂ = k

n , so increasing the number of experiments generates more symmetric
intervals.

Wilson interval . Also known as thescoremethod. Wilson interval [247] is derived from
a normal approximation as the solutions to the equations(p̃ − p0)/

√
p0(1 − p̃)/n = ±z2

α/2
which is given by

CIW =
k + 1

2z2
α/2

n + z2
α/2

±
z2
α/2

√
n

n + z2
α/2

√

p(1 − p) +
z2
α/2

4n
(4.4)

78 CHAPTER 4. ESTIMATION OF THE SUCCESS RATE IN EC

The center of the Wilson interval has the same form as Agresti-Coull, so we can point out
the same considerations about it. Actually, whenα = 0.05 Wilson intervals are quite similar
to Agresti-Coull.

4.4.2 Discussion about CI methods

Many authors have studied the performance of CI methods using rigorous statistical ap-
proaches [179, 44, 45, 190, 235, 207]. Brown [44] recommends, for smalln (40 or less),
Wilson or Jeffreys (a variation of Bayes intervals, not covered here) methods, while for large
n values (more than 40) he recommends also Agresti-Coull. Similarly, Piegorsch [189] re-
marks that while Wilson and Jeffreys perform better whenn < 40, the rest of methods are
similar for higher values ofn.

Some GP studies have been focused in the more specific problemof estimating the com-
putational effort, [240, 241, 180], all of them have noticedthe poor performance of normal
approximation, and recommend the use of Wilson. These studies apply several CIs methods
to computational effort, nevertheless they use a pure experimental approach, without a theo-
retical or statistical justification to support the methodsused. It is not considered that some
of the CIs studied, such as Wilson, are supposed to be used with binomial distributions.

We aim to study the performance of the most significant binomial CI methods from a
systematic, general and problem independent point of view,and how its performance de-
pends onp andn. Once the behaviour of the CIs was understood in terms ofp andn, it is
easy to extrapolate the results to a EC experimental context.

4.5 Study on some confidence interval methods performance

This section, inspired by [44], analyzes the performance ofsome CI methods. We are
interested in showing the relationship between the two parameters of a binomial distribution
and how they influence the performance of the CI. We use two related metrics to measure
the performance of the CI methods, the coverage probabilityand the interval width.

On the one handcoverage probability(or CP) is defined as the probability of a CI to
containp, more formally,CP = P (L ≤ p ≤ U). It is worth noting that increasing the CP
of an interval is trivial, just increasing its width. Furthermore, the coverage of the CI[0, 1]
is always1 becausep must be contained in that interval by definition. On the otherhand CI
width (or CIW) is defined as the difference between U and L,CIW = U − L. Of course, a
tight interval is better than a wide interval, given that both have the same CP.

CP and CIW are closely related. There is a trade-off between CP and CIW, so CI methods
have to find a balance between them. A good CI is not that one with a CP next to1, but rather
a tight interval with a CP close to the nominal coverage1−α, i.e.,P (L ≤ p ≤ U) ≈ 1−α. If
an interval achieves a CP higher than the nominal one is at a cost of a wider interval. In terms
of EA experimentation, such a conservative method would lead, for example, to a higher
difficulty to detect significant differences between the SR of two algorithms. Understanding
the properties of CP and CIW might lead to designing better experiments related to SR and
composed measures such as computational effort.

4.5. STUDY ON SOME CONFIDENCE INTERVAL METHODS PERFORMANCE 79

P
ro

ba
bi

lit
y

(p
)

0.0

0.2

0.4

0.6

0.8

1.0

Number of trials (n)

20

40

60

80

100

C
P

0.2

0.4

0.6

0.8

P
ro

ba
bi

lit
y

(p
)

0.0

0.2

0.4

0.6

0.8

1.0

Number of trials (n)

20

40

60

80

100

C
IW

0.2

0.4

0.6

Figure 4.3: CP (left) and CIW (right) for various sample sizes (n) and SR (p) for standard CI
with confidence levelα = 0.05. Similar shape and fluctuations are found in the rest of the
methods.

4.5.1 CIs performance overview

The performance of an interval depends on the binomial parameters, but these parameters
are not independent. In order to get an initial glimpse to this question we need a huge set
of EA experiments as well as well as a strict control on the SR,which is quite difficult to
achieve in real EAs. So, instead of running EAs, we have simulated them.

Since parametersn andp fully describe the binomial CI of an EA, we do not have to
run the algorithm. From the SR point of view, the result of an EA experiment is binary.
Therefore we have characterized pseudo-EA runs with a set oflabels, ”success” or ”failure”.
For each probabilityp ∈ {i/2000∀i = 1, ..., 2000}, we generated a dataset with100.000
labels ”success” with probabilityp and ”failure” with probability1−p. Once the dataset was
created, we tookn pseudo-experiments2, 000 times, withn = 5, 6, ..., 100, and calculated
p̂i for each set of experiments. In summary, we bootstrappedp̂ using2, 000 resamples for
several combinations ofp andn. The CI withα = 0.05 was calculated using each method
under study and each combination ofp andn. Finally, CP and CIW were calculated. In this
way we simulated the execution of EAs varying number of runs and probabilities, yielding a
total of95 × 2, 000 × 2, 000 = 380, 000, 000 simulated EA runs.

The relationship between CIW,p andn can be seen in Figure 4.3 (right), where the CIW
of standard CIs withα = 0.05 is depicted. The shape of the figure is the same for the rest of
the methods under study, so we only show the diagram of one method. CIW is symmetric for
the planep = 0.5 due to the fact that these methods are equivariant, their limits for (n−k)/n
are complements of those fork/n [179]. The planep = 0.5 defines the symmetry of the
figure as well as the maximum of CIW. CIs are wider when SR is close to0.5, alternatively
the closer isp to its boundaries0 and1, the tighter is the interval. It is explained by the
constraints that the boundaries introduces to the calculation of the interval. Looking at the

80 CHAPTER 4. ESTIMATION OF THE SUCCESS RATE IN EC

behaviour of CIW withn, we can observe that CIW is monotonically decreasing, whether
the number of runs is increased there is additional information that is used to build tighter
intervals. Of course, the price of such improvement is an increase of the number of runs and
computational resources.

Figure 4.3 (left) depicts the coverage of standard CIs for several values ofp andn. It
can be seen that Figure 4.3 (left) depicts a rather chaotic behaviour, with many peaks and
valleys without a clear pattern. We will show later that thisbehaviour is not actually chaotic
but rather the low resolution of Figure 4.4 which hides some phenomena very characteristic
of binomial CIs. It will be analyzed in detail in the next section.

Some patterns can be found in Figure 4.3 (left). In particular, it is pretty clear that low
coverage is associated to a low number of trials or a SR close to 0 and1. This fact is also
observed in the other methods and is intrinsic to the nature of the binomial distribution.
However, there are quantitative differences among the methods. In the case of the standard
interval the effects of lown values are dramatic because the normal approximation is no
longer valid. This behaviour is consistent with the one found in CIW: the wider is the CI, the
less restrictive it is, and thus it is more likely that the real p was contained in the interval.

The rest of the methods present the same high level behaviourdescribed above, so all
of them share some common properties which seem to be intrinsic to the problem, however,
their performance differs significantly when analyzed in detail. It worths exploring this issue.

4.5.2 Coverage of CIs

An analysis of CP shows some remarkable facts. Figure 4.4 represents the coverage surface
of the methods under study forn between20 and200 in steps of1 andp takes2, 000 values
between0 and1. CP was calculated using R’s functionbinom::binom.coverage().

Figure 4.4 shows that the chaotic behaviour of CP seen in Figure 4.3 (left) actually fol-
lows a pattern with symmetry in the axisp = 0.5. The low resolution and sampling noise
of Figure 4.3 (left) hid this pattern. As was previously seen, regardless of the used method,
there are some areas with poor performance in terms of CP placed on the boundaries ofp and
low values ofn. Coverage is particularly low in the bottom corners of the graph, where both,
n andp have negative influence on CP. This is a low coverage area, where simply there is not
enough information to define reliable intervals. However, the coverage of the standard inter-
val is dramatically poor CP in these corners in relation to the rest of the methods. Coverage
of standard intervals achieves extremely low values whenn < 15 andp < 0.1.

A new, and striking, phenomenon that was not observed previously in Figure 4.3 (left)
is the presence of oscillations in the coverage regardless the CI method used. These oscil-
lations are a well known phenomena [44, 2] and they are generated by the discreteness of
the binomial distribution. The magnitude of the oscillations has a great impact in the overall
performance of the CI method. Oscillations appear in Figure4.4 as waves whose magnitude
is inversely proportional to the value ofn. The magnitude of the oscillations also depends
onp, and it is, like CP and CIW, symmetrical with respectp = 0.5.

Despite the fact that CP presents oscillations regardless the method being used, their
magnitude changes. It is clear that, for instance, standardintervals coverage oscillates
strongly whenn is low in comparison to the rest of the methods. Wilson and “exact” methods
contains coverage oscillations less pronounced than thosein the standard method.

4.5. STUDY ON SOME CONFIDENCE INTERVAL METHODS PERFORMANCE 81

Figure 4.4: Dependence between coverage,n andp for CI methods under study: standard,
“exact”, Agresti-Coull and Wilson, all calculated withα = 0.05. X-axis represents success
probability, p, while y-axis represents the number of runs,n. Coverage values lower than
0.92 have been represented in black, while coverage that equals the nominal value0.95 is
ploted in white.

82 CHAPTER 4. ESTIMATION OF THE SUCCESS RATE IN EC

W
ils

on
 C

P
0.

85
0.

90
0.

95
1.

00

n= 20

"E
xa

ct
"

C
P

0.
85

0.
90

0.
95

1.
00

S
ta

nd
ar

d
C

P
0.

85
0.

90
0.

95
1.

00
A

gr
es

ti−
C

ou
ll

C
P

0.
85

0.
90

0.
95

1.
00

0.0 0.2 0.4 0.6 0.8 1.0
p

n= 50

0.0 0.2 0.4 0.6 0.8 1.0
p

n= 100

0.0 0.2 0.4 0.6 0.8 1.0
p

n= 500

0.0 0.2 0.4 0.6 0.8 1.0
p

Figure 4.5: Comparison of CP for different CI methods (Wilson, “exact”, standardand
Agresti-Coull) and number of samples (20, 50, 100 and 500). The nominal coverage,
α = 0.95, is represented with an horizontal grey line.

4.5. STUDY ON SOME CONFIDENCE INTERVAL METHODS PERFORMANCE 83

0.0 0.2 0.4 0.6 0.8 1.0

0.
85

0.
95

Wilson

p

C
P

0.0 0.2 0.4 0.6 0.8 1.0

0.
85

0.
95

"Exact"

p

C
P

0.0 0.2 0.4 0.6 0.8 1.0

0.
85

0.
95

Standard

p

C
P

0.0 0.2 0.4 0.6 0.8 1.0

0.
85

0.
95

Agresti−Coull

p

C
P

Figure 4.6: Empirical CP measured for simulated GP experiments whenn = 20 andα =
0.05. This coverage has the same shape than the nominal coverage shown in Figure 4.5, but
contamined by noise generated by the measurement.

It is important to verify how close is CP to the nominal coverage. This point can be
appreciated more clearly in Figure 4.5, which shows several“cuts” of the coverage surfaces
at some values ofn. In this way we obtain a detailed view of the oscillations. Anideal CI
method would generate intervals with a CP equal to the nominal one, nevertheless it is clear
looking at Figure 4.5 that the real coverage is far from beingequal to the nominal one,0.95
in this case.

There are some common characteristics of the oscillations for all the methods under
study. The magnitude of the oscillations and its shape is directly related ton. Whenn is
large, for instance500, CP gets a rather flat shape with small oscillations and CP gets pretty
close to the nominal coverage. Looking at Figure 4.5 we conclude that, in the same line than
the ones reported by [44], whenn is large enough the differences of coverage properties of
the CI methods under study are not significant.

Each method exhibits some particularities in the behaviourof their coverage. “Exact”
intervals coverage is always higher than the nominal one. This conservatism produces wider
intervals, as will be shown later. On the contrary, standardintervals coverage is lower than
the nominal coverage, indeed whenn is low, the coverage is much lower. Even whenn =
100, which is a relatively high number of trials, its performance in the boundaries ofp is
poor compared to the other methods. Agresti-Coull intervaldoes not exhibit such a clear
behaviour. It has areas where CP is higher than the nominal one, and other areas where CP
is lower, however it tends to be more conservative in the boundaries ofp. Finally, Wilson
intervals show good coverage properties close to1 − α and it is neither conservative nor
liberal.

It is worth comparing the exact CP with those obtained in the simulated executions of GP.
Figure 4.6 depicts coverage diagrams obtained by the experiment described in the beginning
of the section forn = 20. It can be seen that Figure 4.6 fits nicely with the analyticalcov-
erage represented in Figure 4.5, with the only exception of ahigh frequency noise produced
by the sampling. Given that the CP diagram shown in Figure 4.6is itself the estimation of a
probability, the existence of this noise is now surprising.In any case, it seems clear that the
shapes of both diagrams follow the same pattern, and thus theunderlying probability distri-
bution is likely to be the same, i.e., a binomial distribution, providing additional support to

84 CHAPTER 4. ESTIMATION OF THE SUCCESS RATE IN EC

our hypothesis.

4.5.3 Average CP

Some characteristics of the coverage properties can be better viewed using average val-
ues of CP, as they are shown in Figure 4.7. It shows the CP averaged for 1, 000 values
of p between0 and 1 (top) and values ofn between5 and 49 (bottom). We used the
binom::binom.coverage() function from the Rbinom package.

Figure 4.7 (top) shows how for low number of runs average coverage is degradated in all
the methods, nevertheless, it does not affect equally to all. Standard method has very poor
average performance whenn is low. On the contrary, “exact” method presents a rather high
average CP for small number of runs, which is consistent withthe conservative behaviour of
this method previously observed. Agresti-Coull method is also quite conservative, however
less than the “exact” method, its average CP is close to the nominal one. Finally, Wilson CIs
have an outstanding performance with a low number of runs. Whenn is very low, arround5,
its average CP is close to the one in the “exact” method, nonetheless it dramatically decreases
for higher number of runs, achieving an average CP very closeto the nominal one.

It is interesting to observe the average CP when the number ofruns is high. Figure 4.7
(top) shows that increasing the number of runs tends to reduce the difference among the
methods, but not to the point of diluting all the differences. Even for a relative high number
of runs (n ≈ 100), the standard method has a disappointing performance withan average
CP much lower than the nominal one. A glance to Figure 4.5 shows that the low average CP
is due to its poor performance in the boundaries ofp. In opposition to the standard method,
the “exact” method tends to generate conservative intervals even with high number of runs.
Agresti-Coull and Wilson are the methods that are closest tothe nominal coverage whenn
is high, with a small advantage to Wilson.

Figure 4.7 (bottom) adds a complementary perspective whereCP has been averaged
for values ofn between5 and 49. Standard method has very poor coverage properties,
dramatically poor whenp is close to0 or 1. To be honest, it should be pointed out thatn
values used to average is rather low, just where its performance is worse. The conservatism of
the “exact” method is evident observing the figure, this method generates the highest CP. This
property makes it more difficult to find differences among algorithms, however it minimizes
finding false differences, which might be of interest depending on the experimentation goals.
Close top = 0.5 all the methods have similar average CP, with the only exception of the
“exact” method, again, with a high CP in comparison with the rest of the methods. The
method whose average CP is closest to the nominal coverage isclearly Wilson’s method,
achieving a quite flat average coverage plot, even in extremevalues ofp, where the average
CP is slightly increased.

4.5.4 Average CIW

The overall picture of how CI methods perform should be completed looking at CIW. Unlike
CP, CIW has not a random nature, given a certainn andp, the exact value of CIW can be
determined. Average CIW values were calculated usingn (Figure 4.8 top) andp (Figure 4.8
bottom) as independent variable. Many properties of the CI methods are equivalent or com-

4.5. STUDY ON SOME CONFIDENCE INTERVAL METHODS PERFORMANCE 85

0 20 40 60 80 100

0.
80

0.
85

0.
90

0.
95

1.
00

Number of runs (n)

A
ve

ra
ge

 C
P

Wilson
Exact
Standard
A−C

0.0 0.2 0.4 0.6 0.8 1.0

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Success probability (p)

A
ve

ra
ge

 C
P

Figure 4.7: Comparison of average CP for different CI methods with fixed success probabi-
lity p (top) and fixed number of runsn (bottom) (source: [44]).

0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

Number of runs (n)

A
ve

ra
ge

 C
IW

Wilson
Exact
Standard
A−C

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
1

0.
2

0.
3

0.
4

Success probability (p)

A
ve

ra
ge

 C
IW

Figure 4.8: Comparison of average CIW for different CI methods with fixed success proba-
bility p (top) and fixed number of runsn (bottom) (source: [44]).

86 CHAPTER 4. ESTIMATION OF THE SUCCESS RATE IN EC

plementary to those observed for the average CP because of the close relationship between
CP and CIW. The most notable differences among the CI methodsare found whenn is small
andp is close to its boundaries, just like CP. Similarly, whenn is large, average CIW tends
to be rather similar in all the CI methods. The same happens whenp is close to0.5 between
Wilson and Agresti-Coull.

Figure 4.8 (top) shows that there is a clear relationship between the average CIW and the
number of trials: the smallern is, the wider the interval is. Indeed it does not follow a linear
relationship: whenn is small adding few runs dramatically reduces CIW, but the effect of
increasingn is less notable whenn is greater, until a point where increasingn does not pay
off due to the limited improvements in CIW.

CIW graphs explain some facts about coverage properties. The high CP found for the
”exact” method has its counterpart in CIW; high average CP isachieved at a cost of wider
average intervals. This fact can be observed for almost all the values ofp andn shown in
Figure 4.8 (top and bottom). The normal approximation yields slightly wider CIs, except in
case of lowp values, just where CP is much worse. Wilson shows an excellent performance
from the average CIW point of view with tight intervals.

4.5.5 Discussion of the results

Looking at the results shown in this section, we suggest not using standard method in any
case, its performance in terms of CP and CIW ranges from mediocre (whennp ≫ 5), to
very poor (np ≤ 5). The simplicity, availability and presence in the literature is a point to
take into account in favor of Wilson’s method. In any case, there is not a method with better
CP and CIW in absolute terms. In average terms, Wilson seems to be a good election, but in
order to be strict selecting the method with the best performance for an EA, we suggest to
analyze first the area of the binomial parameter space in which SR would likely to be placed,
and then look at CP and CIW of the methods in that area to selectthe method with better
performance.

Another important subject to take into account when selecting a CI method, is the par-
ticularities of the experimentation. It might be important, for instance, being able to detect
differences of SR between two EAs with a high level of confidence, avoiding type-II errors
as much as possible. In this case using the ”exact” method might be interesting, at the price
of making it harder to find these differences.

In any case, when the SR is very low, and it is not possible to run a large number of runs,
the methods described in this chapter are no longer recommended. When this situation is
found, it is better to approximate the binomialBin(n, p) with a Poisson distribution with
expectationλ = np [109, 73].

We have provided so far some theoretical and empirical evidences that support the bi-
nomiality of SR, as well as a glance to the performance of CIs.A natural question arises
at this point: Does the behaviour of CI performance studied above also describe CI perfor-
mance in real EA experiments?. It is clear that in case SR was binomial its CIs would have
the same performance, suggesting an affirmative answer, however more direct evidence is
actually desirable.

4.6. EMPIRICAL STUDY ON THE BINOMIAL CIS IN TREE-BASED GP 87

Artificial ant

Number of runs (n)

C
P

5 15 27 39 51 63 75 87 99

0.
80

0.
85

0.
90

0.
95

1.
00

6−multiplexer

Number of runs (n)

C
P

5 15 27 39 51 63 75 87 99

0.
80

0.
85

0.
90

0.
95

1.
00

4−parity

Number of runs (n)

C
P

5 15 27 39 51 63 75 87 99

0.
80

0.
85

0.
90

0.
95

1.
00

Regression

Number of runs (n)

C
P

5 15 27 39 51 63 75 87 99

0.
80

0.
85

0.
90

0.
95

1.
00

20 40 60 80 100

0.
80

0.
85

0.
90

0.
95

1.
00

Number of runs (n)

C
P

p=0.13168

20 40 60 80 100

0.
80

0.
85

0.
90

0.
95

1.
00

Number of runs (n)

C
P

p=0.95629

20 40 60 80 100

0.
80

0.
85

0.
90

0.
95

1.
00

Number of runs (n)

C
P

p=0.061

20 40 60 80 100

0.
80

0.
85

0.
90

0.
95

1.
00

Number of runs (n)

C
P

p=0.29462

Figure 4.9: Empirical CP for the four domains (top) comparedto CP of the binomial distri-
bution (bottom) with the same SR (α = 0.05).

4.6 Empirical study on the binomial CIs in tree-based GP

We aim to test if the theoretical CP and CIW curves shown aboveare related with those
ones obtained from real GP problems. So, CP and CIW curves have been generated using
the experimental setup described in section 4.3 with its four GP problems: Artificial ant
with the Santa Fe trail, 6-multiplexer, even 6-parity and symbolic regression. CP and CIW
were calculated using the same experimental procedure described in section 4.5.2, however,
instead of using a dataset composed by pseudoexperiments, real GP experiments was used
to generate2, 000 intervals and calculate CP.

Figures 4.9 and 4.10 compare, respectively, CP and CIW of thefour problems under
study (first row) with the theoretical CP and CIW of a binomialBin(n, p̂best) (second row).
This diagram is visually very similar to the theoretical ones shown in Figure 4.8 and 4.7.
This result supports our hypothesis thanp fits actually a binomial distribution.

4.7 Sample size determination of confidence intervals

We are interested in getting precise measure of SR. Such an objective is rather simple to
achieve, just increasing the number of trials, however, thecomputational costs of running an
EA might be high, so increasingn without a well founded criteria may not be a practical
solution. It would be desirable using a well grounded mechanism to seta priori the sample
size needed to get intervals of the quality desired by the practitioner or researcher. Such
a mechanism would, on the one hand, avoid wasting unnecessary computational resources
running the EA just the number of times to reach a certain quality, and, on the other hand,
provide a solid methodology to set the number of runs.

When someone calculates the CI, they know the number of experiments that have been
run, and the number of successes that have been achieved. However, we can state the problem

88 CHAPTER 4. ESTIMATION OF THE SUCCESS RATE IN EC

Artificial ant

Number of runs (n)

C
IW

Wilson

"Exact"

Standard

Agresti

5 15 27 39 51 63 75 87 99

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

6−multiplexer

Number of runs (n)

C
IW

5 15 27 39 51 63 75 87 99

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

4−parity

Number of runs (n)

C
IW

5 15 27 39 51 63 75 87 99

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

Regression

Number of runs (n)

C
IW

5 15 27 39 51 63 75 87 99

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

20 40 60 80 100

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

Number of runs (n)

C
IW

p=0.13168

20 40 60 80 100
0.

05
0.

10
0.

15
0.

20
0.

25
0.

30

Number of runs (n)

C
IW

p=0.95629

20 40 60 80 100

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

Number of runs (n)

C
IW

p=0.061

20 40 60 80 100

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

Number of runs (n)

C
IW

p=0.29462

Figure 4.10: Experimental CIW for the four domains (top) compared to CIW of the binomial
distribution (bottom) with the same SR (α = 0.05).

from another point of view. Instead of estimatingp (or k, which is the same problem), we
could make an initial rough estimation ofp with a small number of runs, let’s call itp0

instead ofp̂, set a certain CIW for the CI, and then obtainn from the equations of the CIs.
This approach was proposed by Piegorsch [189] to estimate the number of samples needed to
obtain intervals with a certain CIW. In this section we summarize some of his results. There
are other approaches, especially from the bayesian perspective, and a number of studies have
been published [198, 214, 171] addressing this topic from a statistical point of view.

Piegorsch describes in [189] a method to calculate the sample size for the standard,
Agresti-Coull, Wilson and Jeffreys methods. For simplicity, instead of using the CIW, he
used the half of the interval,ε = CIW/2. For the Standard method, we can state that the
half of the interval is, using eq. (4.1),ε = zα/2

√
p0(1 − p0)/n, solving that equation forn

is straightforward, yielding

ns =
z2
α/2p0(1 − p0)

ǫ2
(4.5)

The same procedure can be used for Agresti-Coull, the half ofthe interval in this case is
given by eq. (4.3) aszα/2

√
p̃(1 − p̃)/ñ and solving forn we obtain eq. (4.6),

nAC =
z2
α/2p0(1 − p0)

ǫ2
− z2

α/2 = ns − z2
α/2 (4.6)

It should be mentioned that Piegorsch does not recommend using (4.6) with less than40
samples. Similarly to the standard and Agresti-Coull intervals, Wilson sample size is the
solution ofn when the half of the interval of (4.4) equalsε, yielding the following expression:

nW = z2
α/2

p0(1 − p0) − 2ε2 +
√

p2(1 − p0)2 + 4ε2(p0 − 1
2)2

2ε2
(4.7)

4.7. SAMPLE SIZE DETERMINATION OF CONFIDENCE INTERVALS 89

Anticipated success probability (p0)

N
um

be
r

of
 s

am
pl

es
 (

n)

0.01 0.125 0.25 0.375 0.5

0
20

40
60

80
10

0

Half interval width (ε)
0.01 0.125 0.25 0.375 0.5

1
10

10
0

10
00

10
00

0

Standard
Agresti−Coull
Wilson

Figure 4.11: Sample size for standard, Agresti-Coull and Wilson CI methods for several
anticipated success probabilitiesp0 with ε = CIW/2 = 0.1 (left) and different half interval
widths whenp0 = 1/2. Notice the logarithmic scale in the latter one. Unless for low values
of p0, the sample size needed by Wilson is lower than for the other methods. Confidence
level is set toα = 0.05.

In-depth discussion of the equations described above is outof the scope of this dissertation,
but it can be found in [189]. However, it is worth a brief discussion to bring some interesting
points to the EC community. Comparing (4.5) and (4.6) it is clear that sincez2

α/2 is positive,
Agresti-Coull always requires less samples than standard method to achieve an interval of
the same length. It is interesting to point out that whenpo = 1/2, nW equalsnAC , a
fact consistent with the relationship between Agresti-Coull and Wilson interval previously
shown.

A major concern to calculate the sample size method described in this section is the
measure ofp0, which is, itself, the problem we face when calculating binomial CIs. A
conservative solution to deal with this problem without estimating p0 is to use the fact that
CIs are widest whenp = 1/2. If we setp0 = 1/2 (the worst case) it is guaranteed that the
resulting sample size will generate intervals, at least, ofthe desired half-lengthε. It could
be better understood looking at Figure 4.11 (left), this figure represents the sample size as
a function ofp0 whenε = 0.1, i.e., an interval of the form[p̂ − 0.1, p̂ + 0.1]. The same
behaviour is observed for different values ofε. Figure 4.11 (left) clearly shows that, no
matter which method is used, the value ofp0 that originates the highest sample size is1/2,
so it is a good conservative election when there is no information about its value.

Observing Figure 4.11 (left) with more detail is interesting. Agresti-Coull requires al-
ways less samples than the standard CI, and this method takesthe same sample size than
Wilson next top0 = 1/2. Figure 4.11 (left) could lead to mistakenly conclude that Agresti-
Coull is the best choice to reduce the sample size ifp0 < 0.3 andε = 0.1. To get a complete
picture, CP should also be considered. From the CIW point of view it is clear that Agresti-
Coull would be the best choice, but looking at CP we can see that the small sample size is

90 CHAPTER 4. ESTIMATION OF THE SUCCESS RATE IN EC

at a cost of a bad CP performance. So in this case Agresti-Coull needs fewer runs, but it
generates less reliable intervals. In the low coverage region (smallp0) Wilson has a slightly
better CP performance, at a cost of a higher sample size, as can be seen in Figure 4.11 (left).

Whenp0 is unknown a conservative valuep0 = 1/2 might be a good choice. Figure 4.11
(right) represents the sample size as function ofε in this situation. The sample size dramat-
ically increases with the inverse ofε. This behaviour is explained by the presence ofε in
the denominator of (4.5), (4.6) and (4.7), and is logical, ifwe desire a tighter CI, we would
need more information to build it, which is translated into more runs. As it was previously
noticed, Agresti-Coull and Wilson intervals generate exactly the same sample size because
whenp = 1/2 both intervals are actually the same. Finally, it is interesting to notice that
for wide intervals the sample size is as low as1. Whenε . 0.5 the interval takes the form
[L,U] ≈ [0, 1], and therefore it almost covers all the possible values ofp. In other words,
the interval is so wide that it does not need much informationto be constructed, yielding
extremely low sample sizes.

In conclusion, the selection of the sample size has to take into account several criteria,
some of them mutually exclusive, so a compromise is needed. Usually the goal is to obtain
an interval with a certain CIW (orε) with the lowest number of runs to save computational
resources. Eqs. (4.5), (4.6) and (4.7) provide a mean to calculate the number of runs required
to achieve a CI with a given CIW regardless of the associated CP. Figure 4.4 provides a mean
to estimate the expected CP for the calculated sample size for α = 0.05. In case that CP is
not the expected one, it is necessary to increase the number of samples until CP achieves an
acceptable value. So,n is determined by the maximum sample size between the desirable
CP and CIW.

4.8 Conclusions

In this chapter we have provided theoretical and empirical evidence suggesting that SR in
an EA can be modeled with a binomial distribution. Hence, theextensive literature about
binomials can be applied, including CIs, determination of the sample size, hypothesis test
for difference between proportions and so on. An important problem related to EC exper-
imentation is the measurement of SR. Due to the binomial nature of SR, its estimation is
the same problem that the estimation of the parameters of a binomial distribution, and their
statistical properties do not depend directly on the internals of the algorithm.

CIs are a statistical tool with a potential role when studying the performance of an EA.
We have described some binomial CI methods with some of theirmain properties, draw-
ing a picture useful to generate more robust experimental designs in EC. It was found that
Wilson is the method that provides better average performance, even for low number of sam-
ples and SR next to the boundaries, nonetheless there is no method with the best CP for all
the parameter space. Depending on the nature of the experimentation, other methods might
be interesting due to their properties, such as Agresti-Coull or the ”exact” method when a
conservative method is needed. In any case, experiments shown in this chapter and related
literature strongly discourage the use of the standard interval. Despite the method chosen,
we encourage EA reportingn andk, as well as the interval, to ease further statistical manip-
ulation and comparability of the results.

4.8. CONCLUSIONS 91

Finally, we reported some guidelines to select the number ofruns to generate SR intervals
with a certain expected performance in terms of CIW and CP. Ofcourse, SR is not usually
the only measure that is taken from an EA, it only gives a partial view of the algorithm
performance, that, with other measures, helps to understand the behaviour of an EA.

Along this chapter, we have assumed than an EA is something static, i.e., we have in-
tentionally excluded time in this study, considering the result of the algorithm when it has
finished its execution. It takes sense given the different statistical properties of SR and suc-
cess probability, but that only is a part of the story. Understanding how the success proba-
bility behaves along the time is something basic to answer the research questions that drive
this dissertation. In particular, we have to understand therun-time behaviour of the suc-
cess probability in order to develop an analytical model anduse it to characterize the Koza’s
computational effort. That is the goal of the next chapter.

92 CHAPTER 4. ESTIMATION OF THE SUCCESS RATE IN EC

Chapter 5

Run-time analysis of tree-based
Genetic Programming applied to
model the success probability

Organic life beneath the shoreless waves
Was born and nurs’d in Ocean’s pearly caves;

First forms minute, unseen by spheric glass,
Move on the mud, or pierce the watery mass;

These, as successive generations bloom,
New powers acquire, and larger limbs assume;
Whence countless groups of vegetation spring,

And breathing realms of fin, and feet, and wing.
The Temple of Nature. Erasmus Darwin

We need a analytical model of the success probability in order to characterize the error
associated to the measurement of the Koza’s computational effort. This chapter is devoted
to develop such analytical model. The model we propose is based on a decomposition of the
success probability into two terms. The first term is static and models the success probability
at the end of the execution of the algorithm. This is a binomial random variable and its
statistical properties were previously studied in the chapter 4. The second term models the
variation of the success probability with time, and thus, itdepends on the run-time behaviour
of the algorithm, which is unknown. In order to determine howis that run-time behaviour,
we perform an experimental analysis of the run-time required to find a solution, that we name
run-time to success.

As a consequence of the run-time analysis performed to several classical GP problems,
we find that the run-time to success follows a complex patternin function of the problem
difficulty and the parameter setting. In general, the run-time to success seems to fit well a
lognormal distribution, however, in difficult boolean problems this claim does not hold, and

93

94 CHAPTER 5. RUN-TIME ANALYSIS OF TREE-BASED GP

in that case the right tail of the run-time to success is exponentially distribution. To complete
the picture, when the selection is performed at random, the run-time behaviour is described
by a Weibull distribution. These results are used to includethe lognormal distribution in the
model of success probability which is used in chapter 6 to characterize the estimation error
associated to the Koza’s computational effort.

Even though the experimentation carried out in this chapteronly involves tree-based
GP, there are reasons to suspect that the results are, at least partially, generalizable. One
of these reasons can be found in the literature dedicated to the run-time analysis of several
metaheuristics. In an attempt to generalize the results, wepropose a theoretical model based
on Markov Chains, and demostrate that in ausence of learning, the resulting run-time is
geometrically distributed.

This chapter is structured as follows. First, in the introduction we contextualize the work
reported in the chapter. Then, section 5.2 is dedicated to perform a run-time analysis of some
classical problems in Koza’s style GP. This analysis involves some common scenarios, but
also some extreme situations in order to understand better the run-time behaviour of the al-
gorithm. Section 5.3 proposes a simple theoretical model ofrun-time distribution. The main
goal of the chapter is addressed in section 5.4, where the need of the run-time analysis is
justified, and the results of such analysis are used to propose a model of success probabi-
lity. The proposed model is then experimentally validated.Some work aligned with ours is
presented in section 5.5, followed by a discussion of the results and some final conclusions.

5.1 Introduction to run-time analysis

Run-time analysis is a powerful tool used to characterize the run-time behaviour of the algo-
rithms. A common practice in EC is to measure the run-time andreport its central tendency
and variability statistics. However, this practice has some drawbacks. Perhaps, the most
remarkable one is that such a concise reporting necessarilyhas to drop relevant informa-
tion. Using a full description of the measured run-times is probably a better practice because
no information is lost in the process, and perhaps more importantly, it opens the statistical
characterization of the run-time, which can lead to important observations and more solid
statistical methods.

To the authors’ knowledge, the first use of a run-time analysis was performed by Feoet
al. in [82]. The most widely used tool in run-time analysis is theRun-time Distributions
(RTDs), that was introduced, formalized, widely studied and advocated by Hoos and Stützle
in [116]. It was followed by an extense sequence of publications where several stochastic
search algorithms and problems were studied using RTD analysis. We can briefly define a
RTD as the empirical cumulative distribution of the probability of finding a feasible solution
at timet.

There are several advantages of using RTDs. First, it fully describes run-times from a
statistical perspective, since all the statistical properties of the data are contained in the RTD,
and thus, statistics such as the median and the standard deviation can be calculated from it.
In addition, important properties are easily visualized, such as the size of the tails, rapid or
slow decays of the probability of finding a solution, and so on. This data is lost in more
conventional reporting practices. RTDs also facilitate visual comparison of algorithms and

5.2. RUN-TIME ANALYSIS OF TREE-BASED GENETIC PROGRAMMING 95

can also be used to determine optimum restarts. But probablyone of its most interesting,
and less used, features, is that it opens the doors to introduce parametric statistics to analyze
the run-time of the algorithms. In this way, more robust statistical methods can be used, for
instance, to determine whether an algorithm A is able to find asolution in less evaluations
than an algorithm B.

Run-time analysis made in the context of Stochastic Local Search (LS) and other meta-
heuristics with optimal parameter configuration have shownthat the exponential (or shifted
exponential) distribution has a major role to describe RTDs[205]. Depending on the pro-
blem difficulty, and the parameters setting, other distributions might appear, in particular the
Weibull distribution in easy problems, which is a generalization of the exponential. This
result holds in particular for SLS methods, such as WalkSAT,applied to 3SAT, CSP and TSP
problems [115]; and some metaheuristics such as Simulated Annealing (SA), Iterated Local
Search (ILS), or Ant Colony Optimization (ACO) [205]. Theseresults suggest that RTDs
have common properties across different algorithms and problems.

Nonetheless, to the authors’ knowledge, run-time analysishas not been applied to tree-
based GP, and thus, there is no evidence supporting that the previous results can be applied
to GP. In order to develop a model of success probability in section 5.4, we need to know
the run-time behaviour of tree-based algorithms, which canbe performed using experimental
methods.

5.2 Run-time analysis of tree-based Genetic Programming

Generally, experiments dealing with Evolutionary Algorithms (EAs) involve running the al-
gorithm until a certain condition is fulfilled or a resource budget is exhausted. Usually the
budget of resources provided to the algorithm is, directly or indirectly, time through a limit
on the number of evaluations, or generations, in a generational algorithm. Run-time analysis
is based on this time, whatever the unit that was used to measure it, and in particular, run-time
analysis deals with the measurement and analysis of the timerequired to find a solution.

A common tool used for run-time analysis is the RTD. Let us name rt(i) the run-time of
the ith successful run, andn the number of runs executed in the experiment, then the RTD
is defined as the empirical cumulative probabilitŷP (rt < t) = #{i|rt(i) ≤ t}/n [115].
Reader should note that the definition of the RTD assumes thatrun-time is measured in time,
which is an architecture-dependent measure. There are several problems associated to mea-
suring time in this way [11]. For this reason, instead of using time as a unit, run-time analysis
is usually performed using an architecture-independent time unit, such as number of evalu-
ations in EAs, or algorithm iterations. In this case, the term Run-Time Length Distribution
(RLD) is used instead.

A run of a stochastic search algorithm might find or not a solution. In the first case, the
run is successful. But on the contrary, if the run does not findthe solution, the run-time usu-
ally takes a cut-off value. The term run-time refers to both,when clearly they have different
interpretations. The cut-off execution time is a parameterwell known by the experimenter,
and thus it is of little interest. Much more interesting is the time required to find the solution,
which is the basis of RTD analysis.

For these reason, in the context of run-time analysis, we prefer avoiding the term run-

96 CHAPTER 5. RUN-TIME ANALYSIS OF TREE-BASED GP

time, in favor of the more specific termrun-time to success. In this way, we explicit the time
required by a run to find a solution, not considering runs thatwere unable to find it. In the
following, we use the number of generations as an architecture-independent time measure,
so, the time required by a run to find a valid solution will be namedgeneration-to-success.
Given that the experimental setup uses generations as time unit, we will use run-time to
success and generation-to-success interchangeably. Please, note that run-time to success and
generation-to-success are not defined for those runs that donot reach a solution.

The definition of RTDs involves the ability of an algorithm tofind a solution, but also
how many time the algorithm needs to find it. This property makes sense in the original
context they were introduced, whose objective is algorithmcomparison and restart point
determination. However, in our opinion, there are some drawbacks with this approach when
the objective is the characterization of the algorithm behaviour. Perhaps, the most notorious
one is that it mixes two concepts that answer different questions and, more importantly, they
have different statistical properties. The shape of the RTDanswers when the solution is
found, while its height determines how likely is to find a solution, i.e., itsSuccess Rate(SR).
These are two different sides of the observed phenomena thatin out opinion should not be
mixed. Moreover, there is a more practical reason behind this position, SR has a binomial
nature, as seen in chapter 4, and thus it has some well known statistical properties [21, 15].
In addition, generally RTD does not satisfy the propertyP (∞) = 1, which makes it more
difficult to guess which distribution fit visually.

An alternative, quite näive, and efective method to reportthe time required by an algo-
rithm to find a solution is just plotting the histogram of thattime. Both methods, RTDs and
histograms of the run-time to success are equivalent and, indeed, they can be easily trans-
formed to each other, given that the SR was known. It is relevant since it gives us a base to
compare the results obtained using RTD analysis with the ones reported in the literature. In
the following, following our own advice, we base the run-time analysis on the histograms of
the run-time to success, measured in generations, and report the SR independently.

5.2.1 Run-time behaviour of tree-based GP classical problems

Previous RTD analysis [115], mainly in the context of SLS andsome classical AI problems,
has shown that the RTD of hard problems is exponentially distributed. In this section we
try to verify whether this observation is repeated in tree-based GP, or on the contrary the
run-time can be described using other distributions. To this extent, we have measured the
run-time to success that yields as a result of running the canonical Koza-style GP algorithm
applied to some well known problems. The unit used to measuretime is the generation,
and since each generation involves a constant number of evaluations, the results should be
extrapolated if time was measured in evaluations. Additionally, the number of generations
is a discrete measure, but it will be approximated using continuous distributions in order to
compare the results with the literature more easily. This assumption is in opossition to the
discrete-time theoretical model that we introduced in section 5.3.

We first consider some classical problems in GP widely used bythe literature, and ob-
tain the empirical distribution of the generation-to-success. These problems belong to four
problem classes: the artificial ant, k-multiplexer, even k-parity and linear regression without
Ephemeral Random Constants (ERC). Two instances of each binary problem were consid-

5.2. RUN-TIME ANALYSIS OF TREE-BASED GENETIC PROGRAMMING 97

Table 5.1: Tableau for the problems under study: Artificial Ant with the Santa Fe trail, 6-
multiplexer, 11-multiplexer, even 4-parity, even 5-parity and symbolic regression without
ERC.

Parameter Artificial ant 6/11-
multiplexer

4/5-parity Regression

Population 500 500 4,000 500
Generations 50 50 800 50
Terminal Set Left, Right,

Move, If-
FoodAhead

A0, A1, A2,
D0, D1, D2,
D3, D4, D5

D0, D1, D2,
D3, D4

X

Function set Progn2,
Progn3,
Progn4

And, Or,
Not, If

And, Or,
Nand, Nor

Add, Mul,
Sub, Div,
Sin, Cos,
Exp, Log

Success predicatefitness = 0 fitness = 0 fitness = 0 fitness ≤
0.001

Initial depth 5 5 5 5
Max. depth 17 17 17 17
Selection Tour.

(size=7)
Tour.
(size=7)

Tour.
(size=7)

Tour.
(size=7)

Crossover 0.9 0.9 0.9 0.9
Reproduction 0.1 0.1 0.1 0.1
Elitism size 0 0 0 0
Terminals 0.1 0.1 0.1 0.1

Non terminals 0.9 0.9 0.9 0.9
Observations Timesteps=600 Even parity No ERC

Santa Fe
trail

y = x4 +
x3 + x2 + x
x ∈ [−1, 1]

98 CHAPTER 5. RUN-TIME ANALYSIS OF TREE-BASED GP

Table 5.2: Estimation of the difficulty to find a solution. It reports the number of runs (n),
number of successful runs (k), estimation of SR̂p and Wilson CI of SR withα = 0.95, lower
(Lp) and upper (Up) values.

Artificial ant 6-Multiplexer 11-Multiplexer 4-Parity 5-Parity Regression

n 100,000 100,000 1,000 400 5,000 100,000

k 13,168 95,629 333 299 305 29,462

p̂ 0.132 0.956 0.333 0.747 0.061 0.295

Lp 0.1296 0.9550 0.3045 0.7027 0.0547 0.2918

Up 0.1338 0.9575 0.3628 0.7876 0.0680 0.2975

ered;6 and11 lines were used in the multiplexer, while the parity problemused4 and11
lines. The trail used in the artificial ant problem was Santa Fe, as described by Koza in [136].
In total six problem instances were used in the experiment. In all the cases the parameters
settings and implementations used were the ones found by default in ECJ v18. The only ex-
ception is the population size and cut off number of generations, which were changed to tune
the algorithm according to the problem difficulty, and the number of timesteps used in the
artificial ant, which has increased to600. A summary of the settings used in this experiment
is shown in table 5.1.

Each one of these problems were run a large number of times (n) in order to obtain a
sufficient number of successful runs (k). Some problem instances were run a huge number
of times,100, 000, because they were reused from previous publications wherethat number
of runs were needed. Other problem instances were run fewer times, enough for the purpose
of this study. The number of runs,n, was chosen depending on the computational resources
needed by the experiment, which is strongly correlated withthe population size, and the
available computational resources. The number of runs, number of successful runs and an
estimation of the SR, and condidence interval of the SR usingthe method of Wilson with
α = 0.95 of each of the problem instance is shown in Table 5.2. SR provides a rough
estimate of the difficulty of the problem, and, as can be seen in the table, the SR found in the
six problem instances ranges from easy problems to difficultones.

The empirical distribution of the generation-to-success of each problem instance was de-
picted to overlap with some fitted statistical distributions. In order to estimate the parameters
of the distribution, R’s functionfitdistr() was used, which implements a maximum-
likelihood method. The exploratory experiments tried to fitdata using several distributions,
including normal, Poisson, Student’s t, and Gamma, however, we found that only a small
set of these distributions fit well enough to be considered inthe study. So, in the following
we only take into account the distributions that fit data better, i.e., lognormal, Weibull and
logistic, and additionally the normal distribution is alsoincluded in order to ease comparison.

The result of this experiment can be observed in Figure 5.1. The first fact that we ob-
serve is that the distribution that better models generation-to-success is the lognormal; it

5.2. RUN-TIME ANALYSIS OF TREE-BASED GENETIC PROGRAMMING 99

Artificial ant

Generation−to−success

D
en

si
ty

0 10 20 30 40 50

0.
00

0.
02

0.
04

Regression

Generation−to−success

D
en

si
ty

0 10 20 30 40 50

0.
00

0.
04

0.
08

4−Parity

Generation−to−success

D
en

si
ty

0 10 20 30 40 50

0.
00

0.
04

0.
08

5−Parity

Generation−to−success

D
en

si
ty

0 200 400 600 800

0.
00

0
0.

00
2

0.
00

4
0.

00
6

6−Multiplexer

Generation−to−success

D
en

si
ty

0 10 20 30 40 50

0.
00

0.
02

0.
04

0.
06

0.
08

11−Multiplexer

Generation−to−success

D
en

si
ty

0 200 400 600 800

0.
00

0
0.

00
1

0.
00

2
0.

00
3

Normal
Lognormal
Weibull
Logistic

Figure 5.1: Histograms of the generation-to-success of thesix problem instances compared
to different probability density functions. The parameters of the distributions have been
calculated using maximum likelihood estimation. All the available successful runs have
been used in the histogram and model fit.

is pretty clear in the case of the artificial ant, which fits nicely the lognormal distribution.
The situation is more complex in the rest of the problem instances. In the regression and
6-multiplexer, the lognormal seems to fit well data, howevernot so well as the artificial ant.
In comparison to them, the lognormal fits the generation-to-success worse. All these em-
pirical distributions exhibit a curious fact; in comparison with the lognormal, data shows a
pronounced peak, while the lognormal peak is smoother. Additionally, the shape of the his-
togram decays rapidly after the peak, while the decay in the lognormal is less stepped. The
rugosity found in the 5-parity and 11-multiplexer problemsmight be explained by the lower
number of samples used to depict the figures due to the problemdifficulty. Finally, the most

100 CHAPTER 5. RUN-TIME ANALYSIS OF TREE-BASED GP

Normal

lo
g(

ge
ne

ra
tio

n−
to

−
su

cc
es

s)

1

2

3

4

5

6

Artificial ant

−3 −2 −1 0 1 2 3

4−Parity 6−Multiplexer

−3 −2 −1 0 1 2 3

Regression 5−Parity

−3 −2 −1 0 1 2 3

1

2

3

4

5

6

11−Multiplexer

Figure 5.2: Quantile plots of the logarithm of the generation-to-success against samples
drawn from a normal population.

erratic behaviour is found in the 11-multiplexer. It has a rough histogram, and is badly fit
by any distribution. In any case, the lognormal distribution is the one that seems to fit data
better in the six problem instances under consideration.

An important property of the lognormal distribution is its close relationship to the normal
one [150]. Normal data might be converted to lognormal data using the exponential function,
while, on the other side, lognormal data might be transformed to normal taking natural log-
arithms. Given this relationship, it seems interesting to represent a comparison between the
natural logarithm of the generation-to-success against a normal distribution. This compari-
son is shown in Figure 5.2, which depicts the quantile plot ofthe logarithm of the generation
to success against a normal distribution. As we could expect, the logarithm of the generation-
to-success of difficult problems (5-parity and 11-multiplexer) are not too close from the line
that represents the normal distribution; just the oppositethan the easy version of these prob-
lems, 4-parity and 6-multiplexer. The discrepancy betweenthe peak observed in the data
and the lognormal distribution is clearly shown in the two quantile plots of these problems
in form of a slight curve on the right of the plot. The logarithm of the generation-to-success
of the regression problem also seems to follow a normal distribution, however the tails of the
distribution fit worse.

Summarizing the results, lognormal distribution seems to fit reasonably well the generation-

5.2. RUN-TIME ANALYSIS OF TREE-BASED GENETIC PROGRAMMING 101

to-success of some of the problems studied, but it fails to describe others. A natural question
that rises at this point is why the generation-to-success ofsome problems follows a lognormal
distribution, while others badly fit the lognormal distribution. Looking at the results so far,
and related literature, it seems reasonable to hypothesizethat the difficulty of the problem,
to some extent, influences the distribution, and thus, it seems reasonable to study in more
detail the hard problems that did not fit well the lognormal distribution. The next section is
devoted to study this question.

5.2.2 Run-time behaviour of tree-based GP with difficult problems

It seems that the lognormal distribution plays a major role to describe the generation-to-
success in tree-based GP. However, the run-time behaviour observed are only partially de-
scribed by the lognormal distribution, since some problem instances do not fit well that
distribution. So, it seems pertinent to us to study these problems in more detail, in order to
gather a more complete perspective about this issue. In particular, we are interested in the
4/5-parity and the 11-multiplexer problems.

Several authors have observed that some SLS algorithms and metaheuristics yield a
RTD that follows an exponential distribution [113, 115]. However, histograms in Figure 5.1
showed a shape that are far from the strictly decreasing exponential distribution. Nonethe-
less, a more detailed observation of the hard boolean problems (5-parity and 11-multiplexer)
histograms leads to a more elaborated interpretation. Initially, there is a pronounced increase
of the histogram density until the peak is reached, and then it begins to decrease softly. Ad-
ditionally, the peak of the histogram is more pronounced than all the distributions studied.
These observations lead us to hypothesize that the exponential distribution has a role in the
picture of generation-to-success distributions in GP.

In order to verify whether there is a hidden exponential distribution, we removed the left
tail of all the histograms, and then overlapped a shifted exponential distribution. The shifted
exponential is an exponential distribution of the form

f(λ; t) =

{
λe−λ(t−t0) if t ≥ t0,

0 if t < t0.
(5.1)

whereλ is the only parameter of the distribution, andt0 is the shift. The parameterλ has
been estimated using maximum-likelihood whilet0 is the generation where the histogram
density reaches its maximum value.

The histogram of the right tail of the generation-to-success, fitted with a shifted ex-
ponential, is depicted in Figure 5.3, while the estimated parameters of the lognormal and
exponential are shown in the Table 5.3. Those problems that were poorly described by the
lognormal distribution (4/5-parity and 11-multiplexer),are reasonably well fit by an expo-
nential distribution when the left tail is removed. Perhapsnot surprisingly, the same can be
observed in the rest of the problems, so, it seems that removing part of the data eases fit it
with the exponential distribution. Nonetheless, there is anotable difference, due to the strong
asymmetry of the hard boolean problems, the amount of data that has been removed is much
lower in comparison to the rest of the histograms.

Quantile plots comparing generation-to-success and exponential distributions are shown
in Figure 5.4. In general, the exponential distribution seems to fit well this subset of the data,

102 CHAPTER 5. RUN-TIME ANALYSIS OF TREE-BASED GP

Generation−to−success

D
en

si
ty

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

0 10 20 30 40 50

Artificial ant

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

0.
12

10 20 30 40 50

4−Parity

0.
00

0.
02

0.
04

0.
06

0.
08

0 10 20 30 40 50

6−Multiplexer

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

0.
12

0 10 20 30 40 50

Regression

0.
00

0
0.

00
1

0.
00

2
0.

00
3

0.
00

4

0 200 400 600 800 1000

5−Parity

0.
00

0
0.

00
1

0.
00

2
0.

00
3

0 200 400 600 800

11−Multiplexer

Figure 5.3: Histogram of the right tail of the generation-to-success of the problems under
study. An exponential distribution has been overlapped.

with some interesting individual cases. Surprisingly, theright tail of the 5-parity problem
instance fits quite well the exponential distribution, whenthe lognormal distribution failed to
model the peak shown in Figure 5.1. In contrast, the right tail of the generation-to-success
of the 4-parity problem seems to fit worse an exponential witha tendency to overestimation.
It also presents some outliers.

Some authors have observed that the RTD of several algorithms fits well a shifted ex-
ponential distribution [113], and explained it hypothesizing the existence of a initialization
phase where no solution is found. The plot shown in Figure 5.5supports that hypothesis, it
represents the average tree depth and the average number of nodes. The histogram depicted
in Figure 5.1 shows that the density of the generation-to-success begins growing rapidly,
and then, after the mode, it decays slowly. This behaviour ismore evident in the two hard
boolean problems. The maximum in these two problem instances is found arround genera-
tion 60. If we now observe the shape of the average tree depth (Figure5.5, bottom), we find
that initially the average depth also increases rapidly up to a point and then it remains almost
constant, in what seems an asymptotic behaviour. Most importantly, that point is placed ar-
round generation60 in both problems. This lends credence to the existence of a correlation
between the average tree depth and the shift of the exponential distribution that models the
right tail of the generation-to-success of boolean hard problems.

5.2. RUN-TIME ANALYSIS OF TREE-BASED GENETIC PROGRAMMING 103

Table 5.3: Estimations of the parameters of the lognormal and shifted exponential for the six
problem instances under study. The lognormal distributionhas two parameters, the meanµ
and the standard deviationσ, and the shifted exponential has two parameters,λ and the shift
t0.

µ̂ σ̂ λ̂ t0

Artificial ant 2.73 0.595 0.085 9

Regression 2.289 0.44 0.150 5

4-Parity 3.03 0.284 0.146 17

5-Parity 5.004 0.8 0.005 7

6-Multiplexer 2.464 0.425 0.149 7

11-Multiplexer 5.367 0.797 0.004 60

Generation−to−success

E
xp

on
en

tia
l 0

10
20

30
40

0 10 20 30 40

Artificial ant

0
10

20
30

0 10 20 30

4−Parity

0
10

20
30

40

0 10 20 30 40

6−Multiplexer

0
10

20
30

40

0 10 20 30 40

Regression

0
20

0
40

0
60

0
80

0

0 200 400 600 800

5−Parity

0
20

0
40

0
60

0

0 200 400 600

11−Multiplexer

Figure 5.4: Quantile plots comparing the right tail of the generation-to-success and a ex-
ponential distribution. Samples higher than the mode have not been included in the plot in
order to exclude the initialization phase.

104 CHAPTER 5. RUN-TIME ANALYSIS OF TREE-BASED GP

generation

A
ve

ra
ge

D
ep

th
 +

 A
ve

ra
ge

N
od

es

5
10

15

0 100 200 300 400

AverageDepth

0
20

0
40

0
60

0
80

0
10

00

0 100 200 300 400

AverageNodes

11−Multiplexer
4−Parity
5−Parity
6−Multiplexer
Artificial ant
Regression

Figure 5.5: Average number of nodes (top) and average tree depth (bottom) of the problem
instances under study.

If the correlation between average tree depth and the shift of the exponential distribution
were confirmed, it would lead to provide an additional support to the Hypothesis proposed
by Hoos, i.e., exponential distribution models the generation-to-success after an initialization
phase. During the initialization, trees in average increase their size until the maximum size
is reached. Then the search is performed not increasing the tree depth, but its shape, as can
be seen in the average number of nodes in Figure 5.5 (top). It is worth to remember that the
only bloat control method included in the algorithm used in the experimentation is the Koza
style hard limit of the maximum tree depth.

There is an additional argument in favor of the proposed interpretation of the shift found
in the exponential, in this case it has more theoretical roots. A key property of the exponential
distribution is its lack of memory, because of that it is widely used to model memoryless

5.2. RUN-TIME ANALYSIS OF TREE-BASED GENETIC PROGRAMMING 105

processes. An exponential distribution of the generation-to-success suggests that the search
is memoryless, but it is clear that the initialization phaseof the run has memory since the
average tree size increases with time until it stabilizes, which is just the point where data
begins to fit the exponential distribution. After that point, trees have reached their maximum
depth and the search is less influenciated by the memory.

We should underline that we have considered continuous-time instead of discrete-time.
As a consequence, we have not considered the role of discretedistributions, and in particular
the role of the geometric distribution, which is interesting because it is the discrete-time
counterpart of the exponential distribution and plays a keyrole in section 5.3. In theory,
exponential and geometric distributions should be equivalent, and both should fit equally
well (or bad). In order to test it, we fit the geometric distribution in the cases were the
exponential distribution fit well the data, finding that theyare equivalent, so, the discussion
made related to the exponential distribution can also be done with the geometric distribution.
This observation is important to relate the results shown inthis section to the theoretical
discrete-time model that we have proposed in section 5.3.

Experiments carried out in this section suggest that the run-time to success of some
difficult problems follow a shifted exponential distribution. The shift of the exponential co-
incides with the stabilization of the depth growth in the population, suggesting a correlation.
So far, we found two distributions, the lognormal and the shifted exponential, that model
the generation-to-success of almost all the problem instances studied, with the exception of
the 4-parity problem. All the algorithms so far used in the experimentation used a standard
parameters setting, yielding the run-time behaviour reported above. A natural question that
raises is whether this behaviour can be changed if the parameterization of the algorithm is
modified. In order to answer this question, we used an extremealgorithm design.

5.2.3 Run-time behaviour of tree-based GP with random selection

The problem instances so far studied have shown a run-time tosuccess that follows a lognor-
mal or a shifted exponential distribution. However, it is unclear if this behaviour is particular
of the standard algorithm configuration used so far, or, on the contrary, it is a general prop-
erty. To study this issue, we run the algorithm with an extreme configuration, and analyze its
generation-to-success to verify whether it fits a lognormalor an exponential distribution.

Due to the presence of the exponential distribution previously discussed, it seems rea-
sonable to suppose that randomness in the search is a factor that should be considered. So, in
this experiment we increment the randomness of the algorithm by reducing the tournament
size. In particular, we have run the same canonical tree-based GP algorithm with the same
configuration shown in Table 5.1 with a notable exception, the tournament that originally
was set to7, now has been reduced to1. In this way, we have removed the selective pressure,
making the selection purely at random.

As an initial hypothesis, we can expect that, since exponential distribution deals with
memoryless processes, it might describe the generation-to-success of these runs without se-
lective pressure. However, we should avoid a mistake, random selection does not mean it is a
memoryless algorithm. Even though the selective pressure has been removed, the algorithm
still has memory through the recombination operator, however, the role that it plays and how
it might affect the generation-to-success is not clear.

106 CHAPTER 5. RUN-TIME ANALYSIS OF TREE-BASED GP

Artificial ant

Generation−to−success

D
en

si
ty

0 200 400 600 800 1000

0.
00

00
0.

00
10

0.
00

20
0.

00
30

0 200 400 600 800 1000

0
20

0
40

0
60

0
80

0
10

00

Generation−to−success

W
ei

bu
ll

Regression

Generation−to−success

D
en

si
ty

0 200 400 600 800 1000

0.
00

00
0.

00
10

0.
00

20
0.

00
30

Normal
Lognormal
Weibull
Logistic

0 200 400 600 800 1000

0
20

0
40

0
60

0
80

0
10

00

Generation−to−success

W
ei

bu
ll

Figure 5.6: Histogram of the generation-to-success of two problems solved by GP without
selective pressure compared to four distributions (left) and quantile plots comparing data and
samples drawn from a Weibull distribution with its parameters estimated using maximum-
likelihood (right).

The histograms of the generation-to-success obtained without selective pressure are shown
in Figure 5.6 (left). First we should point out that, since there is no selective pressure, the
population is not pushed to any direction, making the searchalmost random. As a result,
the efficiency of the algorithm finding a solution has been reduced notably, and indeed only
two out of the six problems instances found enough solutionsto be significant. Hence, only
two problems are reported in this section, the artificial antand the regression. In addition,
the time required to find the solution has been dramatically increased, those problems that
required at most50 generations, in absence of selective pressure, require1, 000 generations
to find it, if it is found.

5.3. A SIMPLE THEORETICAL MODEL OF GENERATION-TO-SUCCESS 107

Figure 5.7: Discrete-Time Markov Chain model of an iterative stochastic search algorithm.
States denotes that the algorithm has found a solution to the problem at hand, while states
i ∈ {0, ..., G} denotes that no solution was found at iterationi.

Perhaps, the most interesting fact in the figure is the shape of the histogram. Surprisingly,
the histograms in Figure 5.6 (left) show that in this case either lognormal neither exponential
fit data, indeed, a new distribution appears into scene, Weibull, which is able to fit data pretty
well. This observation is supported by the quantiles plot depicted in Figure 5.6 (right). It
shows that the generation-to-success is well described by the Weibull distribution, even in
extreme values. The histograms have peaks somewhat smoother than the lognormal distri-
bution, and a right tail that decreases slower. However, there are some fluctuations in the
histograms that degrade the fit, but fortunately they are small.

In summary, in absence of selective pressure the generation-to-success of the observed
problem instances fit a Weibull distribution. Curiously, itrelates to the previous observation
of the exponential nature of generation-to-success in difficult problems because the Weibull
distribution is a generalization of the exponential. In anycase, the results so far reported are
hardly generalizable without a theoretical framework or a much more extense experimental
apparatus. The next section is an attempt to provide a theoretical approximation to generalize
these results.

5.3 A simple theoretical model of generation-to-success

A pertinent question at this point is whether there is a theoretical explanation of the distribu-
tions so far found. To try to give an insight to this issue we have modeled the convergence
of the algorithm using Discrete-Time Markov Chains (DTMC) [230]. Without lack of gen-
erality, we consider a discrete-time model instead of a continuous-time model. In order to
generalize the results, we first discuss stochastic search algorithms and then, the problem is
restricted to population-based algorithms.

Let Sn = j be a random variable that takes a statej ∈ {0, 1, ..., G, s} at iteration
n ∈ {0, ..., G}. There are only two feasible transitions from statej, j < G, to j + 1 or s. If
the stateG had been achieved, then we say that the algorithm has failed in finding a solution
to the problem. On the other hand, if after any number of transitions fewer thanG the state
is s, we say that the algorithm has found a solution and thus it hasbeen a success. Once the
states has been reached, the system cannot change its state. The model is better illustrated

108 CHAPTER 5. RUN-TIME ANALYSIS OF TREE-BASED GP

in Figure 5.7.
The probabilityP (Sn = j|Sn−1 = i) is the transition probability between statesj and

i, for clarity we denote it aspj,i. Then, the probability of an algorithm to go from an initial
state to a certain final state is given by the multiplication of the transition probabilities found
in the path between the initial state and the final state. The transition probabilities are given
by the transition matrix[p] as follows

[p] =




0 1 − ps,0 0 0 · · · 0 ps,0

0 0 1 − ps,1 0 · · · 0 ps,1

0 0 0 1 − ps,2 · · · 0 ps,2

· ·
0 0 0 0 · · · 1 − pG,G−1 ps,G−1

0 0 0 0 · · · 1 0
0 0 0 0 · · · 0 1




(5.2)

Such matrix has dimension(G + 2) × (G + 2). The columni stands for receiving state
i, and rowj stands for editing statej. The last column and row are related to the state of
success,s. The algorithm always begins in state0, so the initial probability vector yields as

p(0) = [1, 0, · · · , 0] (5.3)

The (not-accumulated) probability of reaching a succes in exactly i iterations is given by
the path0, 1, .., i−1, s, which is given by the probabilityP (Si = s|Si−1 = i−1, ..., S0 = 0).
For convenience, we denote that probability asps,i−1,...,0. With these considerations we can
state the following theorem.

Theorem 1 The probability of a iterative stochastic search algorithmto find a solution in
exactlyi, 1 ≤ i ≤ G, iterations is given by

ps,i−1,...,0 = ps,i−1

i−2∏

k=0

(1 − ps,k). (5.4)

Proof 1 The algorithm can be modeled using the transition matrix shown in (5.2). Then,
the probability of finding a solution afteri iterations is the probability of reaching to the
states by using the path0, 1, ..., i − 1, s. Hence, given that they are independent, the pro-
bability of the algorithm to follow this path is given by the multiplication of their transition
probabilities. So we can infer that

ps,i−1,...,0 = ps,i−1 pi−1,i−2 . . . p1,0

= ps,i−1 (1 − ps,i−2) . . . (1 − ps,0)

= ps,i−1

i−2∏

k=0

(1 − ps,k) (5.5)

Corollary 1 The run-time of a memoryless stochastic search algorithm tofind a solution,
measured in iterations, follows a geometric distribution.

5.3. A SIMPLE THEORETICAL MODEL OF GENERATION-TO-SUCCESS 109

Proof 2 Given a memoryless algorithm, the transition probabilities are equal,pi,i−1 =
pj,j−1 ∀i, j ∈ {1, · · · , G}. Takingps,i = p in (5.4) yields

ps,i−1,...,0 = p

i−2∏

k=0

(1 − p) = p(1 − p)i−1, (5.6)

which is the geometric probability mass function.

Theorem 1 supposes an iterative search algorithm, however,when dealing with population-
based algorithms, as is the case in EAs and GP, there is a population of candidate solutions,
so, to be more realistic in the context of EAs, they should be considered. Then, the transition
probabilitypa,b can be expressed as a function of the success probability of each individual

in the population. Let us name itp(k)
a,b , where(k) stands for the probability of individualk

to find a solution, wherek ∈ 1, ...,M andM ∈ N+ is the number of individuals in the
population.

With these considerations, the probabilitiespi+1,i andps,i can be decomposed as a func-
tion of the success probability of each individual in the population. The probabilitypi+1,i is
the probability of not finding any solution by any individualin the population, whileps,i is
the inverse ofpi+1,i. This idea can be expressed analytically by

pi+1,i =
M∏

k=1

(1 − p
(k)
s,i) (5.7)

ps,i = 1 − pi+1,i = 1 −
M∏

k=1

(1 − p
(k)
s,i) (5.8)

With these considerations we can particularize theorem 1 togenerational population-based
algorithms, in particular to EAs. In order to be consistent with the experimentation, we
consider that each generation is an algorithm iteration.

Theorem 2 Given a generational EA with a population sizeM , the probability of finding a
solution at a certain generationi is described by

ps,i,1−1,...,0 =

(
1 −

M∏

k=1

(1 − p
(k)
s,i)

)
i−2∏

j=0

M∏

k=1

(1 − p
(k)
s,j) (5.9)

Proof 3 Equation (5.9) comes from using (5.7) and (5.8) with (5.4) and some basic algebraic
manipulation.

Corollary 2 The run-time of a memoryless generational EA, measured in generations, is
described by a geometric distribution.

Proof 4 In a memoryless algorithm, the probability of an individualto find a solution is
independent of the generation, and therefore the transition probabilities are equal,P (k)(i|i+
1) = P (k)(i + 1|i) = p(k)′ . Subsequently, (5.9) can be simplified,

ps,i,i−1,...,0 =
[
1 − (1 − p(k)′)M

] i−2∏

j=0

(
1 − p(k)′

)M
(5.10)

110 CHAPTER 5. RUN-TIME ANALYSIS OF TREE-BASED GP

This equation can be simplified with a change of variable(1 − p(k)′)M = (1 − p′), then

ps,i,i−1,...,0 = p′
i−2∏

j=0

(1 − p′) = p′(1 − p′)i−1, (5.11)

which is the geometric probability mass function. An alternative proof of this theorem is
settingM = 1 in (5.9), yielding to (5.4).

Experiments carried out showed three distribution involved in the description of the generation-
to-success: lognormal, Weibull, and exponential. Due to the direct relationship between
exponential and geometric distribution, corollaries 1 and2 provide a theoretical framework
to describe the exponential behaviour found in some probleminstances, i.e., the absence of
memory in the search process. The theoretical explanation of the appearance of the Weibull
and lognormal distributions is unknown. Equation (5.9) might provide a clue about it. It
shows that the probabilityps,i−1,...,0 can be expressed as the multiplication of several terms,
and thus, it would make sense to apply the Multiplicative Central Limit Theorem to conclude
that i is a lognormal random variable. Nonetheless, this interpretation would be naı̈ve since
it supposes that the distribution is always lognormal, which contradicts the empirical data
previously reported.

In this section we have proposed a theoretical model of the probability density of the
generation-to-success based on DTMC. It was also shown thatwhen success probability
in each generation is constant, and therefore the algorithmis memoryless, the underlying
distribution of the generation-to-success is a geometric one. When a lognormal or Weibull
distribution models the generation-to-success is an open issue. Nonetheless, related work in
other areas related to stochastic search might provide clues, and additional evidence about
the generality of these results. Once the run-time behaviour of tree-based algorithms has
been characterized, we are in position to propose a model of success probability.

5.4 A new model of success probability

In order to develop a model of success probability, it is convenient to define more formally
some terms, in particular the terms success probability andsuccess rate. In EC, an experi-
ment uses to be composed by a collection ofn independent runs. Due to the random nature
of EAs, many of their properties are stochastical, and thus they cannot be characterized using
a single run, but with an experiment. One of these propertiesis thesuccess probability, or,
using Koza’s notation [136],P (M, i), whereM is the population size, andi the generation
number.

P (M, i) is calculated as the ratio between the number of successful runs in generationi,
k(M, i), and the number of runsn in the experiment,

P (M, i) =
k(M, i)

n
(5.12)

This estimator of the success probability is also its maximum likelihood estimator [174].
We define the SR as the accumulated success probability in an infinite number of gen-

erations, soSR = limi→∞ P (M, i). The reader would agree with us if we state that run-
ning the algorithm for an infinite number of generations is not a general practice. Usually

5.4. A NEW MODEL OF SUCCESS PROBABILITY 111

an experiment is run for a fixed finite number of generations,G, then the SR is given by
SR = limi→∞ P (M, i) ≈ P (M,G). Since the true SR can hardly be measured in expe-
riments,P (M,G) is just an approximation to SR, and thus it can be seen from a statistical
perspective as an estimator̂SR = P (M,G).

5.4.1 A general model of success probability

Let us consider the problem from another point of view. Instead of analyzing the problem
looking at the probabilityP (M, i), we pay attention to the generation-to-success. Mayxk

i

be the outcome of runk at generationi, and can take two values labeled as“success” and
“failure”, so xk

i ∈ {“success”, “failure”} for k = 1, 2, . . . , n and i = 1, 2, . . . ,∞,
therefore we assume an EA that is run an infinite number of generations. We suppose that if
xk

i = “success” then the outcome in the next generation is also success,xk
i+1 = “success”.

Using this probabilistic notation,P (M, i) can be expressed asP (xk
i = “success”). In order

to simplify the notation, in the following, labels“success” and“failure” will be equivalent
to “s” and“f”.

Now consider the success generationgk in which runk converges to the solution, so
gk ∈ N

+ is a random variable that may take any positive integer value. The probability of
run k to have converged in generationi is P (gk ≤ i), while the success generation is not
defined for those runs that have failed. Similarly, the SR of an algorithm might be expressed
asSR = P (xk

∞ = s).
Our objective is to find a model ofP (M, i). This model, using the probabilistic notation

defined before, and from the perspective of success generation, is

P (M, i) = P (gk ≤ i)

This equation does not take into account the total number of successful runs, so it not useful
from a practical point of view, it is necessary to express this probability as a function of
something that could be measured. To consider this fact, we can use a conditional probability.
Then, a run has a success generation if, and only if, its outcome has been a success, so

P (gk ≤ i|xk
∞ = s) = F (i) =

∫ i

0
f(u)du (5.13)

wheref(u) is the (yet unknown) probability density function (PDF) of the random variable
gk, while F (i) =

∫ i
0 f(u)du is itscumulative density function (CDF).

We are now in condition to use Bayes’ Theorem,

P (gk ≤ i|xk
∞ = s) =

P (gk ≤ i)P (xk
∞ = s|gk ≤ i)

P (xk
∞ = s)

Obviously, the conditional probabilityP (xk
∞|gk ≤ i) equals1 because if the experiment has

converged into a solution, by definition, its outcome has been“success”. P (gk ≤ i|xk
∞ = s)

is not known, but can be empirically studied, andP (xk
∞ = s) is the SR, which also can be

easily estimated. Solving the equation forP (gk ≤ i) is straightforward to conclude that

P (gk ≤ i) = P (xk
∞ = s)P (gk ≤ i|xk

∞ = s)

112 CHAPTER 5. RUN-TIME ANALYSIS OF TREE-BASED GP

following that
P (M, i) = SR F (i) (5.14)

It provides an alternative representation of the accumulated success probability, more con-
venient for this study, furthermore, it is a generalizationof the binomial random variable de-
scribed in chapter 4. If assumei = ∞, then the CDFF (∞) equals1, and thusP (M,∞) =
SR, which is binomial. So this model is composed by two terms, the fractional term that
describes the SR, while the second term models the variationin time of that probability.

If we fix the generation to an arbitrary valuei0 < ∞, the underlying distribution is again
binomial, as we could expect. However it is multiplied by a factor F (i) that depends on the
generationi, and represents the proportion of runs that are supposed to have found a solution
in generationi.

The model shown in (5.14) presents a serious problem, it has been constructed under the
assumption of an experiment that has been run an infinite number of generations. We guess
that the reader will agree with us if we state that this situation is rather difficult to happen in
real life. It is impossible to measure SR, but instead we can estimate it asŜR = k(M,G)/n,
with G < ∞. Of course, this measure is unlikely to be equal than SR, so, we will be
introducing an error that is specific of this model. So, the model given by (5.14), cannot be
used in practice, but instead

P (M, i) = ŜR F (i) =
k(M,G)

n
F (i) (5.15)

Unfortunately, the model given by (5.15) does not provide a close form ofP (M, i) and
thus it cannot be used. However, we only need a model ofP (M, i) to make (5.15) useful.
But this problem was, to some extent, solved in the run-time analysis performed in sec-
tion 5.2. It was showed that in tree-based GP, the lognormal distribution seems to fit well the
generation-to-success, and it is reasonable to suppose that generation-to-success is a lognor-
mal distribution. With this data, we can reformulate (5.15)to provide a complete model of
success probability.

5.4.2 A specific model of success probability

Experimentation reported above showed that the lognormal distribution fits reasonable well
most of the case studies, in particular, all with the exception of the two hard boolean prob-
lems. So it seems reasonable to assume a lognormal distribution from this point. If we make
this assumption, then it is straightforward to then deduce amodel ofP (M, i) from (5.14)
that could be used in practice.

It is well known that the lognormal CDF [150] is given by

F (i; µ̂, σ̂) = Φ

(
ln i − µ̂

σ̂

)
(5.16)

whereΦ(...) is the standard normal CDF. If there arem runs that have converged in the
experiment, andgk, k = 1, ...,m is the generation-to-success of runk, then

µ̂ =

∑m
k=1 ln gk

m
(5.17)

5.4. A NEW MODEL OF SUCCESS PROBABILITY 113

0 10 20 30 40 50

0.
00

0.
10

0.
20

Artificial ant

Generation
S

uc
ce

ss
 p

ro
ba

bi
lit

y

Standard
Lognormal

0 10 20 30 40 50

0.
0

0.
4

0.
8

6−Multiplexer

Generation

S
uc

ce
ss

 p
ro

ba
bi

lit
y

0 10 20 30 40 50

0.
00

0.
04

0.
08

4−Parity

Generation

S
uc

ce
ss

 p
ro

ba
bi

lit
y

0 10 20 30 40 50

0.
0

0.
1

0.
2

0.
3

0.
4

Regression

Generation
S

uc
ce

ss
 p

ro
ba

bi
lit

y

Figure 5.8: Comparison among the best maximum-likelihood estimator of the accumulated
success probability and the model approached using a lognormal distribution.

and

σ̂ =

√∑m
k=1(ln gk − µ̂)2

m
(5.18)

Using (5.14) and (5.16) yields that the accumulated successprobability can be expressed as

P (M, i) =
k(M,G)

n
Φ

(
ln i − µ̂

σ̂

)
(5.19)

All the parameters involved in this equation are known by theexperimenter. One advan-
tage of using a lognormal distribution is its close relationship with the normal distribution,
and actually, lognormally data can be transoformed into normal data, and viceversa [150],
therefore the statistical proporties of the estimatorµ̂ andσ̂ are well known.

5.4.3 Experimental validation of the model

Although data has been fitted a lognormal distribution, there is no experimental support to
claim that the model of accumulated success probability given by (5.19) is a correct model.
So, additional experimental evidence is collected in this section.

Figure 5.8 shows a comparison betweenP (M, i) calculated using the standard maximum-
likelihood method and the lognormal approximation. All thesamples available in the datasets
were used to calculateP (M, i) with both methods. It can be seen in Figure 5.8 that both
methods achieve very similar results, and thus, in the studycases under consideration, when
using a large number of runs, our proposal achieves estimations ofP (M, i) pretty close to
the standard method. Nevertheless, this experiment shows an unrealistic scenario since the

114 CHAPTER 5. RUN-TIME ANALYSIS OF TREE-BASED GP

A
rt

ifi
ci

al
 a

nt
0.

0
0.

2
0.

4

n= 25

Best est.

Standard

Lognormal

n= 50 n= 100 n= 200

6−
M

ul
tip

le
xe

r
0.

0
0.

4
0.

8
4−

P
ar

ity
0.

00
0.

06
R

eg
re

ss
io

n
0.

0
0.

2
0.

4

0 20 40
Generation

0 20 40
Generation

0 20 40
Generation

0 20 40
Generation

Figure 5.9: Comparison between the best maximum-likelihood estimator of the accumulated
success probability and the model approached using a lognormal distribution.

computational cost of running an experiment with real-world problems imposes a maximum
number of runs much lower than the used in this experiment.

A collection of experiments were simulated using differentvalues ofn. Given the whole
set of runs stored in the previous experiments,25, 50, 100 and200 runs were resampled with
replacement,P (M, i) calculated using both methods and finally they were depictedin Fig-
ure 5.9. To give more elements to compare with, the best estimation ofP (M, i) (calculated
with all the runs) also included in Figure 5.9.

As can be seen in Figure 5.9, when there are a high number of runs, the differences
between the three curves tend to disappear, and the estimation with both methods tend to
be closer to the best estimation available. More interesting is the relationship between the
two methods, they yield similar estimations of the accumulated success probability, which
is logical because they use the same data; if one method makesa bad estimation of the
accumulated success probability, the other one also makes abad estimation. It leads us to an
almost tautological conclusion: there is no magic. With a small number of runs, there is not
much information available, and without information, it issimply not possible to reach good
conclusions.

Despite the lack of magic of the proposed method, Figure 5.9 shows an interesting prop-
erty: the proposed method is able to interpolate values using the experimental data, yielding
much smoother curves than the standard method. And apparently, it can be done without

5.5. RUN-TIME ANALYSIS IN OTHER METAHEURISTICS 115

sacrificing the accuracy of the measure. This fact is rather clear, for instance, in the 4-parity
problem withn = 25. A similar property is the ability of the lognormal approximation to
extrapolate values of the accumulated success probability. This is interesting in early genera-
tions, where there are no success due to a low, but not null, success probability. In these cases
the standard method yields a null estimation of the success probability while the lognormal
yields a non zero value.

Another interesting fact that can be found in Figure 5.9 is the excellent estimation made
in the 4-parity problem. Despite the fact that the experiment was run for too few generations
and it was the domain with the poorest model fit, it generates anice approximation to the
maximum-likelihood estimator of the accumulated success probability. This fact could be
quite interesting to reduce the number of generations needed to study the performance of GP
using less computational resources, however we feel that this issue requires more study.

5.5 Run-time analysis in other Metaheuristics

Experimentation reported in this chapter has been based on Koza’s style GP. The experimen-
tal results obtained so far cannot, without additional considerations, be generalized to other
algorithms. Fortunately, there are some papers describingthe run-time behaviour of several
SLS algorithms and metaheuristics applied to solve different problems. A comparison of the
results reported in the literature and our results might provide some clues about whether the
observed distributions are generalizable or not.

Probably the authors that have investigated in more detail this topic are Hoos and Stützle,
who applied RTD analysis to different algorithms and problems. They studied in [116] the
RLD of WSAT algorithms used to solve 3SAT problem instances.They found that the RLD
is exponential when the parameters setting is optimal, shifted exponential or Weibull when
the parameters setting is not optimal. Shifted exponentialappears when the parameters are
above optimal, and Weibull, when they are under the optimum value. Analogously, in [113]
Hoos and Stützle studied the RLD of some other stochastic SLS algorithms, such as GWSAT,
GSAT with tabu-lists, TMCH and WMCH, to solve instances of SAT and CSP, finding that,
again, when parameters are optimal, the RLD follows an exponential, and otherwise RLD fits
a Weibull distribution. Curiously, this result only holds for hard instances, in easy instances
they did not found statistical significance. RLD of easy instances deviates from the expo-
nential distribution, and they conjectured that it was caused by the initial hill-climb phase of
the search. In a later work [114] observed that the RLD of hard3SAT instances solved with
the WalkSAT algorithm also follows an exponential distribution, and more interestingly, the
higher the difficulty of the problem, the higher the fit is found. Stützle and Hoos also studied
the RTD of ILS algorithms in various types of TSP problems, finding that the RTD follows
a shifted exponential distribution [224].

A more recent work made by Hoos and Stützle showed a more complete view about
this topic [115]. The authors compare various versions of GSAT and WalkSAT algorithms
to solve some problems coded as 3SAT (random 3-SAT, graph coloring, block world and
logistic planning) using an RTD analysis. They found that these algorithms also have expo-
nential RTDs for hard problems and high values of the noise parameter. More importantly,
they found that RLDs of easy problems are not exponential, despite their tails are still expo-

116 CHAPTER 5. RUN-TIME ANALYSIS OF TREE-BASED GP

nential. Their interpretation is that there is an initial search phase where the probability of
finding a solution is very low. In hard problems where the run-time is high enough, this ini-
tialization phase has a minimal impact, while in easy problems it takes a notable amount of
time and thus the distribution is less likely to be exponential. The initial search phase seems
to be well described by the Weibull distribution. Only few cases were not correctly described
by either exponential neither the Weibull distributions, but even in this case, they can be well
approximated by a weighted linear combination of Weibull distributions. Another interest-
ing result reported in [115] is how the noise parameter affects the RLD. For values of the
noise higher that optimal, the RTD is still exponential, moreover, the initial search phase is
less prominent, increasing the fit of the model. On the contrary, for suboptimal values of
the noise parameter, the RLDs exhibits longer and heavier tails compared to the exponential
distribution.

Chiarandini and Stützle [53] studied the RTD of ILS, ACO, Random Restart Local
Search and two variants of SA applied to the Course Timetabling problem, finding that the
Weibull distribution approximates well the RTDs. Data provided in that paper does not per-
mit to clearly deduce whether the approximated Weibull distribution can be reduced to an
exponential distribution in any of the problem instances. They report, however, that in SA,
the RTD in hard problems can be approximated, at least partially, using a shifted exponential
distribution. This result partially contradicts the one reported in [224], where the RTD fol-
lows a shifted exponential, but this discrepancy could by explained by the parameters setting
and the problem difficulty. In any case, both studies are consequent with the basic fact that
RTDs appear to follow a exponential or a Weibull distribution.

On the contrary than Hoos, Stützle and Chiarandini, Frostet al. [89] studied the RTD us-
ing the same algorithm, backtracking, with different problem instances of the CSP, and found
an interesting fact. The RTD of the algorithm running on solvable instances [80] follows a
Weibull distribution, while unsolvable instances generate lognormal run-time distributions.
However, only the lognormal distribution for solvable problems had statistical significance.
These results hold for several backtracking algorithms, and results with the 3SAT problem
are similar. It is interesting to mention that, although Frost et al. did not mention it, some
of the experimental results reported in [89] suggest also anexponential distribution, which
is supported by the reported fitβ ≈ 1. Other studies about the RTD of several metaheuris-
tics have observed that their RTD follow an exponential or shifted exponential distributions,
these metaheuristics include GA, TS and GRASP [205].

It is worth to compare our results with the related work. The main role found for the
exponential distribution reported by the literature was not found in our research, which points
to the lognormal distribution and reserves the exponentialfor some difficult problems after
some data filtering. However, we have to take into account that we did not looked for optimal
parameters, that might have an impact in the result, as suggested in [113, 115].

The interpretation of the Weibull distribution made by Hoosand Stützle in [115] might be
applied here. They suggested that the Weibull distributionin hard problems is able to model
the initial search phase. The asymptotically exponential behaviour of the Weibull distribu-
tion supports this idea. In our case, runtime-to success of hard boolean problems approximate
shifted exponential, with a, in comparison, small initial search phase. The Weibull distribu-
tion appeared when the selective pressure were removed, which is clearly suboptimal, and
thus the search was almost random. More research should be done to determine the influence

5.6. DISCUSSION 117

of the parameters setting on the run-time behaviour in GP. Incase there were a correlation
between that and the RTD, it would be a result with a strong practical interest.

5.6 Discussion

There are some interesting issues that arise from the observations made in this chapter and
the related work. It seems clear, looking at the related work, that RTD analysis is dominated
by the Weibull and the exponential distributions. The lognormal, in some circumstances,
also appears in the literature. The prominent role of these distributions does not seem to
be circumscribed to a particular algorithm, but it seems instead to be a general property of
metaheuristics. In addition, this work has shown, with somesupport from the literature, that
the lognormal distribution also plays a role, at least, in tree-based GP.

These three distributions are widely used in Reliability Theory to model failures in physi-
cal systems, suggesting a link between run-time analysis and reliability theory. This observa-
tion is not new, previously Hoos [115], Luke [156] and Frost [89] mentioned this idea. More
recently, Gagliolo and Legrand introduced a detailed discussion about this topic in [90].

An insight to a possible reason behind the run-time to success behaviour found so far was
suggested by Frostet al. [89], inspired by the Reliability Theory. The failure rate is defined
in Reliability Theory ash(t) = f(t)/(1 − F (t)), wheref(t) andF (t) are, respectively,
the density function and CDF. In the context of EAs, given a algorithm that has not found a
solution at timet, h(t)+∆t is the probability of solving the problem in the interval(t, t+∆t).
In Reliability Theory,h(t) determines when failures happen. If it is constant, the timeto
failure is exponentially distributed. Ifh(t) is of the linear formh(t) = λββtβ−1 time to
failure follows a Weibull distribution. Finally, in case that the failure rate were nonmonotone
the lognormal distribution appears. So, this interpretation suggests that the distribution of
the generation-to-success depends on the success probability at each generation. Ironically,
failures in Reliability Theory can be associated to the run-time to success in GP.

It has been shown that, at least in one extreme case, the parameters settings may change
the distribution of the run-time to success. When the default ECJ parameters setting were
used, the run-time to success of four out of six problem instances, measured in generations,
was characterized by a lognormal distribution, meanwhile if the tournament size was reduced
to one, the distribution changed to a Weibull. It opens the question of whether the opposite
deduction could be done, given the distribution of the run-time to success, infer facts about
the parameter configuration, for instance, its goodness. Inour opinion, the practical conse-
quences that such analysis might have, deserves futher research. Moreover, there should be
a theoretical reason that explains why the run-time to success is lognormal, exponential or
Weibull. Experimentation has provided some clues for such theory, problem difficulty and
selective pressure are probably factors to take into account.

The presence of exponential distributions leads to an observation with potential theoret-
ical implications. The exponential distribution is well known for one remarkable property, it
is memoryless. This property has been widely used by the literature to support the idea that
when the RTD is exponential, it cannot take benefit from restarting the run [116]. We con-
jecture that there are notable theoretical implications behind this fact. Hoos and Stẗzle [115]
suggested an interpretation of the exponential nature of RTDs when they stated that “the

118 CHAPTER 5. RUN-TIME ANALYSIS OF TREE-BASED GP

exponential RTDs suggest a novel interpretation of Stochastic Local Search behaviour as in-
dependent random picking from a drastically reduced searchspace”, this observation might
well be valid in GP. Following Hoos’ reasoning, we might guess that, given an exponentially
distributed run-time to success, the search is memoryless,and hence learning can hardly be.

The lognormality of the run-time to success opens some interesting applications. Just
mention one, we could apply it to determine objectively the run-time cutoff value. The de-
termination of the number of runs needed to estimate the parameters is a classical problem
in statistical inference, and the transformation between normal and lognormal is straightfor-
ward,X ∼ N(µ, σ) ⇒ eX ∼ LN(µ, σ) andX ∼ LN(µ, σ) ⇒ ln(X) ∼ N(µ, σ) [150],
using this transformation the number of runs in the exploratory experiment can be determined
using

n =
z2
α/2 s2

e2
(5.20)

wheree is the desired level of precision for the estimation of the mean, given in the same
unit thans, s the standard error of the samples andzα/2 is the upper-α/2 critical point from
N(0, 1) [218]. The probability of getting at least one success in generationi is given by
P (M,G) F (i; µ̂, σ̂), while the probability of not getting any success in generation G is

ε = 1 − P (M,G) F (G; µ̂, σ̂) (5.21)

This equation provides an estimation of the errorε that is introduced by limiting the max-
imum number of generations toG. Moreover, if we set a maximum error that is tolerable,
we could calculateG from (5.21), yielding the maximum number of generations that the
algorithm should be executed to achieve that error.

5.7 Conclusions

The main goal of this chapter was to develop an analytical model of the success probability.
In order to accomplish this goal, we needed first to obtain an statistical characterization of
the time required by GP to find a solution. For this reason we empirically studied the run-
time to success of six well known problems in tree-based GP. As unexpected side effect, we
observed some patterns in the run-time behaviour of the algorithms that could lead to general
conclusions with an impact wider than the original object ofstudy that motivated this work.

We have found that when using the ECJ default parameters settings, the generation-to-
success tends to follow a lognormal distribution. In some cases the lognormal distribution
yields smoother peaks in comparison to empirical data, but in general it fits well, and better
in any case than other distributions such as the Weibull. There were, however, two problem
instances, both difficult boolean problems, whose generation-to-success were not well mod-
eled by the lognormal, but instead by a shifted exponential distribution. A third problem
instance, the 4-parity, was not well modeled by any distribution under consideration in this
study. We conjecture that there is a initialization phase, to some extent related to the tree size,
that is well modeled by lognormal distribution in easy problems, but in hard problems the
long run-times make the initialization phase less influential, and the lognormal is no longer
a good model. If the initialization phase is removed, the remaining samples fit the shifted

5.7. CONCLUSIONS 119

exponential. Finally, in absence of selective pressure, itseems that the generation-to-success
does not follow either a lognormal neither an exponential, but a Weibull distribution.

In an attempt to provide some clues to develop a theoretical explanation of the run-
time behaviour found in the experiments, we developed a simple theoretical model based on
Discrete-Time Markov Chains, and demonstrated that in absence of memory, the generation-
to-success follows a geometric distribution. Empirical data also fit well geometrical distri-
bution. In a near future we expect to develop this model and use Montecarlo simulation to
understand in which circumstances the lognormal and Weibull distributions appear. More
experimentation could be used to provide clues to direct development of a run-time theory.
In any case, experiments shown in this chapter, and experiments reported in previous liter-
ature have shown a complex picture, where several statistical distributions are involved and
there are complex iterations with the parameters settings.

In relation to the dissertation main research goal, the maincontribution of this chapter
is the proposal of a model of success probability in generational tree-based GP. This model
considers the existence of two different -although related- problems: whether the algorithm
is able to find a solution, and, given that it has been found, when it happens. The model uses
the result of the run-time analysis performed, in particular the fact that the lognormal distri-
bution seems to describe well the run-time to success of mostof the studied problems. If the
generation is fixed, a classical binomial distribution is derived from our model. Following it,
we discussed some practical applications of the model. For instance, given that the genera-
tion where the algorithm finds a solution (i.e. thegeneration-to-success) could be described
with a known probability distribution, it would be determined when the algorithm is more
likely to find a solution, and therefore, use this information to set the maximum number of
generations in a well grounded way.

Once that the main component of Koza’s computational efforthas been analitically mod-
eled, and that the estimation error of SR has been characterized, we can join these two results
in order to characterize the reliability of the computational effort. This task is performed in
the next chapter.

120 CHAPTER 5. RUN-TIME ANALYSIS OF TREE-BASED GP

Chapter 6

Accuracy of Koza’s performance
measure

We find ourselves, then, met with the same difference that eternally
exists between the fool and the man of sense. The latter is constantly

catching himself within an inch of being a fool; hence he makes an
effort to escape from the imminent folly, and in that effort lies his intelligence.

The Revolt of the Masses. José Ortega y Gasset

In this chapter, the amount of uncertainty associated with Koza’s performance measures
is investigated. The approach used to explore this topic tries to be systematic. We identify
two sources of variability (the ceiling operator and the estimation of the success probability)
and study their effects. In order to simplify the analysis wedecompose it into two steps.
First we analyze the error in the estimation of the number of individuals to be processed,
and secondly thee error in the computational effort. The analysis takes a double approach,
theoretical and experimental. An analytical model of the error, based on some empirical
observations, is proposed, and then it is validated by experimentation.

The main contributions of this chapter are: 1) an analyticalboundary of the variability
sources of Koza’s performance measures validated with experimentation; 2) based on the
previous result, a model for the maximum error associated tothe Koza’s performance mea-
sures; 3) a proposal of a new method to calculate Koza’s performance measures based on the
lognormality of the run-time to success. In addition, we show that a constant success pro-
bability generates a constant number of individuals to process. The conclusion that can be
deduced from this work is that in common experimental settings, the error of Koza’s perfor-
mance measures is rather high, only a high number of runs can reduce this error to tolerable
values. The use of the ceiling operator should be avoided in any case.

The chapter is structured as follows. It begins with a brief introduction and a literature
review. Then, a detailed description of Koza’s performancemeasures is presented, with an
introductory discussion about the mathematical properties of the computational effort. After

121

122 CHAPTER 6. ACCURACY OF KOZA’S PERFORMANCE MEASURE

that, section 6.3 introduces an exploratory experiment that also serves to motivate this chap-
ter. Section 6.4 investigates and determines the origin of randomness in the measurement
of the computational effort, including a study of the effects of the ceiling operator, and a
brief overview of the effects of an error in the estimation ofthe success probability in the
estimation of Koza’s performance measures. Sections 6.5 and 6.6 are dedicated to character-
ize the effects of the estimation of the success probabilityas functions of known parameters.
Then, the analytical results so far obtained are validated experimentally. We finish with some
conclusions.

6.1 Introduction

This chapter deals with two popular measures in Genetic Programming (GP): the number of
individuals to be processed to achieve at least one success with a certain probability, and the
computational effort. Both, were defined by John R. Koza [136] and are closely related to
each other. Computational effort is indeed obtained as the minimum value of the number
of individuals to be processed. These measures do not rely onany specific element of GP,
and could be used in any other generational EA, even they could be used in steady-stade
algorithms with minor modifications [180]. However, perhaps for historical reasons, they
only have had a relevant position in GP.

Despite the importance of the statistics proposed by Koza, and the number of research
work that has been done trusting in them, the accuracy and reliability of these measures
have not been object of intense investigation. Angeline first observed that the computational
effort [6] is actually a random variable, and concluded thatthe stochastic nature of the com-
putational effort should be handled with statistical tools. Some time after, Keijzer [127]
calculated the computational effort using confidence intervals (CIs) instead of just punctual
estimation, achieving a remarkable conclusion: when success probability is low, CIs of the
computational effort are almost as large as the computational effort. In order words, the va-
riability of computational effort is similar to its magnitude, and thus, in that case, the high
dispersion of the computational effort makes it not reliable.

To the author’s knowledge, the only systematic attempt madeto understand why the com-
putational effort presents the variability observed by Keijzer was done by Christensen [54].
He identified three sources of variability and provided empirical data that gave some light to
the circumstances that reduce the reliability of computational effort. More research in this
area was done by Walker [240, 241], who studied how to apply CIs to the calculus of the
computational effort, and Niehaus [180], who investigatedthe statistical properties of the
computational effort in steady-stade algorithms.

Our work in this chapter is aligned with the research done by Christensen. It is a system-
atic attempt to take a step forward to identify and characterize the variability sources of the
computational effort. We use a theoretical and experimental approach, providing analytical
boundaries to the measurement errors of Koza’s performancemeasures, as well as experi-
mental validation of these limits. Since the performance metrics studied in this chapter are
based on the estimation of a success probability, this chapter relies on the contributions of
the chapters 4 and 5.

6.2. KOZA’S PERFORMANCE MEASURES 123

6.2 Koza’s performance measures

In order to clarify the terminology used in this chapter, we first define some terms that we
will use. A run is a single execution of an evolutionary algorithm (EA), while an experiment
is a collection ofn independent runs. Due to the random nature of EAs, many of their
properties are stochastical, and thus they cannot be characterized using a single run, but
instead an experiment with several runs. One of these properties is thesuccess rate(SR),
that we define as the probability of getting a success when theEA is run an infinite number
of generations [21, 15]. The exact meaning of success depends on the problem and the
objectives of the practitioner, so, depending on the context, we consider that a run has yielded
a success if it satisfies a certain success predicate set by the experimenter. For instance, a
success predicate might be finding an individual with a certain fitness value. From the point
of view of SR, the exact form of this predicate is irrelevant as long as it clearly classifies the
outcome of the run as “success” or “failure”.

Instant and cumulative success probabilities are closely related to SR, but in contrast with
it, they depend on time. Given an experiment withy(M, i) successful runs in generationi,
and each run composed by a population ofM individuals, theinstantaneous probability
of success, Y (M, i) is defined by Koza asY (M, i) = y(M, i)/n [136]. Similarly, the
cumulative success probabilityP (M, i) is the cumulative success probability that derives
from Y (M, i), and thus we can express it as a function ofy(M, i) as

P (M, i) =
1

n

i∑

j=1

y(M, j)

ExpressingP (M, i) as a function of thenumber of successes, k(M, i) =
∑i

j=1 y(M, j) is
usually more convenient, yielding thatP (M, i) = k(M, i)/n. We should point out that
P (M, i) is an empirical accumulated probability, but for language abuse, it is usually om-
mitted.

We previously definitined SR as the accumulated success probability at the end of the
experiment, and thusSR = limi→∞ P (M, i). However, in the general case SR cannot
be known, but it can be estimated. The EA is run for a fixed number of G generations,
Y (M, i) = 0, i > G, andP (M, i) remains constant, so the estimation of SR is

ŜR = P (M,G) =
k(M,G)

n

The definition we have made of SR implicitly assumes that there is no guarantee that the
algorithm will explore all the search space, and therefore it might find a solution. It seems
reasonable that, under certain conditions, for instance anEA with some types of mutation,
given infinite time the algorithm will be able to find a solution [193]. This topic is open to
theoretical discussion, and we simply assume that the algorithm is not guaranteed to find a
solution in infinite time.

Another definition that will be useful isgeneration-to-success, which we define as the
generation in which a run achieves the success [16]. Of course, this definition only makes
sense for those runs that have been able to find a solution, otherwise it is not defined.

A few words should be dedicated to the notation. We use the original notation used by
Koza, who expressed the cumulative success probability as afunction ofM andi, whereM

124 CHAPTER 6. ACCURACY OF KOZA’S PERFORMANCE MEASURE

is the population size andi the generation. The original intention of Koza was to emphasize
the dependence of the probability with the population size and the generation. From a strict
mathematical point of view, the only independent variable in the previous equation isi and,
with exceptions, the population size usually does not variate in the execution of an EA.
The notationP (M, i) might induce the idea thatM is an independent variable while it is a
constant, hence, in our opinion, the accumulated success probability should be expressed as
P (i) instead ofP (M, i). Nevertheless, in order to be consistent, in the following we will use
Koza’s notation.

Another issue about notation is related to the discrete nature of EAs. The notation sug-
gests that the performance measures are defined in continuous time, although they are dis-
crete values. In this chapter we consider them as continuous. Our results will not be affected
by this decision meanwhile the notation will be more consistent and clear. With these pre-
liminar considerations, we are in position to introduce thecomputational effort.

6.2.1 Discussion about computational effort mathematicalproperties

Koza, in his classical book [136], defined a measure of the complexity of a problem and the
performance of an algorithm namedcomputational effort. The computational effort is based
on the estimation of the number of individuals that the algorithm has to process to achieve at
least one success with a given probabilityz, expressed asI(M, i, z). It is common to express
the probabilityz with the greek letterε such asz = 1 − ε. A common value ofε used in the
literature is0.01 (z = 0.99).

Then, thenumber of individuals to be processedis given by

I(M, i, z) = M i R,

whereM is the population size andi = 1, 2, ..., G the generation, thusMi is the number of
individuals processed until generationi. ThereforeMi estimates the computational process-
ing needed to execute one run fori generations, whileR contains the number of runs that the
experiment needs to achieve, at least, one success with probability z, and it is

R =

⌈
ln(1 − z)

ln(1 − P (M, i))

⌉
(6.1)

The operator⌈. . .⌉ is the ceiling operator and returns the smallest integer notless than its
argument, i.e., it rounds up the fractional part of its argument. This operation was introduced
becauseR gives the number of times that the experiment should be run, and thus it must be
an integer. However, it should be noticed that usually it only has a mathematical interpre-
tation, and the experiment is not supposed to be repeatedR times. The importance of this
observation will be evident later.

Equation (6.1) can be deducted directly from Statistics andprobability theory. A Bernoulli
trial [174] is defined as an experiment whose outcome can taketwo random values, named
“success” and “failure”. Some problems in EC, where an optimum or near-optimum solution
can be identified, may be described as a Bernoulli trial because the algorithm in those do-
mains can achieve a satisfactory solution, or not, i.e., a “success” or a “failure” with a certain
probability, the SR.

6.2. KOZA’S PERFORMANCE MEASURES 125

By definition, the probability of getting one success afterR Bernoulli trials with success
probabilityp is described by the geometric distribution,

P (X = R) = (1 − p)R−1p,

and the probability of getting at least one success inR trials is described by the well known
cumulative distribution function (CDF) of the geometric distribution,

P (X ≤ R) = 1 − (1 − p)R (6.2)

It is interesting to point out that the geometric distribution is the only discrete distribution
without memory [174]. Using the CDF of the geometric distribution in Eq. (6.2) it is straight-
forward to calculate the number of trialsR such asP (X ≤ R) = z. With these considera-
tions we can express (6.2) with the notation used by Koza.

z = 1 − (1 − p)R

which is the same expression that Koza deduced in [136] usingprobabilities. Taking natural
logarithms on both sides of the equation we can isolateR

R ln(1 − p) = ln(1 − z) =⇒ R =
ln(1 − z)

ln(1 − p)

which is the same than (6.1), without the ceiling function. In any case, the minimum number
of individuals that have to be processed to achieve at least one solution with probabilityz,
takes the form

I(M, i, z) = Mi

⌈
ln(1 − z)

ln(1 − P (M, i))

⌉
(6.3)

Therefore, the number of processed individuals is a function of i. By convenience, we define
Ic(M, i, z) asI(M, i, z) without the ceiling operator,

Ic(M, i, z) = Mi
ln(1 − z)

ln(1 − P (M, i))
(6.4)

By definition,computational effort, denoted byE, is the minimum value of (6.3),

E = min
i

{
Mi

⌈
ln(1 − z)

ln(1 − P (M, i))

⌉}
(6.5)

Equations (6.3) and (6.5) are rather simple and easy to understand, however, understanding
its behaviour and accuracy is far from being a trivial task. Several statistical issues arise
when they are studied in detail, as it will be shown later. It is interesting to glimpse some of
their mathematical properties before we begin to study their accuracy, variability and error
sources.

126 CHAPTER 6. ACCURACY OF KOZA’S PERFORMANCE MEASURE

6.2.2 Constant number of individuals to be processed

Randomness is intrinsic for all EAs, and it is also a major concern that difficults experimen-
tal as well as theoretical studies. In order to simplify it, some authors, such as Christensen
[54] and Niehaus [180], used two different synthetic cumulative success probabilities that
was used in their study about the properties of Koza’s performance measures. The former
calculated the success probability that generates a constant I(M, i, z), while the latter sam-
pled I(M, i, z) from a Gaussian distribution. This last approach might not be close to the
reality because of the differences that we found between that model and the data obtained
empirically, as will be shown later in section 6.6.1.

The following theorem describes the relationship betweenP (M, i) andI(M, i, z), specif-
ically, anyP (M, i) that corresponds to the CDF of an exponential distribution (or its discrete
counterpart, the geometric distribution) generates a constantI(M, i, z).

Theorem 3 Any cumulative probability described by the CDF of an exponential distribution,
P (M, i) = 1 − e−λi with i ≥ 0 andλ > 0, generates a constantI(M, i, z) such as

I(M, i, z) =
M

λ
ln

1

(1 − z)
(6.6)

Proof 5 The derivate of a constant function equals0 for all the values of the independent
variable. So, and being consistent with Koza’s notation, wetake the partial derivate of (6.4)
with respect toi and equal it to0

∂I(M, i, z)

∂i
= 0,

yielding the following differential equation

ln(i − P (M, i)) + i
P ′(M, i)

1 − P (M, i)
= 0

Solving it, we obtain the functionP (M, i) = 1 − eλi, whereλ is a constant parameter. We
know thatP (M, i) ∈ [0, 1], so we can deduce an additional condition toλ

P (M, i) > 0 ⇒ 1 − eλi > 0 ⇒ λ < 0

Given thati is a natural number, any success probabilityP (M, i) that generates a constant
computational effort must be of the form

P (M, i) = 1 − e−λi, λ ∈ R+ (6.7)

which corresponds to the CDF of the exponential distribution.

The equation that Christensen and Oppacher deduced in [54] can be obtained from (6.6). It
is interesting to note that the exponential distribution isthe only memoryless distribution, it
means that, in some sense, the variability ofI(M, i, z) is a consecuence of the memory of
the accumulated success probability.

6.3. EXPLORATORY EXPERIMENTAL ANALYSIS 127

Table 6.1: Best estimation of success probability for the artificial ant problem. It reports
the number of runs (n), number of successful runs (k), best estimation of success rate
P̂ best(M,G), best estimation of computational effort (Êbest), best estimation of compu-
tational effort without ceiling operator (̂Ebest

c) and their difference in absolute as well as
relative values.

Artificial ant 6-Multiplexer 5-Parity Regression

n 100,000 100,000 5,000 100,000

k 13,168 95,629 305 29,462

P̂ best(M,G) 0.13168 0.95629 0.061 0.29462

Êbest 490,000 24,000 14,800,000 117,000

Êbest
c 487,276 22,805 14,633,571 116,468

Difference 2,724 (0.5%) 1,195 (4.98%) 166,429 (1.13%) 536 (0.49%)

In any case, the deterministic function studied here is interesting from a theoretic point
of view, but actually in real EA experiments the behaviour ofP (M, i) and I(M, i, z) is
much more complex. An initial insight to this behaviour is given in the next section, which
introduces an exploratory experiment showing an initial statistical overview of computational
effort.

6.3 Exploratory experimental analysis

There are two main problems concerning the experimentationthat we have to carry out in
this chapter. First, since we are interested in the accuracyof the measures under study, there
is a need to have something to compare with, to take as reference; ideally it should be the
exact measure, but clearly it is not possible. Secondly, we need a high number of algorithm
runs, with a high consumption of computing resources. Thesetwo problems can be solved
using resampling methods.

Like in chapter 4, four classical GP study cases have been selected: Artificial ant with
the Santa Fe trail, 6-multiplexer, even 5-parity and a linear regression [136]. They have been
selected to represent a diversity of difficulties, from an easy problem (6-multiplexer) to a
difficult one (5-parity), with two intermediate problems (artificial ant and regression). Each
one of these domains was run a high number of times,100, 000, with the exception of the
5-parity, that was only run5, 000 times because its greater population size required more
computational resources. The main advantage that it provides is that using all the runs it is
possible to calculate an accurate estimation of the metricsunder study. A second advantage
is that once those runs are executed and stored, they can be resampled to avoid running again
the algorithms, saving substancial computational resources and time.

The object of this study is not the algorithm itself, but rather the performance metrics, so
the details of their implementation and the parameter tuning does not affect this study. Con-
sequently, we have used the default implementation of the selected problems and parameters

128 CHAPTER 6. ACCURACY OF KOZA’S PERFORMANCE MEASURE

0 10 20 30 40 50

0e
+

00
4e

+
05

8e
+

05

Artificial ant

Generation

I(
M

,i,
z)

0 10 20 30 40 50

0e
+

00
4e

+
05

8e
+

05

6−Multiplexer

Generation

I(
M

,i,
z)

0 10 20 30 40 50

0e
+

00
4e

+
07

8e
+

07

5−Parity

Generation

I(
M

,i,
z)

0 10 20 30 40 50

0e
+

00
4e

+
05

8e
+

05

Regression

Generation

I(
M

,i,
z)

Figure 6.1: Number of individuals to be processed of200 pseudoexperiments composed by
50 runs. The mean value is plotted with a black solid line.

found in ECJ v18 [154], which are based on the original settings used by Koza [136]. The
main parameters that we have used are reported in Table 4.2, with just minimal corrections
such as the population size. The large number of runs executed yields a good estimation of
the true values of Koza’s metrics. Since they are the best estimation available for this study,
we note them aŝIbest(M, i, z), P̂ best(M, i) andÊbest. The values of these estimations are
shown in Table 6.1.

The variability of the estimation ofI(M, i, z) is depicted in Figure 6.1. It contains the
outcome of200 simulated experiments (or pseudoexperiments) with its average value. Each
experiment has been simulated taking50 samples with replacement from the dataset. This
figure shows that different pseudoexperiments usually yield different performance curves.
Depending on the domain, the variability of the curves changes, for instance, if we compare
the curves of the artificial ant and the 6-multiplexer, we findless variability in the latter than
in the former. Notice that the scale used in the figure in both cases is the same.

At this point it makes sense for us to hypothesize that the problem difficulty plays a role,
this hypothesis is based on the apparent correlation between the success rate of each problem
and the dispersion of their̂I(M, i, z) curves. The two most difficult problems, the artificial
ant and the 5-parity, are those with greater variability whereas the two easiest problems,
6-multiplexer and the regression, present less variability.

Figure 6.2 shows the histograms of the computational effortcalculated for the problem
domains under study. Each histogram uses5, 000 pseudoexperiments calculated using50
(bottom row),200 (middle row) and500 (top row) runs sampled from the datasets of runs.
Histograms do not clearly suggest a distribution function able to fit data in all the cases.
Computational effort in the regression problem takes a triangular form while, for instance,

6.3. EXPLORATORY EXPERIMENTAL ANALYSIS 129

Computational effort

F
re

qu
en

cy

0
50

0
10

00
15

00
20

00

0e+00 1e+06 2e+06 3e+06 4e+06

Artificial ant
n=50

0
50

0
10

00

0 10000 20000 30000 40000

6−Multiplexer
n=50

0
20

0
40

0
60

0
80

0

1e+07 2e+07 3e+07 4e+07

5−Parity
n=50

0
50

0
10

00
15

00
20

00

1e+05 3e+05 5e+05

Regression
n=50

0
50

0
10

00

200000 600000 1000000

Artificial ant
n=200

0
50

0
10

00
15

00

0 10000 20000 30000

6−Multiplexer
n=200

0
50

0
10

00
15

00
20

00

2e+07 4e+07 6e+07 8e+07

5−Parity
n=200

0
20

0
40

0
60

0
80

0
10

00

100000 150000 200000

Regression
n=200

0
20

0
40

0
60

0
80

0
10

00

400000 600000 800000 1000000

Artificial ant
n=500

0
20

0
40

0
60

0
80

0
10

00

20000 22000 24000 26000 28000

6−Multiplexer
n=500

0
20

0
40

0
60

0
80

0
10

00

1.0e+07 2.0e+07 3.0e+07

5−Parity
n=500

0
20

0
40

0
60

0
80

0
10

00

80000 100000 120000 140000 160000

Regression
n=500

Figure 6.2: Histograms of the computational effort for the four problems under consider-
ation. Each histogram represents the computational effortof 5, 000 experiments that were
simulated subsampling50, 200 and500 runs from the datasets.

the artificial ant seems to fit better in a lognormal or a Weibull distribution. There are also
some outsider histograms, such us the parity problem forn = 50 or the multiplexer with
n = 50, nonetheless, the latter can be explained by the grouping ofthe categories in the
histogram.

The lack of an obvious distribution able to describeÊ confirms the previous result re-
ported by Walkeret al in [241], who also failed in finding a probability distribution able
to modelÊ. In our opinion, there is an underlying random variable associated to the ac-
cumulated success probability, and this random variable ismodified by several non-lineal
operations such us logarithms and the minimum operator, soÊ in some sense follows the
same distribution but it has been ”contaminated” by those operations. From another point of
view, differences in the distribution of̂E with different levels ofn suggest the presence of a
sampling bias [59], and thus the presence of other factors that influenceE. We suspect these
factor are the non-linear operations made by (6.3) and (6.5).

An important property of any estimator is its variability. Figure 6.2 illustrates a rela-
tionship between the variability of the estimator and the number of runs: the higher isn,
the narrower is the distribution of̂E. Let us, for instance, observe the artificial ant, when
n = 50 most of the estimators are placed between0 and1.5E6 individuals, if we increase
the number of runs to200, most ofÊ take values between200, 000 and800, 000; higher val-

130 CHAPTER 6. ACCURACY OF KOZA’S PERFORMANCE MEASURE

ues ofn yield even less variability of the estimations of computational effort, whenn = 500
Ê is mostly placed in the range of300, 000 and700, 000. This behaviour is observed also
in the rest of problem domains. Since the estimation ofI(M, i, z) andE depends on the
estimation of the accumulated probability, and its qualityis highly dependent on the number
of runs [15], it makes sense to suppose that they are related to each other.

In any case, it is clear that performance measures contain a variability that comes from
the intrinsic stochastic nature of experimentation. However the exact nature of the variability
and the factors that influence its magnitude is not yet clear,so we move on to try to identify
the sources of that variability in order to quantify and model it.

6.4 Determination of the variability sources

Previous work performed by Christensen identified three sources of variability in computa-
tional effort, the ceiling operator, the estimation of the success probability and the minimum
operator [54]. We hold a slightly different point of view about the effects of the minimum
operator. First of all, we hold that, to be strict, it is necessary to clearly distinguish between
I(M, i, z) and E, something that some studies do not do. In our opinion, the minimum
operator is a deterministic non-linear operator whose reliability depends on its operand. In
other words, the reliability of the measurement ofE only depends on the measurement of
I(M, i, z), which does not depend on any minimum operator. So we explicitly exclude the
minimum operator in the study, and we will simply study the reliability of I(M, i, z), and
then apply the result to the computational effort.

Consequently, we consider two sources of randomness inI(M, i, z) andE: the ceiling
operator and the estimation of the cumulative success probability. In order to simplify the
study of the effects of these uncertainty sources, we separate them as independent noise
sources using the following model.

I(M, i, z) = Îc(M, i, z) + εI
ceil + εI

est

while, by definition,

E = min
i

(I(M, i, z)) = min
i

(
Îc(M, i, z) + εI

ceil + εI
est

)

So we can identify an uncertaintyεI
ceil generated by the ceiling operator, as well as a noise

εI
est associated to the estimation ofP (M, i), which is related to the limitation in the number

of runs. This chapter moves towards characterizeεI
ceil andεI

est, to try to understand how
they affect the precision of performance measures, and thenlook for methods to reduce its
variability while improving the reliability.

6.4.1 Ceiling operator

The first variability source we study is the ceiling operator. Strictly speaking, the ceiling
operator is not a randomness source because it is a deterministic operator, but it removes
information, increases the variability of the measure and reduces its precision, as will be
demonstrated later, so its effects in practical terms is thesame than a biased random error.

6.4. DETERMINATION OF THE VARIABILITY SOURCES 131

0.0 0.2 0.4 0.6 0.8 1.0

0
50

10
0

15
0

Maximum relative ceiling error

Success probability

R
el

at
iv

e
ce

ili
ng

 e
rr

or
 (

%
)

ε=1−z=0.05
ε=1−z=0.01
ε=1−z=0.001

0.0 0.2 0.4 0.6 0.8 1.0

0
5

10
15

20
25

30

Comparison of R with and without ceiling

Success probability

R

R (with ceiling)
Rc (without ceiling)

P(M,i)=0.95

R=1

Figure 6.3: Maximum relative ceiling error as function of success probability for three values
of ε, 0.05, 0.01 and0.001 (left) and comparison betweenR andRc (right).

In order to study the effects of the ceiling operator, let us define an alternative computa-
tional effort,Ec, asEc = min

i
(Ic(M, i, z)), whereIc(M, i, z) = MiRc and

Rc =
ln(1 − z)

ln(1 − P (M, i))

It is clear that, assuming thatεest = 0, the error term introduced by the ceiling operator
is the difference betweenI(M, i, z) andIc(M, i, z),

εI
ceil = I(M, i, z) − Ic(M, i, z) = Mi(R − Rc)

The error depends on the the fractional part ofR that is rounded by the ceiling operator,
the population size and the generation number. We know that(R − Rc) is limited by the
maximum fractional part of a real number, so(R − Rc) < 1. With this consideration, it is
possible to boundεI

ceil

εI
ceil < Mi (6.8)

It follows thatmax(εI
ceil) = Mi. This equation introduces an absolute limit to the ceiling

error which is linear withi for a given population size. One way to study the importance of
this error compared withI(M, i, z) is calculating the relative ceiling error (εI

ceil(%)), which
is straightforward using the definition ofIc(M, i, z) and (6.8).

εI
ceil(%) ≤ max(εI

ceil)

Ic(M, i, z)
=

ln(1 − P (M, i))

ln(1 − z)
(6.9)

and thus the relative maximum ceiling error in the measure isfunction of P (M, i) andz.
A graphical representation of (6.9) for three commonz values can be found in Figure 6.3

132 CHAPTER 6. ACCURACY OF KOZA’S PERFORMANCE MEASURE

(left). It can be seen that the estimation ofI(M, i, z) is more sensitive to the ceiling error
for low values ofz. Figure 6.3 (left) also clearly shows the asymptotic behaviour of the
maximum relative ceiling error next to1, so whenP (M, i) is close to1, the estimation of
I(M, i, z) might become arbitrary wrong. A graphical comparison ofR andRc can be found
in Figure 6.3 (right).

Given the reported results in this section, we conclude thatthe error generated by the
ceiling operator might be very significant. The maximum amount of error introduced by this
operator depends on the population size and the generation,nevertheless, in relative terms,
it only depends on the accumulated success probability andz. We do not recommend using
values ofz lower thatP (M, i). The good news are that, onceP (M, i) is known, the error
may be bounded by (6.9), moreover, it can be completely eliminated simply removing the
ceiling operator. We are unable to find any remarkable disadvantage, so, evidence moves us
to suggest not using the ceiling operator when calculatingI(M, i, z) andE. In few words,
ceiling error might be a considerable source of variabilityin the measures, however it is
trivial to remove it in comparison with the estimation error, which is studied in the next
section.

6.4.2 Estimation error

The second source of variability we can identify comes from the estimation ofP (M, i).
The true success probability is rarely known in EC, and therefore the experimenter has to
estimate it [54]. In practical terms, (6.3) cannot be directly used, but rather we can obtain an
estimation

Î(M, i, z) = Mi

⌈
ln(1 − z)

ln(1 − P̂ (M, i))

⌉
(6.10)

whereP̂ (M, i) is the estimation of the accumulated success probability obtained from the
experiments

P̂ (M, i) =
k(M, i)

n

The difference between the theoreticalP (M, i) and the experimental̂P (M, i) is the
only randomness source ofI(M, i, z), the error induced by this difference is what we call
estimation error.

Following [54], we model the estimation errorεest as a noiseP (M, i) = P̂ (M, i)+εest.
This error, associated to the estimation ofP (M, i), induces another error in the estimation
of I(M, i, z), that we model adding an error termεI

est, soIc(M, i, z) = Îc(M, i, z) + εI
est.

In order to isolate the effects of the estimation error and avoid unnecessary complexity, we
do not consider the ceiling operator.

With these considerations we can state that the number of individuals to be processed is
given by

Ic(M, i, z) = Mi
ln(1 − z)

ln(1 − (P̂ (M, i) + εest))
= Mi

ln(1 − z)

ln(1 − P̂ (M, i))
+ εI

est, , (6.11)

then, the estimation error ofIc(M, i, z) as a function of the estimation error of the cumulative

6.4. DETERMINATION OF THE VARIABILITY SOURCES 133

−1.0

−0.5

0.0

0.5

1.0

0.0

0.2

0.4

0.6

0.8

1.0

−1000000

−500000

0

500000

εest

P

εest
I

Figure 6.4: Error produced by the estimation ofP (M, i) as function of success probability
and estimation error. The function is defined byP ∈ (0, 1], εest ∈ [−1, 1] \ P + ε ∈ (0, 1].
M is fixed to 500,i to 10, andε = 0.01.

success probability is the difference betweenIc(M, i, z) andÎc(M, i, z)

εI
est = Ic(M, i) − Îc(M, i) =

Mi ln(1 − z)

ln(1 − P (M, i))
− Mi ln(1 − z)

ln(1 − (P (M, i) + εest))
(6.12)

To ease the graphical representation of (6.12) shown in Figure 6.4 we considerP (M, i) =
P andεest as independent variables, fixing the rest of the parameters to some common val-
ues,M = 500, ε = 0.01 andi = 10. Figure 6.4 shows thatεI

est has an asymptotic behaviour
in two planes,P = 0 andεest = P .

The high estimation error found in the planeP = 0 was previously observed by Chris-
tensen [54]. He calculated the Taylor series of (6.11) and found thatI(M, i, z) is very sensi-
tive to estimation errors whenP (M, i) is close to0, which is the situation in early generations
of the evolutionary process. The reason of this sensitive area can be found in the first term
of (6.12), givenεest 6= 0, and taking the limit

lim
P (M,i)→0

(
Mi ln(1 − z)

ln(1 − P (M, i))
− Mi ln(1 − z)

ln(1 − (P (M, i) + εest))

)

yields an infinite error. The another asymptotic behaviour of the estimation error is originated
by the second term of (6.12). Whenεest ≈ −P (M, i) the denominator tends to be0, and
then the estimation error increases its magnitude. It should be noticed that this effect is not
symmetrical, only happens for negative values ofεest, i.e., whenP (M, i) is overestimated.

The relative estimation error is given by the cocientεI
est/Ic(M, i, z), then, using the

definition ofIc(M, i, z) and (6.12)

εI
est(%) =

εI
est

Ic(M, i, z)
≤ 1 − ln(1 − P (M, i))

ln(1 − (P (M, i) + εest))
(6.13)

134 CHAPTER 6. ACCURACY OF KOZA’S PERFORMANCE MEASURE

−0.6 −0.4 −0.2 0.0 0.2 0.4 0.6

−
60

0
−

50
0

−
40

0
−

30
0

−
20

0
−

10
0

0
10

0

Estimation error and I(M,i,z)

Estimation error (εest)

R
el

at
iv

e
es

tim
at

io
n

er
ro

r
(ε

es
t

I
)(%

)

P = 0.1
P = 0.25
P = 0.5
P = 0.75
P = 0.9

Figure 6.5: Relative error as function of SR and estimation error. The function is defined by
P ∈ (0, 1], εest ∈ [−1, 1]\P + εest ∈ (0, 1].

This equation provides a way to determine whether the error is significant in relative terms.
When the estimation error is small, the ratio is close to1 and therefore the estimation error
is, in proportion, close to0%.

The relationship betweenεest andεI
est given by (6.13) can be better appreciated in Fig-

ure 6.5. First we observe that the sign ofεest has a strong influence onεI
est(%), an over-

estimation ofP (M, i) (negativeεest) leads to more error in the calculus ofI(M, i, z) than
an underestimation (positiveεest) of the same magnitude. This behaviour is explained by
the asymptotic effects of the relative estimation error when P (M, i) + εest = 0, which was
seen before in Figure 6.4. Secondly, it can be seen thatεI

est(%) also depends on the value of
P (M, i); low values ofP (M, i) are more sensitive to the estimation error than high ones, as
can be seen in the slope of the curves, much more inclined in the former case.

As a conclusion, we can state that the number of processed individuals is specially sen-
sitive to the estimation error in two cases: when the accumulated success probability is very
low, close to0, and whenεest ≈ −P (M, i). Drawing conclusions about the relationship
between the estimation error andE requires further analysis, which basically deals with the
minimum operator. In any case, and as an almost tautologicalconclusion, high estimation
errors will generate high errors in the calculus of the number of processed individuals, and
we can conjecture that this error will also be translated to the estimation of the computational
effort.

In this section we have related the estimation error,εest, with the error that it introduces
in εI

est, however, it is yet unclear what factors determine the magnitude ofεest.This is not a
minor observation, depending on the value ofεest the error induced might be significant or
not. We need to express that error as function of a known measure. That is the objective of
the next two sections, modelεest as function of known factors and check out its influence on

6.5. CHARACTERIZATION OF THE ESTIMATION ERROR OFI(M, I,Z) 135

the accuracy ofI(M, i, z) andE.

6.5 Characterization of the estimation error ofI(M, i, z)

The magnitude of the estimation error ofP (M, i) is a key element to explain the accuracy of
Koza’s performance measures. Due to the stochastic nature of εest, it is not possible to set a
hard limit to its size, as was done with the ceiling error (6.8), nonetheless, it does not mean
that there are no mathematical tools that could give some light to this topic. The study on the
binomiality of SR and confidence intervals done in chapter 4 is an example.

The maximum likelihood estimator of the accumulated success probability isP̂ (M, i) =
k(M, i)/n. Given a certain generation, let sayio, the number of successful runsk(M, i0) is
a binomial random variable [21, 15, 177]. Thenεest is an error associated to the estimation
of a binomial variable, and thus, it can take any value between 0 to 1. Nonetheless, it is
still possible to determine a region where the estimation ofthe probability is likely to be
contained with CIs [44, 179].

TheConfidence Interval Width(or CIW) is defined as the difference between the upper
and lower bound of the interval, soCIW = U − L, we can set a relationship between the
CIW and the estimation error, as it will be justified later. These two properties, CP and CIW,
are commonly used to measure the quality of an interval [179]. A good interval has a CP
close to the nominal coverage and low CIW.

Binomial CIs is a well studied problem, and there is a large corpus of publications deal-
ing with this topic. Probably, the two best known comparative studies about binomial CIs
are [44, 179], but many other studies have been published [45, 235, 190]. Much less research
have been done to relate this field of Statistics with EC, however using CIs in the context of
computational effort is not a new idea. Walkeret al. studied how to apply CIs to the esti-
mation of the computational effort [241], the reliability reliability of CIs [240] and proposed
a new metric called “success effort” using a binomial CI [242]. Niehaus and Banzhaf also
studied the reliability of the computational effort [180] within steady-stade algorithms.

Probably the main problem here is the dependence ofP (M, i) with i. For a fixed gen-
erationi = i0, the cumulative number of successesk(i0) can be described using a binomial
distribution, and thus it is straightforward to create a CI for the probabilityP (M, i0), but if
we introduce the generation number,P (M, i) is no longer a binomial random variable, but
rather a stochastic process. This topic was addressed in detail in chapter 5. Walker [240] pro-
posed some solutions, but finally concludes that the best performance is achieved when the
CI is calculated for each generation, and therefore, given the CI of the accumulated success
probability in generationi, [Li, Ui], the CI ofI(M, i, z) is

LI
i = Mi

⌈
ln(1 − z)

ln(1 − Li)

⌉

U I
i = Mi

⌈
ln(1 − z)

ln(1 − Ui)

⌉ (6.14)

If the algorithm is run forG generations, calculating intervals forI using (6.14) requiresG
CIs.

136 CHAPTER 6. ACCURACY OF KOZA’S PERFORMANCE MEASURE

Following Walkeret al., computational effort is then the interval[LI
j , Uj], wherej is the

generation whereI(M, i, z) achieves its minimum. As Walker noticed, this method does not
consider thatj is a random variable, and thus we do not feel this is the most accurate method
to calculate computational effort. We need to know howP (M, i) varies with the generation.

Any binomial CI method may be used, for instance, a normal approximation or Wald
interval [145], Clopper-Pearson or “exact” interval [58],Agresti-Coull or adjusted Wald [2],
Wilson or ‘score’ [247], not to mention alternative bayesian approaches [91, 214]. No mat-
ter which method is used, binomial CIs can be used to characterize the magnitude of the
estimation error.

6.5.1 Relative error induced by the estimation error inI(M.i, z)

There are several binomial CI methods, each one with its own properties. However, we
have seen in chapter 4 that their basic properties are commonfor all the methods, and only
a through analysis of the methods may find differences in their behaviour. In any case,
for the purpose of this research, these differences are not significant, we are interested in
the common properties of binomial CIs to characterizeεest, not in the particularities of each
method. Several authors [21, 240, 44] recommend the classical Wilson method. This method
combines good performance in average term with simplicity,these properties makes Wilson
a good choice to characterizeεest, these observations were confirmed in chapter 4. For
this reason, we select the method of Wilson with continuity correction, that corrects some
aberrations found in the original method [45], so the form ofthe CI used in this study is

L =
k + 1

2z2
α/2

n + z2
α/2

−
z2
α/2

√
n

n + z2
α/2

√

p(1 − p) +
z2
α/2

4n

U =
k + 1

2z2
α/2

n + z2
α/2

+
z2
α/2

√
n

n + z2
α/2

√

p(1 − p) +
z2
α/2

4n

(6.15)

wherep = k/n is the maximum likelihood estimator of the success probability, k is the
number of successes,n is the number of runs andzα/2 is the upper-α/2 critical point from
N(0, 1).

It should be noticed that the center of the interval is not given byp = k/n, but rather
by p̃ = (k + 1

2z2
α/2)(n + z2

α/2)
−1, hence the punctual estimatorP̂ (M, i) is not placed in the

center of the interval. This is a common characteristic of almost all the binomial CIs [44]
produced by the boundaries of the random variable. From the point of view of the calculus
of I(M, i, z) the shift of the location ofp within the interval produces that a low success
rate close to0 is more likely to have underestimated its value, because there are no negative
probabilities. On the contrary, an estimation close to1 probably will overestimate the real
SR because there are no probabilities greater than1. This fact has to be considered to obtain
a fair estimation of the error, actually, a quantification ofthis asymmetry is needed.

The effects of the asymmetry of the estimation of a probability can be studied using the
distance between̂p and the boundaries of the interval[L,U]. Inspired by Newcombe [179],
and as a way to measure the asymmetry of the interval, we definethe Distal Confidence
Interval Width, or DCIW, as the difference between the maximum likelihood estimator of

6.5. CHARACTERIZATION OF THE ESTIMATION ERROR OFI(M, I,Z) 137

Maximum estimation error (εest
α)

Success probability (P)

N
um

be
r

of
 r

un
s

(n
)

0.0 0.2 0.4 0.6 0.8 1.0

20
40

60
80

10
0

12
0

Figure 6.6: Maximum estimation errorεα
est as function of number of runs and success proba-

bility. εα
est has been calculated as the maximum of Wilson DCIW and MCIW forα = 0.05

(see Eq. (6.16)).

the probability and the lower limit, so,DCIW = p̂ − L. Similarly, we define theMesial
Confidence Interval Width, or MCIW, as the differenceMCIW = U − p̂. It is trivial to
demonstrate that CIW, DCIW and MCIW satisfy the propertyCIW = DCIW + MCIW .
Differences between DCIW and MCIW tend to be reduced when there is a high number of
runs.

If the probability estimator was centered in the interval, we could set a direct relationship
between the estimation error and the CIW, simplyεα

est ≤ CIW/2. This boundary for the
estimation error is expected to be true with probability1−α. Nonetheless, the asymmetry of
the binomial distribution does not ensure a fair estimationof the error just taking the center
of the interval. Good CIs methods should guarantee more or less the same probability of
underestimate and overestimatep within the interval [179]. However their effects are not the
same, because DCIW and MCIW are not likely to be equal (it onlyhappens whenp = 0.5),
and thus the error that is associated, following thatεα

est ≤ CIW/2 actually underestimates
the error. In order to be conservative, and to obtain a more fair estimation of the error, we
take the maximum between DCIW and MCIW, so

εα
est ≤ max(DCIW,MCIW) (6.16)

To better illustrate the properties of (6.16), it has been depicted in Figure 6.6. The error
εα
est is symmetrical wrt the axisP = 0.5, however its maximum is not placed on that axis, but

it is biased, the reason can be found in the displacement ofp̂ with respect to the center of the
interval. Interestingly, the effect of the asymmetry of theinterval is less evident as the number
of runs is increased and rather obvious for low values ofn. In any case, higher number
of samples always generates tighter intervals because there is more information about the

138 CHAPTER 6. ACCURACY OF KOZA’S PERFORMANCE MEASURE

algorithm [21], and thus more precise intervals can be builtand therefore the estimation
error is reduced.

Looking only CIW may lead to an incomplete view of the CI performance. In particular,
evidence shown previously may induce the (incorrect) conclusion that estimation of prob-
abilities close to0 and1 are more reliable than those with intermediate values because in
that area intervals are tighter. The confidence levelα is also known as nominal coverage
because intervals cover the true probability with probability (1 − α), nevertheless, the real
coverage that one finds in practice is unlikely to coincide with the nominal one. This is the
reason because it is necessary to look at CP. Figure 4.4 showsthe CP for Wilson intervals
with α = 0.05. Like CIW, CP is symmetrical withP = 0.5 and explains why intervals
are tighter near the boundaries of the domain, CP in those areas gets worse and actually, for
values ofp close to0 and1 the intervals are not reliable at all. Intervals are tighter, but it is
more unlikely that the estimated probability falls within the interval. In these regions, when
number of runs is large, successes are better described using a Poisson distribution [148]
instead of a binomial.

In this section we have developed some tools in order to help us to understand under
which circumstances the estimation error is higher. However, the question about how these
circumstances affect the estimation ofI(M, i, z) andE remains open. Next section tries to
provide some light to the answer.

6.5.2 Relative magnitude ofεI
est

The main variability source ofI(M, i, z) is the estimation ofP (M, i). Due to the intrinsic
stochastic nature of the estimation, it is necessary to use statistical methods to characterize its
behaviour. Confidence intervals provides a tool to estimateεest as a function of the number
of runs and the success probability. SinceεI

est is a function ofεest, we can use the previous
result to directly develop a relationship amongεI

est, n andp.
With all these considerations, we can limit the effects of the estimation error in the mea-

surement ofI(M, i, z) as

εI
est ≤

1

2

(
Mi

ln(1 − z)

ln(1 − Li)
− Mi

ln(1 − z)

ln(1 − Ui)

)
(6.17)

where[Li, Ui] follows (6.15).
In order to ease the analysis of the relative effects of the estimation error, we calculate

the relative maximum errorεI
est(%) as the ratio of the maximum error and the number of

individuals to be evaluated with the probability placed in the center of the interval,̃p =
(k + 1

2z2
α/2)(n + z2

α/2)
−1.

εI
est(%) =

εI
est

I(M, i, z)
≤ ln(1 − p̃)

2

(
1

ln(1 − Li)
− 1

ln(1 − Ui)

)

The surface defined by this equation forα = 0.05 is depicted in Figure 6.7. It shows
that εI

est(%) is highly dependent on the number of runs and success probability. Using a
high number of runs yield less error in the measurement ofI(M, i, z). The influence of
the success probability is slightly more complicated. Low values ofP (M, i) yields poor

6.5. CHARACTERIZATION OF THE ESTIMATION ERROR OFI(M, I,Z) 139

Maximum I(M,i,z) estimation error, max(εest
I (%))

Success probability (P)

N
um

be
r

of
 r

un
s

(n
)

0.2 0.4 0.6 0.8

20
40

60
80

10
0

12
0

14
0

Figure 6.7: Maximum relative error ofI(M, i, z) calculated using confidence intervals with
α = 0.05. X-axis represents the success probability (p) whereas y-axis represents the number
of runs (n).

estimations ofI(M, i, z), the same can be said whenP (M, i) is close to1, however, in
this case the effect is not so evident. It is interesting to note, again, that early generations
of the EA, where the success probability is lower, the estimation error is greater, and thus
in that region the estimation ofI(M, i, z) looses accuracy. The evolution of an EA may
be represented graphically in Figure 6.7 as a point that moves from left to right, the first
generation is placed in(0, n) and moves horizontally to(ŜR, n) in G generations.

Let us consider a common experimental setup composed by60 runs, a value within
an order of magnitude commonly used in practice. Looking at Figure 6.7 we find that the
maximum relative estimation error is, at least, around34% whenP (M, i) = 0.78. This error
does not include the error produced by the ceiling operator,and actually, it is not guaranteed
that the experiment achieves it, for instance, in case that the SR achieved by the algorithm
were lower than0.78. It shows that the estimation error is rather significant even for a relative
high number of runs,60, moreover, finding literature reporting fewer number of runs is not
rare.

How the estimation error affects the computational effort is far from being a trivial pro-
blem. Computational effort is the minimum ofI(M, i, z), which is a deterministic non-linear
operation and thus it does not introduce randomness in the measure. An issue that makes
difficult the analysis ofE is its dependence with the generation numberi, this dependence
affects in two ways. Indirectly, throughP (M, i), which is a function ofi, and directly be-
cause it is included in (6.3). Another factor that difficultsthe study ofE is thatP (M, i)
cannot longer be considered as a point estimator, but ratheras a stochastic process because
it depends oni, i.e., there is a statistical dependence betweenP (M, i) andi. This issue is
disscussed in detail in the next section.

140 CHAPTER 6. ACCURACY OF KOZA’S PERFORMANCE MEASURE

6.6 Characterization of the estimation error ofE

The main difficulty that we find in the study ofE is that, on the contrary thanI(M, i, z),
its statistical properties do not depend on an underlying binomial random variable, but on a
stochastic process. Therefore, we need a model of the time-behaviour ofI(M, i, z), which
also depends on the existence of a model of success probability. Fortunately, this problem
was addressed in the previous chapter and therefore we are inposition to develop a model of
the computational effort.

6.6.1 Analytical model ofI(M, i, z) and E

Equation (5.19) provides a reasonable model of the accumulated success probability in tree-
based GP, as it was demostrated in section 5.4.3). It lead us to an alternative method to
calculateI(M, i, z), let us name this methodI⋆(M, i, z). Using (5.15) and (6.3) we trivially
obtain that the estimator ofI⋆(M, i, z) is given by

Î⋆
c (M, i, z) = Mi

ln(1 − z)

ln
(
1 − k(M,G)

n Φ
(

ln i−µ̂
σ̂

)) (6.18)

where Φ(...) is the standard normal CDF [125],̂µ is given by (5.17) and̂σ by (5.18).
Then, Î⋆

c (M, i, z) is a function of three parameters,k(M,G), µ̂ andσ̂. Once that we have
I⋆(M, i, z), providing an analytical model ofE, let us name itE⋆, is straitforward. The
estimator ofE⋆ is then

Ê⋆ = min




Mi
ln(i − z)

ln
(
1 − k(i)

n Φ
(

ln i−µ̂
σ̂

))




 (6.19)

A graphical representation of the proposed model ofE is given by Figure 6.8. Given that
the definition ofE contains a minimum operator, it is not unreasonable to conjecture that
E depends on points close to the minimum operator that could alter the estimation. On the
contrary thanÊ, Ê⋆ uses all the sampled points, and thus it seems reasonable to hypothetize
that the estimation made is less sensible to local outliers,yielding a more robust estimator.
This is just an hyphothesis, and thus it is desirable to confirm it through experimentation.
Similarly, we have proposed a model, but we do not know if thismodel is able to approximate
E well. These two issues are addresses in the following section.

6.6.2 Experimental validation of the analytical model ofE

The model proposed in (6.19) is an alternative formulation of the computational effort, and,
in order to be useful in this study, it should be able to estimateE reasonably well. A side ef-
fect of the definition ofE⋆ is that it provides an alternative method to calculate computational
effort that uses all the available samples, and then it seemsseasonable to hypothesize thatÊ⋆

is more robust and accurate thanE. In this section we explore these two questions, whether
the model is realistic and additionally if it is able to provide more accurate estimations to the
computational effort.

6.6. CHARACTERIZATION OF THE ESTIMATION ERROR OFE 141

1

2

3

4

0.2

0.4

0.6

0.8
1.0

1e+05

2e+05

3e+05

4e+05

5e+05

µσ

E

M=1000

1

2

3

4

0.2

0.4

0.6

0.8
1.0

1e+05

2e+05

3e+05

4e+05

5e+05

µσ

E

M=500

Figure 6.8: Graphical representation of the analitycal model of computational effort as a
function ofµ, σ for population size M={500, 1000}, and SR=0.5, as modeled in (6.19).

50 100 200 300 400 500

0
20

00
40

00
60

00
80

00

6−multiplexer

Number of runs

E
rr

or
 o

f c
om

pu
ta

tio
na

l e
ffo

rt

Standard
Lognormal

Mean E
Mean E*

100 200 300 400 500

−
1.

0
−

0.
5

0.
0

0.
5

Artificial ant

Number of runs

(E
−

E
*)

/E
be

st

100 200 300 400 500

−
0.

2
−

0.
1

0.
0

0.
1

0.
2

6−Multiplexer

Number of runs

(E
−

E
*)

/E
be

st

100 200 300 400 500

−
0.

6
−

0.
4

−
0.

2
0.

0
0.

2
5−Parity

Number of runs

(E
−

E
*)

/E
be

st

100 200 300 400 500

−
0.

4
−

0.
2

0.
0

0.
2

Regression

Number of runs

(E
−

E
*)

/E
be

st

Figure 6.9: Left: Difference betweenE andE⋆ with Ebest (low values are better) of the 6-
multiplexer problem. Each box represents2.000 bootstrapped values of the error for different
number of runs. No ceiling operator has been used. Right: Relative difference between̂E
andÊ⋆.

142 CHAPTER 6. ACCURACY OF KOZA’S PERFORMANCE MEASURE

Table 6.2: Differences ofE andE⋆ with Ebest for different sample size. The table shows
data for the regression problem, the same behaviour is foundthe other three problems under
study. The computational effort has been calculated without ceiling operator regardless of
the method.

|Ebest − E| sd|Ebest − E| |Ebest − E⋆| sd|Ebest − E⋆|
50 3627.9770 2562.9722 3482.4215 2910.1751
100 2585.3189 1961.6505 2416.7762 1900.6281
200 1634.6052 1264.5999 1572.8789 1204.3831
300 1368.5800 1013.5731 1300.1529 991.7907
400 1158.0780 888.1902 1118.1963 860.9419
500 1073.2470 790.5500 1012.5622 766.0491

In order to verify whetherÊ⋆ approximates betterEbest than E, we have performed
the following experiment. We simulated5, 000 experiments of the four problems sampling
n ∈ {50, 100, 200, 300, 400, 500} from the dataset. For each experiment, we calculatedÊi

andÊ⋆
i and then we depicted a boxplot with the differences|Êbest − Êi| and|Ebest − Ê⋆

i |.
So, a good estimation ofE must generate boxes close to0. The result, for the case of the 6-
multiplexer (the rest of the problems follow the same pattern), is shown in Figure 6.9 (left).
The boxplot shows that the distribution of the error followsa skewed shape with a long
tail represented by outsider points. It is clear that the greater is the sample size, the error
associated to the measure is lower no matter which method is used. The improvement in
quality of the lognormal-approximation used to estimateE is not clear. While the standard
deviation of the population is similar across the differentnumber of runs, a slight difference
in the median of the samples is found, more significant for lownumber of runs. It might be
more clear in a numerical form rather than a graphical one, soit can also be read in Table 6.2.

In average terms, the modified method yields measures closerto the best estimation of
E. Because of the significant variance of the measurements, aswell as the small difference
between the methods, we cannot claim that the precision of the measures is improved, how-
ever this fact repeated across all the number of runs and the high number resamples done
in the experiment,5, 000, lead us not to negate that. The mean values are represented in
Figure 6.9 (left) with lines, and they show that the mean of the proposed method is lower
than the original one for all the values ofn.

The experiment previously reported served to compare the accuracy ofE andE⋆ wrt
to best estimation. Therefore, we only can conclude about their ability to yield accurace
estimations of computational effort, but does not provide information about the accuracy of
Ê⋆. In order to check it out, we have performed another experiment, quite similar to the
previous one. In this experiment we have simulated200 experiments, calculatinĝEi andÊ⋆

i

for each pseudoexperiment. Then, we have depicted a scatterplot with the relative difference
(Êi − Ê⋆

i)/Êbest versusn in Figure 6.9 (right). It can be seen that the relative difference is
very small in the four problem instances. Even with a low number of runs (50), our model
seems to be quite accurace, with a maximum relative error of 1%.

With these data in mind, we cannot state that the lognormal approximation to calculate

6.6. CHARACTERIZATION OF THE ESTIMATION ERROR OFE 143

E is more precise than the standard one using the same number ofruns. Nonetheless, we
can take the opposite view, the lognormal approximation, atleast, does not seem to be less
reliable than the standard method. This conclusion, in the context of this dissertation, is
important, since it justifies thatE⋆ is a reasonable model ofE, and therefore, we can use it
to characterize the error of̂E.

6.6.3 Using the analytical model ofE to characterize its estimation error

Once we have an analytical model of the computational effort, we can address the main
objective of this PhD thesis: characterize its error in order to determine the reliability ofE.
Our model is a function of three variables, which are SR,µ andσ, hence expressingE in a
fuctional formE(SR,µ, σ). The objective of this section is to analyze how an error in the
estimation of any of its parameters affects the quality of the estimation. In order words, we
want to determine

∆E =

∣∣∣∣
∂E

∂SR

∣∣∣∣∆SR +

∣∣∣∣
∂E

∂µ

∣∣∣∣∆µ +

∣∣∣∣
∂E

∂σ

∣∣∣∣∆σ

The effects of the estimation error of SR has been partially studied in chapter 4, so we
exclude it. However, the way that the estimation ofµ andσ can affect the reliability ofE is
still unknown, so, in the following we focus our investigation to the study of these factors.

Given the analytical complexity of the model, and the lack ofnecessity of being strict, we
simplify the problem using a numerical approach. A rude, butreasonable way, to estimate the
relative error∆E% numerically is just observing the difference of the exact computational
effort and the computational effort calculated with an error in the estimation of its parameters

∆E% =
E(SR,µ, σ) − E(SR,µ + ∆µ, σ + ∆σ)

E(SR,µ, σ)

The problem here is which values∆µ and∆σ should be used. This problem is similar to
the previous characterization of the estimation error of a probability, and can be addressed
using the same strategy, which is relating error and CIs. In this case, there are two variables
involved, and thus from a geometrical perspective, their estimation define an uncertainty
surface whose boundaries would be approximated by the CIs ofµ̂ andσ̂.

So, the problem of determining the uncertainty region of theestimation ofE, and thefore
∆µ and∆σ, becomes a problem of computing lognormal CIs. But this is a problem that can
be solved using the relationship between the normal and lognormal distributions, which is
well known [150], and is given by the expression

X ∼ N(µ, σ) ⇒ eX ∼ LN(µL, σL)

X ∼ LN(µL, σL) ⇒ ln(X) ∼ N(µ, σ)

This relation is handy because provides a way to apply all thenormal statistics to lognormal
distributions, including normal CIs. It is well known that the CI of the mean[µ−, µ+], given
an unknownσ, is

[µ−, µ+] =

[
µ̂ − tα/2,n−1

σ̂√
(n)

, µ̂ + tα/2,n−1
σ̂√
(n)

]
(6.20)

144 CHAPTER 6. ACCURACY OF KOZA’S PERFORMANCE MEASURE

wheretα/2,n−1 is the upper(1 − α)/2 critical value for the Students’ t distribution with
(n − 1) degrees of freedom, andn the number of samples (or runs in the context of EC).
Similarly, the normal CI[σ−, σ+] when the mean is unknown is given by

[σ−, σ+] =

[√
(n − 1)σ̂2

χα/2,n−1
,

√
(n − 1)σ̂2

χ1−α/2,n−1

]
(6.21)

whereχα/2,n−1 andχ1−α/2,n−1 are the upper and lower critical valuess for theχ-squared
distribution with(n − 1) degrees of freedom. The CIs defined in (6.20) and (6.21) provides
the limits of the uncertainty region. Then, for each point(µ, σ), we determine its uncertainty
region and estimate the relative error as

∆E% =
max(E(SR,µ, σ) − E(SR,µ′, σ′))

E(SR,µ, σ)
(6.22)

where(SR,µ, σ) is the point in the domain ofE where the error is being evaluated, and
(SR,µ′, σ′) is a point contained in the surface defined by(SR,µ, σ) andσ− < σ < σ+

andµ− < µ < µ+ that maximizes the differenceE(SR,µ, σ) − min(E(SR,µ′, σ′). A
graphical representation of∆E% with confidence level95% is given in Figure 6.10. The
figure plots the maximum expected relative error calculatedwith confidence level0.95 and
SR = 0.5 for a domain that covers the parameter values reported in Table 5.3. Other values
of SR were tried, however no significant differences were found.

Firstly, in Figure 6.10 we observe that the expected error isquite high when there is
a low number of samples, but it decreases rapidly withn, additionally, increasingn has
as side effect a flatter error surface, and thus, the behaviour of the error seems to be more
homogeneus when a large number of runs are used. Secondly, Figure 6.10 shows that the
effect of µ is pretty moderate, and only in low values of this parameter,we can observe a
dependence of the relative error withµ in form of smooth oscillations. The relative error
depends much more on the dispersion of the run-time to success in a non trivial way. When
σ is low, the relative error seems to stay low, but as it is increased, the error also increases.

In this section we have developed a characterization of the relative estimation error of
E. The model predicts high values of error associated to the measurement ofE in typical
algorithms and experimental designs withn = 30. It also showed that the error remains
almost constant with the mean run-time, while it is sensibleto algorithms that exhibit high
variances of the run-time to success. The model that we have proposed relies in several
assumptions and simplifications that could reduce its reliability. For this reason, we comple-
ment the almost theoretical approach previously done, in order to verity its accuracy through
experimentation.

6.7 Experimental analysis of Koza’s performance measures

This chapter has approximated to problem of the reliabilityof the computational effort from
almost a theoretical perspective. Ecen though it used a model of success probability that
required some empirical observations. From our point of view, ideally theory and experi-
mentation should complement each other in a double way: theory should be able to inspire

6.7. EXPERIMENTAL ANALYSIS OF KOZA’S PERFORMANCE MEASURES 145

1

2
3

4

0.2

0.4

0.6

0.8
1.0

0.1

0.2

0.3

0.4

0.5

µσ

ε

30

1

2
3

4

0.2

0.4

0.6

0.8
1.0

0.1

0.2

0.3

0.4

0.5

µσ

ε

50

1

2
3

4

0.2

0.4

0.6

0.8
1.0

0.1

0.2

0.3

0.4

0.5

µσ

ε

100

1

2
3

4

0.2

0.4

0.6

0.8
1.0

0.1

0.2

0.3

0.4

0.5

µσ

ε

500

Figure 6.10: Maximum expected estimation error ofE as function ofµ, σ andn, as modeled
by (6.22). The number of runs takes valuesn ∈ {30, 50, 100, 500}. The SR is in all the cases
0.5, different SR values do not yield remarkable differences.

146 CHAPTER 6. ACCURACY OF KOZA’S PERFORMANCE MEASURE

0 10 20 30 40 50

5e
+

05
7e

+
05

9e
+

05

Artificial ant

Generations

N
um

be
r

of
 in

di
vi

du
al

s

With ceiling

Without ceiling

0 10 20 30 40 50

2e
+

04
6e

+
04

1e
+

05

6−Multiplexer

Generations

N
um

be
r

of
 in

di
vi

du
al

s

0 10 20 30 40 50

0e
+

00
4e

+
07

8e
+

07

5−Parity

Generations

N
um

be
r

of
 in

di
vi

du
al

s

0 10 20 30 40 50

1e
+

05
3e

+
05

5e
+

05

Regression

Generations

N
um

be
r

of
 in

di
vi

du
al

s

Figure 6.11: Comparison between the number of individuals to be processed computed us-
ing the ceiling operator (solid line) and not using it (dashed line). The curves have been
calculated using all the samples in the dataset withz = 0.99.

new experiments, and, analogously, experimentation mightbe able to suggest new theories
and verify them. Following this philosophy, in this sectionwe try to verify the theoretical
results obtained so far.

To be consistent with the theoretical work previous reported, we follow the same struc-
ture. We divide the problem into two assessing, on the one hand, the accuracy of̂I(M, i, z),
followed, on the other hand, by an analysis ofÊ. In both cases, we consider the two factors
that we have been studing along this chapter: the ceiling operator and the estimation error.

6.7.1 Accuracy ofÎ(M, i, z)

Before studing the reliability ofE, we study the reliability of its main component, the number
of individuals to be processed, or simplyI(M, i, z). We begin the empirical study looking
at the effect of the ceiling operator in the estimation ofÎ(M, i, z).

6.7.1.1 Ceiling error of Î(M, i, z)

Firstly, we analyze the effect of the ceiling operator just plotting Îbest(M, i, z) andÎbest
c (M, i, z)

in Figure 6.11. The most obvious difference is the sawtooth shape that̂Ibest(M, i, z) has in
some problem domains, such as the multiplexer. This shape isalso found in the rest of the
problems, nonetheless in different magnitude. In the case of the parity problem it seems
that there are no discontinuities, however there are, but they are so small that only a zoom
over the figure shows it. In any case,Îbest(M, i, z) is strictly higher thanÎbest

c (M, i, z),

6.7. EXPERIMENTAL ANALYSIS OF KOZA’S PERFORMANCE MEASURES 147

0 10 20 30 40 50

0
50

00
10

00
0

20
00

0

Artificial ant

Generations

A
bs

ol
ut

e
ce

ili
ng

 e
rr

or
(ε

ce
il

I
)

Maximum error

Measured error

0 10 20 30 40 50

0
50

00
10

00
0

20
00

0

6−Multiplexer

Generations

A
bs

ol
ut

e
ce

ili
ng

 e
rr

or
(ε

ce
il

I
)

0 10 20 30 40 50

0
50

00
0

10
00

00
15

00
00

20
00

00

5−Parity

Generations

A
bs

ol
ut

e
ce

ili
ng

 e
rr

or
(ε

ce
il

I
)

0 10 20 30 40 50

0
50

00
10

00
0

20
00

0

Regression

Generations

A
bs

ol
ut

e
ce

ili
ng

 e
rr

or
(ε

ce
il

I
)

0 10 20 30 40 50

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

Artificial ant

Generations

R
el

at
iv

e
ce

ili
ng

 e
rr

or
(ε

ce
il

I
)(%

) Maximum error

Measured error

0 10 20 30 40 50

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

5−Parity

Generations

R
el

at
iv

e
ce

ili
ng

 e
rr

or
(ε

ce
il

I
)(%

)

0 10 20 30 40 50

0
10

20
30

40
50

60
70

6−Multiplexer

Generations

R
el

at
iv

e
ce

ili
ng

 e
rr

or
(ε

ce
il

I
)(%

)

0 10 20 30 40 50

0
2

4
6

Regression

Generations

R
el

at
iv

e
ce

ili
ng

 e
rr

or
(ε

ce
il

I
)(%

)

Figure 6.12: Comparison of theoretical and experimental ceiling error measures with all the
runs. Error is reported in absolute (left) and relative (right) values.

so, as Christensen reported, the ceiling error is biased andtends to increase the value of
Ibest(M, i, z).

Interestingly, there seems to be a correlation between the problem difficulty and the mag-
nitude of the discontinuity; the ceiling operator introduces more discontinuities in the mul-
tiplexer problem (̂Pbest(M,G) = 0.96), followed by the regression (̂Pbest(M,G) = 0.29),
artificial ant (P̂best(M,G) = 0.13) and finally the parity problem (̂Pbest(M,G) = 0.06).
This experiment confirms the relationship between the ceiling error and the problem diffi-
culty found by Christensen and Oppacher using a synthetic expression ofP (M, i) [54]. Ex-
periments show that measuringI(M, i, z) in easy problems tends to have more ceiling error
than in hard problems. This fact is consistent with the theoretical work done in section 6.4.1.

The difference between̂Ibest(M, i, z) and Îbest
c (M, i, z) is better illustrated in the Fig-

ure 6.12 (left). This figure shows the differencêIbest(M, i, z) − Îbest
c (M, i, z) with the

maximum theoretical ceiling error set by (6.8). It can be seen that the theory describes very
well the maximum error induced by the ceiling operator, thisis particularly clear in the case
of the artificial ant. The relationship between the ceiling error and the problem difficulty
is clear looking at the relative ceiling error depicted in Figure 6.12 (right), where an easy
problem such as the 6-multiplexer achieves a ceiling error up to 30%, when problems with a
low success probability get much lower estimation error. For instance, the artificial presents
at most an estimation error around 2.7%.

Despite the potentially high impact that the ceiling operator might have in the estimation,
there is an easy solution, just removing the operator. Koza introduced this operator to reflect
that it is not possible to carry out a fractional number of experiments [136, Chapter 4],
however it is actually not supposed to be interpreted physically, so the ceiling error can be
removed without any evident drawback. Nonetheless, the another source of variability under
study, the estimation error, is intrinsic to the measure andthus cannot be removed.

148 CHAPTER 6. ACCURACY OF KOZA’S PERFORMANCE MEASURE

6.7.1.2 Estimation error of Î(M, i, z)

If we look in more detail (6.3), we can identify two fixed parameters,M andz, and one
independent variable,i. All these values are known, and thus they do not generate uncer-
tainty. Usually, the only element in (6.3) that is not perfectly known isP (M, i), that is an
unknown probability and must be estimated empirically. Theerror associated to the estima-
tion of P (M, i) is actually the only true source of error since this is the only element in (6.3)
that introduces uncertainty.

P̂ (M, i) is the estimation of a probability, and, if we do not considerits variation in time,
this probability in a fixed generationi0 can be described using a binomial distribution, which
is a well known problem [44]. Irrespective of the problem under study, the quality of the
estimation of any success probability only depends on the number of trials (or runs in our
case) and the magnitude of the probability [44], this resultlet us limit our study to only those
factors.

We begin investigating the influence of the number of runs with the following experi-
ment. Given the four datasets, we have calculated5, 000 values ofÎc(M, i, z) usingn runs
resampling with replacement from each dataset. The ceilingfunction is removed to isolate
the effects of the estimation error. For each value ofÎc(M, i, z), its distance tôIbest

c (M, i, z)
has been calculated using the following formula

ξ =

R∑

j=0

G∑

i=0

Îbest
c (M, i, z) − Îj

c (M, i, z)

R
(6.23)

whereξ is the statistic that measures the average distance betweenÎbest
c (M, i, z) andÎj

c (M, i, z),
which is thejth curve of the number of individuals to be processed.R is the number of
pseudo experiments. All the experiments were carried out with R = 5, 000 andG = 50. Of
course, it is an error measure and therefore, low values meangood estimations.

The boxplots of the estimation error calculated using the method described earlier are
depicted in Figure 6.13. A glance to this figure clearly suggests a strong relationship between
the number of runs and the average estimation error, more runs yield better estimations of
I(M, i, z). The estimation error of the 5-parity problem is not shown because it was found
that the low number of generations whereI(M, i, z) is defined (see Figure 6.1) induced an
erratic distance behaviour.

Experimentation with the other factor under study, the accumulated success probability,
is more tricky.P (M, i) is not an independent variable, but a dependent one and, unless we
use a syntheticP (M, i), we cannot manipulate it to carry out the experiment. Additionally,
P (M, i) is a function rather than a scalar. These two facts difficult experimentation, however,
we can still perform an experiment to observe the behaviour of the estimation error for dif-
ferent values of the accumulated success probability. For each problem domain, we have run
200 pseudoexperiments withn = 100 following the same procedure described above, but we
have done a different manipulation of the data. Instead of measure how close iŝIbest

c (M, i, z)
from Îc(M, i, z), we have stored the tuple(P (M, i), εest(i)), wherei = 1, ..., G and

εest(i) = 100
Îbest
c (M, i, z) − Îc(M, i, z)

Îbest
c (M, i, z)

6.7. EXPERIMENTAL ANALYSIS OF KOZA’S PERFORMANCE MEASURES 149

50 200 400

5.
0e

+
06

1.
5e

+
07

2.
5e

+
07

Artificial ant

Number of runs (n)
A

bs
ol

ut
e

es
tim

at
io

n
er

ro
r

50 200 40039
50

00
00

41
00

00
00

42
50

00
00 6−Multiplexer

Number of runs (n)

A
bs

ol
ut

e
es

tim
at

io
n

er
ro

r
50 200 400

6e
+

07
8e

+
07

1e
+

08

Regression

Number of runs (n)

A
bs

ol
ut

e
es

tim
at

io
n

er
ro

r

Figure 6.13: Boxplot of the absolute estimation error ofÎ(M, i, z) with several values of
number of runs. Each box represents the sum of the average estimation error of5.000 pseu-
doexperiments.

is the relative estimation error. In this way we obtainG = 50 tuples from each pseudorun,
and we used200, so there are10, 000 tuples in each problem domain.

The tuples that we have obtained are shown in the scatterplotdepicted in Figure 6.14.
This figure shows a surprising behaviour of the estimation error: it is not symmetrical and
it is biased. OverestimatingP (M, i) yields an underestimation ofI(M, i, z), on the con-
trary, an overestimation ofP (M, i) generates an underestimation ofI(M, i, z). Figure 6.14
shows that the effects of overestimating or underestimating P (M, i) are not the same. An
overestimation ofP (M, i) induces a higher error inI(M, i, z) than a underestimation, it is
specially notorious in the case of the artificial ant and the 5-parity problems. This asymmetry
varies with the success probability, while the minimum error tends to reduce with the proba-
bility, the maximum error is almost constant. In any case, there is an asymptotic behaviour
of the estimation error with very low success probability that makes the estimation highly
imprecise in that region.

The magnitude of the maximum estimation error depends on thesuccess probability.
Low probabilities yield higher estimation error and highersuccess probabilities tend to gen-
erate less estimation error. Nonetheless the error is biased in the end of the execution of the
algorithm (higher success rates), with the only exception of the multiplexer, which is the only
one that achieve a success rate close to1. It leads us to conjecture that high success proba-
bilities have associated higher estimation error, howeverwe feel unable to claim it with the
evidence shown, it should be confirmed by further research. In any case, the magnitude of
the bias seems to be rather significant in almost all the cases, around30% and50%, with the
exception of the 6-multiplexer. We should remark that this experiment used100 runs, which

150 CHAPTER 6. ACCURACY OF KOZA’S PERFORMANCE MEASURE

0.00 0.05 0.10 0.15 0.20

−
20

0
0

10
0

Artificial Ant

Success probability (p)

R
el

at
iv

e
es

tim
at

io
n

er
ro

r
(%

)

0.0 0.2 0.4 0.6 0.8 1.0

−
20

0
−

10
0

0
10

0

6−Multiplexer

Success probability (p)

R
el

at
iv

e
es

tim
at

io
n

er
ro

r
(%

)

0.00 0.04 0.08 0.12

−
20

0
0

10
0

5−Parity

Success probability (p)

R
el

at
iv

e
es

tim
at

io
n

er
ro

r
(%

)

0.0 0.1 0.2 0.3 0.4

−
15

0
−

50
0

50

Regression

Success probability (p)

R
el

at
iv

e
es

tim
at

io
n

er
ro

r
(%

)

Figure 6.14: Scatterplot of the relative estimation error of I(M, i, z) with several values of
success probability.200 pseudoexperiments withn = 100 were carried out for each problem
domain.

is a relatively high number of runs; it is quite easy to find literature that reports experiments
with fewer number of runs, so we can expect that the estimation error in those experiments
were higher.

In average, the relative estimation error is notable and theestimator is biased signifi-
cantly, depending on the problem domain. Nonetheless, these error might be, or not, signi-
ficant when the computational effort is calculated, which isthe objective of the next subsec-
tion.

6.7.2 Accuracy ofÊ

Common sense suggests that a good estimation ofI(M, i, z) should also yield a good estima-
tion of the computational effort; this apparent correlation should link the factors ofI(M, i, z)
with the factors ofE. However, common sense might fail, therefore we have performed some
experiments to verify this hypothesis. We should point out that in this section we only study
one factor, the number of runs. There are reasons to think that the magnitude of the accumu-
lated success probability plays an important role, howeverwe must face that this probability
is not fixed with the generation time and it is not an independent variable. Moreover, the
variation ofP (M, i) plays an essential role in the measurement of the computational effort,
and it is not possible to treat it as a punctual estimator, like we did in the previous section.
For these reasons, in the following, this factor is excludedfrom the study.

6.7. EXPERIMENTAL ANALYSIS OF KOZA’S PERFORMANCE MEASURES 151

50 200 400

0
50

00
15

00
0

Artificial ant

Number of runs
E

−
E

c
50 200 400

0
20

00
60

00

6−Multiplexer

Number of runs

E
−

E
c

50 200 400

0
50

00
0

15
00

00

5−Parity

Number of runs

E
−

E
c

50 200 400

0
20

00
60

00

Regression

Number of runs
E

−
E

c

Figure 6.15: Absolute ceiling error of computational effort with several number of runs.
Each box represents2, 000 pseudoexperiments.

6.7.2.1 Ceiling error of Ê

Firstly it is worth to compare the computational effort withand without ceiling operator when
it is calculated using all the samples. These values, as wellas their absolute and relative dif-
ference, can be found in Table 6.1. We found earlier that easyproblems -those with high
success probability- generated more ceiling error in the estimation ofI(M, i, z). Table 6.1
shows that our experiments partially verify this behaviourin the estimation ofE. The easiest
problem, the 6-multiplexer (̂Pbest(M,G) = 0.96), generated the biggest difference between
Êbest andÊbest

c , 4.98%, while the rest of the domains achieve intermediate values of ceil-
ing error: the artificial ant (̂Pbest(M,G) = 0.13) with a difference of0.5%, the 5-parity
(P̂best(M,G) = 0.06) with 1.13% and finally the regression problem (P̂best(M,G) = 0.29)
with 0.49%.

There is no direct correlation between problem difficulty and ceiling error when estimat-
ing E. There may be two possible explanations behind this fact. First, the ceiling operator
introduces discontinuities inI(M, i, z) that might increase variance when the minimum is
calculated. From another perspective, we observe that the 5-parity is the hardest problem but
it has the second highest ceiling error. There is an important issue with this problem domain,
as can be seen in Figure 6.1: the number of generations given to the algorithm is too scarce,
so it could have affected the result of this experiment. So far, it seems to be a tight correlation
between the success probability of a problem and the ceilingerror associated tôE. As we
did earlier, we pass to study whether the number of runs influences the ceiling error.

Figure 6.15 shows a boxplot that represents the differenceÊ−Êc of 2, 000 pseudoexper-
iments calculated with different values ofn. The use ofÊbest has been avoided to isolate the

152 CHAPTER 6. ACCURACY OF KOZA’S PERFORMANCE MEASURE

Table 6.3: Analysis of variance for six levels of factorn, the independent variable is the
square root of the differenceEc − E. Residuals of problems marked with * did not pass the
normality test. P-values with significance (α = 0.01) are marked in bold.

Problem df Sum. sq. Mean sq. F-value p-value
Artificial ant 5 2445 489.03 0.9689 0.437
6-Multiplexer 5 5145 1029 5.1462 0.0001529*

5-Parity 5 236380 47276 4.95950.0002247*
Regression 5 4349 869.79 2.9602 0.01266

ceiling error from the estimation error. We first observe that the difference is always positive,
meaning thatE > Ec, which is not surprising because the ceiling operator always increases
its argument, unless it were an integer, which is rather unlikely. No notable differences in the
mean value of the differencêE − Êc are appreciated, only whenn is small, around50 runs,
the tail of the distribution seems to be longer, with more outsiders, but the median, as well as
the first and third quantiles, remains almost constant, regardless of the number of runs.

This result is confirmed with a one-way ANOVA test, whose result is shown in Table 6.3.
The ANOVA was calculated for six levels ofn (50, 100, 200, 300, 400 and500) using the
square root of̂E − Êc as independent variable. Using50 pseudoexperiments for each level,
two problems (multiplexer and parity) yielded statisticalsignificance withα = 0.01 while
two did not (artificial ant and regression). However, the residuals of the multiplexer and the
parity problems did not pass the normality test, and therefore we cannot accept their test as
valid. The residuals of the other two problems did pass the normality test, which are the two
that did not found differences, so, with this evidence, we conclude that the number of runs
does not affect the ceiling error when estimating computational effort.

Experiments shown in this subsection were designed to avoidthe effects of the estimation
error, which is just the factor that we move forward to study.

6.7.2.2 Estimation error of Ê

Finally, we study the effects of the estimation error. This study follows a procedure similar
to the one used previously. Given the datasets of the four selected problem domains,100
experiments were simulated resamplingn runs with replacement from the datasets. For each
simulated experiment, the error between the estimation andthe best estimation of computa-
tional effort was calculated. Two methods to calculate computational effort were used, using
the ceiling operator and not. In this way, we are able to measure the estimation error as
well as compare both methods of calculating computational effort, so the statistic of relative
estimation error is given by

εE
est(%) =

Ebest − E

Ebest
; εEc

est(%) =
Ebest

c − Ec

Ebest
c

The variation of the estimation error withn is shown in Figure 6.16. It shows some
interesting behaviors. Probably, the most important one from a practical point of view is the

6.7. EXPERIMENTAL ANALYSIS OF KOZA’S PERFORMANCE MEASURES 153

50 200 400−
10

00
−

60
0

−
20

0

Artificial ant

Number of runs
E

st
im

at
io

n
er

ro
r

of
 E

 (
%

)

With ceiling
Without ceiling

50 200 400

−
80

−
40

0
20

6−Multiplexer

Number of runs

E
st

im
at

io
n

er
ro

r
of

 E
 (

%
)

50 200 400

−
50

0
−

30
0

−
10

0

5−Parity

Number of runs

E
st

im
at

io
n

er
ro

r
of

 E
 (

%
)

50 200 400

−
10

0
0

50

Regression

Number of runs
E

st
im

at
io

n
er

ro
r

of
 E

 (
%

)

Figure 6.16: Estimation error of computational effort withseveral values of number of runs.
Each box represents100 pseudoexperiments.

high relative estimation error found in our experiments. Depending on the problem, when
the number of runs is not too high, an estimation error of computational effort up to50%
is found. Error decreases rapidly with the number of runs, however there is a point that a
small reduction of the error requires a very remarkable increment of the number of runs.
Depending on the context, incrementing the number of runs might not pay off.

Another interesting property that Figure 6.16 shows is the asymmetry of the estimation
error. It was previously shown that estimation error ofI(M, i, z) is asymmetrical and we can
observe now that this behaviour is transferred to the estimation error ofE. The maximum
overestimation ofE is bounded and it tends to reduce its value asn increases. Unfortunately,
whenE is underestimated, it tends to produce much higher errors, nonetheless this difference
tends to disappear when the number of runs is increased. Finally, the ceiling operator does
not seem to influence the estimation error, the distributionof the estimation error with and
without ceiling operator is similar, with the only exception of the 6-multiplexer, which is
also the most sensitive problem to the ceiling operator.

Although the variation of the estimation error shown in Figure 6.16 is rather clear, it is
better support this conclusion with a statistical test. We performed a one-way ANOVA of the
square root of the estimation error for the six levels ofn previously shown, the result can be
seen in Table 6.4. The test found differences in the levels ofthe factor for the four problems
using a significance levelα = 0.01, however one problem, the 5-parity, did not pass the
normality test of its residues.

154 CHAPTER 6. ACCURACY OF KOZA’S PERFORMANCE MEASURE

Table 6.4: Analysis of variance for six levels of factorn, the independent variable is the
square root of the estimation error ofEc. Residuals of problems marked with * did not pass
the normality test. P-values with significance (α = 0.01) are marked in bold.

Problem df Sum sq Mean sq F value p-value
Artificial Ant 5 126.44 25.2874 12.579 1.035e-10
6-Multiplexer 5 95.09 19.0180 14.654 3.272e-12

5-Parity 5 98.72 19.7441 8.46234.308e-07*
Regression 5 106.12 21.2248 12.2643.414e-10

6.8 Conclusions

Koza’s performance measures have been widely used in the GP literature. It makes surprising
the lack of attention that the understanding of this statistic has attracted. In this chapter
we have tried to provide some clues to reduce the gap between the importance of Koza’s
performance measures and the knowledge about its behaviourand reliability.

In short, we can identify one source of variability, the ceiling operator, and one source
of randomness, the estimation of success probability, associated to the measurement of the
number of individuals to be processed. The ceiling operatorintroduces a maximum relative
error that is arbitrary high depending on the success probability. High success probabilities
generate high error values induced by this operator, meanwhile small values ofP (M, i) are
associated to small ceiling errors. From the perspective ofabsolute value of the maximum
ceiling error, it is linearly limited by the product of the population size and the generation
number. It is possible to remove the operator without significant drawbacks. So, results
reported in this chapter recommend, in the same line than some previous authors, not using
the ceiling error when calculatingI(M, i, z).

The only source of randomness in the measurement ofI(M, i, z) is introduced by the
estimation of the success probability. An estimation of this error can be done using CIs.
Basically, the quality of the estimation of a success probability depends on two factors: the
number of runs and the value of the probability. The worst scenario is estimating a success
probability close to0 or 1 with a low number of runs, in that case the estimations are very
unrealible. This is just the scenario found in early stages of the EA, and there is only one
method to improve the reliability of the measure: increasing the number of runs. In case there
were a high number of runs, and a low success probability, successes can be modeled using a
Poisson distribution instead of a binomial. The analyticalapproximation to characterize the
error associated to the estimation of the success probability was supported by experiments.
These experiments validated the analytical models.

As a final observation, measures studied in this chapter are not the only options to gather
information about EA behaviour. A comparative study of performance measures would pro-
vide useful information about their behaviour, advantagesand disadvantages, even more, it
could provide clues about which measure, when, and how, should be used to achieve better
experimentation in EC. Finally, we should emphasize that performance is only a restricted
view of all the picture. To fully understand what happens within an EA, other measures
should be taken into account.

Chapter 7

Conclusions and future work

Un soneto me manda hacer Violante,
que en mi vida me he visto en tal aprieto;

catorce versos dicen que es soneto:
burla burlando van los tres delante.

Yo penśe que no hallara consonante
y estoy a la mitad de otro cuarteto;
mas si me veo en el primer terceto

no hay cosa en los cuartetos que me espante.

Por el primer terceto voy entrando
y parece que entré con pie derecho,

pues fin con este verso le voy dando.

Ya estoy en el segundo, y aun sospecho
que voy los trece versos acabando;
contad si son catorce, y está hecho.

Lope de Vega

This chapter summarizes the main conclusions of the dissertation and some research
lines that remain open are also described.

7.1 Conclusions

The main goal of this dissertation has been to characterize the error associated to the mea-
surement of Koza’s computational effort. With this characterization, it is possible to draw
an answer to the main research question that drives this PhD thesis, which is to determine

155

156 CHAPTER 7. CONCLUSIONS AND FUTURE WORK

whether the computational effort is a reliable performancemeasure, or, on the contrary, it
is not. Since the main research question is too wide and involves a collection of different
issues, it was convenient to split it into five specific research questions. In the following, we
review these specific questions, which were already presented in the introduction, and their
answers are discussed under the light of the evidence reported along this dissertation.

• Q1: Which factors influence the reliability of the computational effort?
Computational effort, as defined by John Koza, only containstwo sources of variabi-
lity, one deterministic and another stochastic (section 6.4). This claim is a direct con-
sequence of the definition of the computational effort. The deterministic source of
variability is theceiling operator. It removes part of the information introducing a
deterministic bias in the results depending on the magnitude of the measure (section
6.4.1). The only source of randomness is theestimation of the success probability, this
source of error cannot be removed, and thus, it is the main source of uncertainty.

The basic measure that determines the quality of the estimation of the computational
effort is the success probability, which is a probability function that depends on the
time. In order to characterize it from a statistical point ofview, it is useful to decom-
pose this problem into two: the success probability when time is fixed (static estima-
tion) and the variation with the time of the success probability (dynamic estimation)
(section 5.4.1). This decomposition relates to the two questions that the success pro-
bability answers:How likely is it to find the solution andwhenis the solution likely to
be found.

• Q2: Which statistical properties the static estimation of the success probability
has?
If time is fixed, an EA may be described as a simple Bernoulli process, i.e., an ex-
periment with only two possible outcomes, that we name “success” or “failure”. By
definition, the number of success (and therefore the successrate) in a Bernoulli pro-
cess is a binomial random variable. Empirical and theoretical evidences reported in
sections 4.3 and 4.6 support this claim.

The statistical properties of the success rate in any EA are related to the binomial dis-
tribution, and therefore its quality depends only on two factors, thenumber of trials
and theestimated probability(section 4.4). A low number of trials and extreme prob-
abilities close to0 or 1 set the ideal conditions to generate bad estimations. It follows
that the quality of the estimation does not depends directlyon the algorithm internals,
but only indirectly through the value of the success probability. Easy and hard prob-
lems would yield probabilities close to the boundaries0 and1, and thus the quality of
the estimation get worse (section 4.5. In these cases, the success rate should be better
approximated using alternative distributions (section 4.5.5).

The binomiality of the static estimation of the success probability opens the opportu-
nity to use binomial statistics into EC. Perhaps, one of the most interesting statistical
tools, and indeed a tool that we needed in order to accomplishthe main research goal,
is confidence intervals (CIs). They provide a region where the success rate is likely
to be contained with a certain nominal probability. Many binomial CI methods have

7.1. CONCLUSIONS 157

been reported in the statistical literature, but we analyzed four methods under the per-
spective of EC: Standard, Agresti-Coull, “exact” and Wilson.

The quality of a CI can be reported using two measures, coverage probability (CP) and
confidence interval width (or CIW) (section 4.5). Experiments in section 4.6 showed
that the CP and CIW of intervals calculated in EC follow the same behaviour that has
been reported in the statistical literature. After an analysis of the four binomial CI
methods, we concluded that Wilson has some properties that make it better as a gen-
eral purpose binomial CI method (4.5.5). Under certain special contexts, “exact” and
Agresti-Coull methods would be a better choice, while the standard method showed
very poor performance, and its usage is not advisable in any case.

• Q3: Which statistical properties the dynamic estimation ofthe success probabi-
lity has?
There is not a definitive answer to this question yet, howeverwe can outline an answer.
The dynamic estimation of the success probability is closely related to the run-time
analysis of the EAs, which is a problem widely studied in the context of Metaheuristics
and Stochastic Local Search, but, to the author’s knowledge, it has not been addressed
before in GP.

The term run-time to success was introduced in section 5.2 asa new tool to analyze
the run-time of EAs, and it was empirically studied in GP in order to find a statisti-
cal model able to describe it (section 5.2.1). We found that,in general, the run-time
to success is a lognormal random variable. There are some remarkable exceptions,
notoriously, difficult boolean problems. In these cases, ifthe left tail of the distribu-
tion is removed, the remaining samples fit a exponential distribution (section 5.2.2),
suggesting that the search is performed without learning. If the tournament selection
is replaced by a random selection, and thus any selective pressure has been removed,
the resulting distribution of the run-time to success fits nicely to a Weibull distribution
(section 5.2.3). So far, it seems reasonable to conclude that these three distributions
play a role in the description of the run-time in GP, moreover, the literature suggests
that this behaviour likely can be generalized to Metaheuristics and Stochastic Local
Search algorithms (section 5.5).

As a consequence of the run-time analysis performed, we concluded that the dynamic
estimation of the success probability can be done estimating the parameters of a log-
normal, Weibull or exponential distribution. In particular, we provided empirical data
supporting this claim in case of algorithms with a lognormalrun-time distribution
(section 5.4.3). Thus, classical statistical methods to estimate the parameters of a
distribution can be applied to solve this problem, including confidence intervals or
maximum-likelihood, whose properties are well known in Statistics.

• Q4: Can the success probability be analytically modeled?
Yes, at lesat, in four problem instances, as seen in section 5.4.3). On the one hand,
the static success probability at the end of the run comes from a binomial distribution,
and the well known maximum-likelihood method can be used (section 4.3). On the
other hand, the dynamic estimation of the success probability can be deduced from the
run-time behaviour of the algorithm (section 5.4.1). It wasobserved that the lognormal

158 CHAPTER 7. CONCLUSIONS AND FUTURE WORK

distribution describes reasonably well the run-time distribution of tree-based GP, and
thus it is a good candidate to be used in a model of success probability (section 5.4.2).
With these considerations, an analytical model of success probability was proposed,
and its accuracy tested experimentally, finding out that themodel approximates well
the success probability (section 5.4.3). The main limitation of the model come from
the estimation of the success rate, needed by the model, while it shows to be robust to
bad fits of the run-time distribution.

In addition to the previously described empirical approach, a theoretical model based
on Discrete-Time Markov Chains of the convergence of an iterative stochastic search
algorithm was proposed in section 5.3. Using this model, we demonstrated that the
exponential run-time behaviour observed in tree-based GP is a general property of
memoryless iterative stochastic search algorithms. If thealgorithm is memoryless,
its run-time to success is exponentially distributed. Thistheoretical result is consis-
tent with the experimentation (section 5.2.2) and related literature (section 5.5), where
only difficult problems, when the initialization phase is removed, have an exponential
behaviour.

• Q5: Does the run-time behaviour provide information about the algorithm?
This question is still open and requires further research. We have observed, and the
literature supports it, that the resulting run-time distribution of the algorithm depends
on the parameters and problem difficulty. However, the opposite deduction is not
clear, given a certain run-time distribution, can we infer some knowledge about the
algorithm? In case of an affirmative answer, it would open a simple new method to
analyze stochastic search algorithms with a minor computational overhead.

Based on the previous answers to specific research questionsQ1 to Q5, we were able
to accomplish the main goal of this thesis, characterize theestimation error of the compu-
tational effort. Once we identified the two sources of uncertainty in the measurement of
computational effort, the ceiling operator and the estimation of the success probability, we
characterized the error induced by both.

It was analytically demostrated in section 6.4.1 that theceiling operatorintroduces as
error that is bounded by the product of the generation and thepopulation size. In relative
terms, this error is a non-linear function of the success probability. The maximum relative
ceiling error grows non-linearly with the value of the success probability, up to a point where
the success probability is higher than the parameterz and the measure is no longer valid.A
straightforward solution to eliminate the ceiling error isjust not using the ceiling operator.
Koza justified its use to represent that an algorithm only canbe run an integer number of
times. In practice, this measure is not used to estimate the number of runs needed in an
experiment, but rather to estimate the amount of resources used to achieve a solution. There-
fore, the ceiling operator does not provide a practical advantage while it introduces notable
problems.

The second source of error comes from theestimation of the success probability, and is
much more difficult to characterize. This error source is intrinsic to the measuring procedure
and cannot be eliminated. In order to characterize it, we used the model of success pro-
bability developed to answer Q4 in section 5.4.2. This modeldepends on three parameters

7.2. FUTURE WORK 159

that have to be estimated: Mean and variance of the run-time to success, and the success
rate. In order to model the error associated to the measurement, we used confidence intervals
to model the uncertainty. This model predicts (section 6.6.3) that the estimation error does
not depend on the estimation of the mean, but it correlates with its dispersion in a non triv-
ial way, but in general we can assume that higher variabilityof run-time to success involves
higher errors in the estimation of the computational effort. These results were experimentally
validated in section 6.7.

In addition to the previous conclusions, we can make some general comments. From
an analytical point of view, Koza’s computational effort has a serious problem, due to its
non-linearity, small estimation errors of the success probability, under certain conditions,
are amplified to a point that the measure is not reliable at all. Moreover, the computation
of the metric involves a fundamental measure (the success probability), the population size,
and a new parameter (z), increasing the complexity, and introducing the effects previously
described.

It seems reasonable to ask why it introduces all this complexity, and which is the advan-
tage of such increased complexity. Koza justified it as a way to take into consideration not
only the time required to find the solution, but also the population size, which determines the
resources wasted in the search. From our point of view, it is better measuring the number
of evaluations used to achieve the solution, which provides, at least, the same information,
without any of the drawbacks previously described. Anotherviable alternative would be re-
porting the success probability and the population size, inthis way we avoid the non-linear
effects, providing a more reliable information about the algorithm.

For all these reasons, and as a general conclusion of the dissertation based on the ev-
idence reported in this memory,we suggest not using Koza’s computational effort. In our
opinion, it is unnecessarily complex and unreliable. Basedon the Occam’s razor principle,
we suggest using simple measures such as the success probability or the average number of
evaluations.

7.2 Future work

There are some topics related to the reliability of the computational effort that have not
been addressed in this dissertation. For instance, the iterations between the success rate
and the other two parameters of the model have not been studied. In addition, in chapter 5
we obtained three statistical distributions that could be used in our model, but only one
of them, the lognormal, was included in the study in order to represent the most general
case. However, despite all these flaws, we think that this research line does not pay off: the
main conclusion of this work is that the computational effort should not be used; probably
the model of error can be enhanced, but it hardly would changethe main concusion of the
dissertation.

Nonetheless, along the way that we have followed to accomplish the main objective of
the thesis, several new questions have arisen, opening new promising research lines. In the
section 5.3, we proposed a model of run-time to success distribution based on Markov chains,
and using this model we deduced the conditions that yield an exponential run-time to a so-
lution. However, we did not explore this line enough to verify theoretically the conditions

160 CHAPTER 7. CONCLUSIONS AND FUTURE WORK

that generate a lognormal or a Weibull distribution. Monte Carlo simulation seems to be a
tool that could be used in order to justify the run-time behaviour observed in the experimen-
tation. In particular, it would be interesting to analyze, given a certain run-time distribution,
what could be known of the algorithm and problem at hand. The generality of the proposed
model, and the related literature, suggest that the conclusions obtained in this way could be
generalizable to a large number of algorithms, including Metaheuristics. Following this line,
it would be interesting to extend this type of study to the population, and try to understand
how it changes with time.

The run-time analysis that we have performed has used the generation as time unit. It was
done motivated by our object of study, which is computational effort, however, it is not the
most popular time measure in the EC community. There are strong reasons to hypothesize
that the observations made so far relating to the generation-to-success can also be extended
to any time unit. It would be interesting to check out if more popular time units, like the
average number of evaluations to a solution, follow the samepattern. Linked to this, we plan
to extend the experimental analysis in order to include other algorithms and problems, for
instance, multiobjective algorithms and real world problems.

Bibliography

[1] B. Adenso-Diaz and M. Laguna. Fine-Tuning of AlgorithmsUsing Fractional Expe-
rimental Designs and Local Search.Operations Research, 54(1):99–114, 2006.

[2] A. Agresti and B. A. Coull. Approximate is Better than ’Exact’ for Interval Estimation
of Binomial Proportions.The American Statistician, 52:119–126, May 1998.

[3] R. Aler, J. M. Valls, D. Camacho, and A. Lopez. Programming Robosoccer Agents
by Modeling Human Behavior.Expert Systems with Applications, 36(2):1850–1859,
2009.

[4] L. Altenberg. Handbook of Evolutionary Computation, volume 2, chapter NK fit-
ness landscapes, pages B2.5:5–B2.7:10. IOP Publishing andOxford University Press,
Bristol and Oxford, 1997.

[5] P. J. Angeline. Adaptive and Self-Adaptive Evolutionary Computations. InComputa-
tional Intelligence: A Dynamic Systems Perspective, pages 152–163, 1995.

[6] P. J. Angeline. An Investigation Into the Sensitivity ofGenetic Programming to the
Frequency of Leaf Selection During Subtree Crossover. InProceedings of the First
Annual Conference on Genetic Programming (GECCO 96), pages 21–29, Cambridge,
MA, USA, 1996. MIT Press.

[7] P. J. Angeline. A Historical Perspective on the Evolution of Executable Structures.
Fundamenta Informaticae, 35(1-4):179–195, 1998.

[8] T. Back, D. Fogel, and Z. Michalewicz.Handbook of Evolutionary Computation. IOP
Publishing Ltd., 1997.

[9] T. Back, U. Hammel, and H.-P. Schwefel. Evolutionary Computation: Comments
on the History and Current State.IEEE Transactions on Evolutionary Computation,
1:3–17, 1997.

[10] W. Banzhaf. Genetic Programming for Pedestrians. InProceedings of the 5th Interna-
tional Conference on Genetic Algorithms (ICGA-93), page 628, University of Illinois
at Urbana-Champaign, 17-21 July 1993. Morgan Kaufmann.

[11] R. Barr, B. Golden, J. Kelly, M. Resende, and W. Stewart.Designing and Reporting on
Computational Experiments with Heuristic Methods.Journal of Heuristics, 1:9–32,
1995.

161

162 BIBLIOGRAPHY

[12] R. Barr and B. Hickman. Reporting Computational Experiments with Parallel Al-
gorithms: Issues, Measures, and Experts’ Opinions.ORSA Journal on Computing,
5:2–2, 1993.

[13] D. F. Barrero, D. Camacho, and M. D. R-Moreno. A Framework for Agent-Based
Evaluation of Genetic Algorithms. InProceedings of the 3rd International Symposium
on Intelligent Distributed Computing (IDC 2009), volume 237, pages 31–41, Ayia
Napa, Cyprus, 13-14 October 2009. Springer-Verlag.

[14] D. F. Barrero, D. Camacho, and M. D. R-Moreno.Data Mining and Multiagent In-
tegration, chapter Automatic Web Data Extraction based on Genetic Algorithms and
Regular Expressions, pages 143–154. Springer-Verlag, University of Technology Syd-
ney, Australia, July 2009.

[15] D. F. Barrero, D. Camacho, and M. D. R-Moreno. ConfidenceIntervals of Success
Rates in Evolutionary Computation. InProceedings of the Genetic and Evolutionary
Computation Conference (GECCO-2010), pages 975–976, Portland, Oregon, USA,
jul 2010.

[16] D. F. Barrero, B. Castaño, M. D. R-Moreno, and D. Camacho. Statistical Distribution
of Generation-to-Success in GP: Application to Model Accumulated Success Pro-
bability. In Proceedings of the 14th European Conference on Genetic Programming,
(EuroGP 2011), volume 6621 ofLNCS, pages 155–166, Turin, Italy, 27-29 Apr. 2011.
Springer Verlag.

[17] D. F. Barrero, A. González-Pardo, D. Camacho, and M. D.R-Moreno. Distributed Pa-
rameter Tuning for Genetic Algorithms.Computer Science and Information Systems,
7(3):661–677, Jun 2010.

[18] D. F. Barrero, A. González-Pardo, M. D. R-Moreno, and D. Camacho. Variable
Length-Based Genetic Representation to Automatically Evolve Wrappers. InPro-
ceedings of 8th International Conference on Practical Applications of Agents and
Multi-Agent Systems (PAAMS 2010), volume 2, pages 371–379, Salamanca, Spain,
26-28 April 2010. Springer-Verlag.

[19] D. F. Barrero, M. R-Moreno, B. Castaño, and D. Camacho.An Empirical Study on
the Accuracy of Computational Effort in Genetic Programming. In Proceedings of the
2011 IEEE Congress on Evolutionary Computation (CEC 2011), pages 1169–1176,
New Orleans, USA, 5-8 June 2011. IEEE Press.

[20] D. F. Barrero, M. D. R-Moreno, and D. Camacho. Adapting Searchy to Extract Data
Using Evolved Wrappers.Expert Systems with Applications, To appear, 2011.

[21] D. F. Barrero, M. D. R-Moreno, and D. Camacho. Statistical Estimation of Success
Probability in Evolutionary Computation.Applied Soft Computing, To appear, 2011.

[22] D. F. Barrero, M. D. R-Moreno, and D. R. López. Information Integration in Searchy:
an Ontology and Web Services Approach.International Journal of Computer Science
and Applications (IJCSA), 7(2):14–29, 2010.

BIBLIOGRAPHY 163

[23] A. M. Barreto, H. S. Bernardino, and H. J. Barbosa. Probabilistic Performance Profiles
for the Experimental Evaluation of Stochastic Algorithms.In Proceedings of the 12th
annual conference on Genetic and evolutionary computation(GECCO 2010), pages
751–758, Portland, Oregon, USA, 2010. ACM.

[24] T. Bartz-Beielstein. Tuning Evolutionary Algorithms: Overview and Comprenhensive
Introduction. Technical Report 148/03, Universität Dortmund, 2003.

[25] T. Bartz-Beielstein.Experimental Research in Evolutionary Computation: The New
Experimentalism. Natural Computing. Springer, 1 edition, April 2006.

[26] T. Bartz-Beielstein, M. Chiarandini, L. Paquete, and M. Preuss.Experimental Meth-
ods for the Analysis of Optimization Algorithms. Springer-Verlag New York, Inc.,
New York, NY, USA, 1st edition, 2010.

[27] T. Bartz-Beielstein, C. Lasarczyk, and M. Preuss.Experimental Methods for the Anal-
ysis of Optimization Algorithms, chapter The sequential parameter optimization tool-
box, pages 337–360. Springer-Verlag New York Inc, 2010.

[28] T. Bartz-Beielstein, C. W. G. Lasarczyk, and M. Preuss.Sequential Parameter Opti-
mization. In IEEE Congress on Evolutionary Computation (CEC 2005), volume 1,
pages 773–780. IEEE, 2005.

[29] T. Bartz-Beielstein and S. Markon. Threshold Selection, Hypothesis Tests, and DOE
Methods. InIn 2002 Congresss on Evolutionary Computation, pages 777–782. IEEE
Press, 2002.

[30] T. Bartz-Beielstein and M. Preuss. Considerations of Budget Allocation for Sequen-
tial Parameter Optimization (SPO). InProceedings of the Workshop on Empirical
Methods for the Analysis of Algorithms, pages 35–40, Reykjavik, Iceland, 2006.

[31] T. Bartz-Beielstein and M. Preuss. Tuning and Experimental Analysis in Evolutionary
Computation: What we Still Have Wrong. InProceedings of the 12th Conference on
Genetic and Evolutionary Computation (GECCO 2010), pages 2625–2646, Portland,
Oregon, USA, 2010. ACM.

[32] J. Baxter. Local Optima Avoidance in Depot Location.Journal of the Operation
Research Society, 32:815–819, 1981.

[33] D. Beasley, D. R. Bull, and R. R. Martin. An Overview of Genetic Algorithms: Part
1, Fundamentals.University Computing, 15(2):58–69, 1993.

[34] D. Beasley, D. R. Bull, and R. R. Martin. An Overview of Genetic Algorithms: Part
2, Research Topics.University Computing, 15(4):170–181, 1993.

[35] H.-G. Beyer and H.-P. Schwefel. Evolution Strategies -A Comprehensive Introduc-
tion. Journal of Natural Computing, 1:3–52, May 2002.

[36] M. Birattari. The Problem of Tuning Metaheuristics as Seen from a Machine Learning
Perspective. PhD thesis, Université Libre de Bruxelles, Brussels, Belgium, 2004.

164 BIBLIOGRAPHY

[37] M. Birattari. Tuning Metaheuristics: a Machine Learning Perspective, volume 197.
Springer-Verlag, 2009.

[38] M. Birattari and M. Dorigo. How to Assess and Report the Performance of a Stochas-
tic Algorithm on a Benchmark Problem: Mean or Best Result on aNumber of Runs?
Optimization Letters, 1(3):309–311, 2007.

[39] M. Birattari, T. Stützle, L. Paquete, and K. Varrentrapp. A Racing Algorithm for Con-
figuring Metaheuristics. InProceedings of the Genetic and Evolutionary Computation
Conference (GECCO 2002), pages 11–18, San Francisco, CA, USA, 2002. Morgan
Kaufmann Publishers Inc.

[40] M. Birattari, Z. Yuan, P. Balaprakash, and T. Stützle.Experimental Methods for
the Analysis of Optimization Agorithms, chapter F-Race and iterated F-Race: An
overview, pages 311–336. Springer-Verlag, Berlin, Germany, June 2009.

[41] M. Birattari, M. Zlochin, and M. Dorigo. Towards a Theory of Practice in Meta-
heuristics Design: A Machine Learning Perspective.Theoretical Informatics and
Applications, 40(2):353–369, 2006.

[42] C. Blum and D. Merkle.Swarm Intelligence: Introduction and Applications. Springer-
Verlag, 2008.

[43] C. Blum and A. Roli. Metaheuristics in Combinatorial Optimization: Overview and
Conceptual Comparison.ACM Computing Surveys (CSUR), 35(3):268–308, Septem-
ber 2003.

[44] L. D. Brown, T. T. Cai, and A. Dasgupta. Interval Estimation for a Binomial.Statisti-
cal Science, 16:101–133, 2001.

[45] L. D. Brown, T. T. Cai, and A. Dasgupta. Confidence Intervals for a Binomial Propor-
tion and Asymptotic Expansions.Annals of Statistics, 30(1):160–201, 2002.

[46] J. Brownlee. A Note on Research Methodology and Benchmarking Optimization Al-
gorithms. Technical report, Complex Intelligent Systems Laboratory (CIS), Centre
for Information Technology Research (CITR), Faculty of Information and Communi-
cation Technologies (ICT), Swinburne University of Technology, 2007.

[47] D. S. Burke, K. A. D. Jong, J. J. Grefenstette, C. L. Ramsey, and A. S. Wu. Putting
More Genetics into Genetic Algorithms.Evolutionary Computation, 6:387–410,
1998.

[48] E. K. Burke, S. Gustafson, and G. Kendall. Diversity in Genetic Programming: An
Analysis of Measures and Correlation With Fitness.IEEE Transactions on Evolution-
ary Computation, 8:47–62, 2004.

[49] D. Camacho, M. D. R-Moreno, D. F. Barrero, and R. Akerkar. Semantic Wrappers for
Semi-Structured Data.Computing Letters (COLE), 4(1-4):21–34, December 2008.

BIBLIOGRAPHY 165

[50] D. Camacho, M. D. R-Moreno, D. F. Barrero, and R. Akerkar. Semantic Wrappers for
Semi-structured Data Extraction.Computing Letters (COLE), 4(1):1–14, 2008.

[51] D. Caragea, J. Pathak, J. Bao, A. Silvescu, C. Andorf, D.Dobbs, and V. Honavar. In-
formation Integration and Knowledge Acquisition from Semantically Heterogeneous
Biological Data Sources. InProceedings of the 16th International Workshop on
Database and Expert Systems Applications, pages 175–190. Springer-Verlag, 2005.

[52] M. Chiarandini, L. Paquete, M. Preuss, and E. Ridge. Experiments on Metaheuristics:
Methodological Overview and Open Issues. Technical ReportDMF-2007-03-003,
The Danish Mathematical Society, Denmark, 2007.

[53] M. Chiarandini and T. Stützle. Experimental Evaluation of Course Timetabling Algo-
rithms. Technical Report AIDA-02-05, Intellectics Group,Computer Science Depart-
ment, Darmstadt University of Technology, Darmstadt, Germany, April 2002.

[54] S. Christensen and F. Oppacher. An Analysis of Koza’s Computational Effort Statistic
for Genetic Programming. InProceedings of the 5th European Conference on Genetic
Programming (EuroGP’02), pages 182–191, London, UK, 2002. Springer-Verlag.

[55] S. Christensen and F. Oppacher. Solving the Artificial Ant on the Santa Fe Trail
Problem in 20,696 Fitness Evaluations. InProceedings of the 9th Conference on
Genetic and Evolutionary Computation (GECCO 2007), pages 1574–1579. ACM,
2007.

[56] D. Chu and J. E. Rowe. Crossover Operators to Control Size Growth in Linear GP
and Variable Length GAs. In J. Wang, editor,IEEE World Congress on Computational
Intelligence, Hong Kong, 1-6 June 2008. IEEE Press.

[57] O. Cicchello and S. C. Kremer. Beyond EDSM. InProceedings of the 6th Inter-
national Colloquium on Grammatical Inference (ICGI 2002), pages 37–48, London,
UK, 2002. Springer-Verlag.

[58] C. Clopper and S. Pearson. The Use of Confidence or Fiducial Limits Illustrated in
the Case of the Binomial.Biometrika, 26:404–413, 1934.

[59] P. R. Cohen.Empirical Methods for Artificial Intelligence. MIT Press, Cambridge,
MA, USA, 1995.

[60] J. I. Criado. Las Tecnoloǵıas de la Informacíon y la Comunicacíon en la Moder-
nizacíon de las Administraciones Públicas. Un Ańalisis de la Configuracíon de la e-
Administracíon en la Comunidad de Madrid y la Generalitat Valenciana (1995-2005).
PhD thesis, Universidad Complutense de Madrid, 2009.

[61] C. Cruz, J. González, and D. Pelta. Optimization in Dynamic Environments: A Survey
on Problems, Methods and Measures.Soft Computing - A Fusion of Foundations,
Methodologies and Applications, 15:1427–1448, 2011.

166 BIBLIOGRAPHY

[62] J. Daida, S. Ross, J. Mcclain, D. Ampy, and M. Holczer. Challenges with Verification,
Repeatability, and Meaningful Comparisons in Genetic Programming. InProceedings
of the Second Annual Conference on Genetic Programming, pages 64–69. Morgan
Kaufmann, 1997.

[63] C. Darwin. On the Origin of Species by Means of Natural Selection, or thePreserva-
tion of Favored Races in the Struggle for Life. John Murray, London, 1859.

[64] S. Das and P. Suganthan. Differential Evolution: A Survey of the State-of-the-Art.
IEEE Transactions on Evolutionary Computation, 15(1):4–31, February 2011.

[65] R. Dawkins.The Selfish Gene. Oxford University Press, USA, 2006.

[66] R. Dawkins. The Greatest Show on Earth: The Evidence for Evolution. Transworld
Publishers, 2009.

[67] K. A. De Jong.An Analysis of the Behavior of a Class of Genetic Adaptive Systems.
PhD thesis, Ann Arbor, MI, USA, 1975.

[68] P. Deepti and B. Majumdar. Semantic Web Services in Action - Enterprise Information
Integration. InProceedings of the 5th international conference on Service-Oriented
Computing (ICSOC 2007), pages 485–496, Berlin, Heidelberg, 2007. Springer-
Verlag.

[69] P. J. Denning. Performance Evaluation: Experimental Computer Science at its Best.
In Proceedings of the ACM Conference on Measurement and Modeling of Computer
Systems (SIGMETRICS 1981), pages 106–109. ACM, 1981.

[70] P. J. Denning. Is Computer Science Science?Communications of the ACM, 48:27–31,
April 2005.

[71] J. Derrac, S. Garcı́a, D. Molina, and F. Herrera. A Practical Tutorial on the Use of Non-
parametric Statistical Tests as a Methodology for Comparing Evolutionary and Swarm
Intelligence Algorithms.Swarm and Evolutionary Computation, 1:3–18, 2011.

[72] M. Dorigo and T. Stützle.Ant Colony Optimization. MIT Press, 2004.

[73] W. Ehm. Binomial Approximation to the Poisson BinomialDistribution. Statistics &
Probability Letters, 11(1):7–16, January 1991.

[74] A. Eiben and T. Bäck. Empirical Investigation of Multiparent Recombination Opera-
tors in Evolution Strategies.Evolutionary Computation, 5(3):347–365, 1997.

[75] A. E. Eiben, R. Hinterding, and Z. Michalewicz. Parameter Control in Evolutionary
Algorithms. IEEE Transactions on Evolutionary Computation, 3:124–141, 1999.

[76] A. E. Eiben and M. Jelasity. A Critical Note on Experimental Research Methodology
in EC. In Proceedings of the 2002 Congress on Evolutionary Computation (CEC
2002), pages 582–587. IEEE, 2002.

BIBLIOGRAPHY 167

[77] A. E. Eiben and C. A. Schippers. On Evolutionary Exploration and Exploitation.
Fundamenta Informaticae, 35:35–50, August 1998.

[78] A. E. Eiben and S. K. Smit. Parameter Tuning for Configuring and Analyzing Evolu-
tionary Algorithms.Swarm and Evolutionary Computation, 1(1):19–31, 2011.

[79] A. E. Eiben and J. E. Smith.Introduction to Evolutionary Computing. Natural Com-
puting. Springer-Verlag, 2009.

[80] S. Epstein and X. Yun. From Unsolvable to Solvable: An Exploration of Simple
Changes. InWorkshops at the Twenty-Fourth AAAI Conference on Artificial Intelli-
gence, 2010.

[81] J. Farmer, N. Packard, and A. Perelson. The Immune System, Adaptation, and Ma-
chine Learning.Physica D: Nonlinear Phenomena, 22(1-3):187–204, 1986.

[82] T. Feo, M. Resende, and S. Smith. A Greedy Randomized Adaptive Search Procedure
for Maximum Independent Set.Operations Research, pages 860–878, 1994.

[83] T. A. Feo and M. G. C. Resende. A Probabilistic Heuristicfor a Computationally
Difficult Set Covering Problem.Operations Research Letters, 8(2):67 – 71, 1989.

[84] S. Finck, N. Hansen, R. Ros, and A. Auger. Real-Parameter Black-Box Optimiza-
tion Benchmarking 2009: Presentation of the Noiseless Functions. Technical report
2009/20, Research Center PPE, 2009.

[85] P. J. Fleming and J. J. Wallace. How not to Lie with Statistics: The Correct Way to
Summarize Benchmark Results.Communications of the ACM, 29:218–221, March
1986.

[86] D. Fogel. Evolutionary Computation: Toward a New Philosophy of Machine Intelli-
gence, volume 1. Wiley-IEEE Press, 2006.

[87] L. J. Fogel, A. J. Owens, and M. J. Walsh.Artificial Intelligence through Simulated
Evolution, volume 26. John Wiley & Sons, 1966.

[88] C. Fonseca and P. Fleming. On the Performance Assessment and Comparison of
Stochastic Multiobjective Optimizers. InParallel Problem Solving from Nature
(PPSN IV), pages 584–593. Springer, 1996.

[89] D. Frost, I. Rish, and L. Vila. Summarizing CSP Hardnesswith Continuous Probabi-
lity Distributions. InProceedings of the Fourteenth National Conference on Artificial
Intelligence and Ninth Conference on Innovative Applications of Artificial Intelligence
(AAAI’97/IAAI’97), pages 327–333. AAAI Press, 1997.

[90] M. Gagliolo and C. Legrand.Experimental Methods for the Analysis of Optimization
Algorithms, chapter Algorithm Survival Analysis, pages 161–184. Springer-Verlag,
2010.

168 BIBLIOGRAPHY

[91] A. Gelman, J. B. Carlin, H. S. Stern, and D. B. Rubin.Bayesian Data Analysis, Second
Edition (Chapman & Hall/CRC Texts in Statistical Science). Chapman and Hall/CRC,
2 edition, July 2003.

[92] I. P. Gent, S. A. Grant, E. MacIntyre, P. Prosser, P. Shaw, B. M. Smith, and T. Walsh.
How Not To Do It. Research report 97.27, School of Computer Studies, University of
Leeds, May 1997.

[93] F. Glover. Future Paths for Integer Programming and Links to Artificial Intelligence.
Computers & Operations Research, 13:533–549, May 1986.

[94] A. V. Goldberg. Selecting Problems for Algorithm Evaluation. In Proceedings of
the 3rd International Workshop on Algorithm Engineering (WAE’99), pages 1–11,
London, UK, 1999. Springer-Verlag.

[95] D. E. Goldberg.Genetic Algorithms in Search, Optimization and Machine Learning.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1st edition, 1989.

[96] D. E. Goldberg, D. E. Goldberg, K. Deb, K. Deb, H. Kargupta, H. Kargupta, G. Harik,
and G. Harik. Rapid, Accurate Optimization of Difficult Problems Using Fast Messy
Genetic Algorithms. InProceedings of the Fifth International Conference on Genetic
Algorithms, pages 56–64. Morgan Kaufmann, 1993.

[97] B. W. Goldman and D. R. Tauritz. Self-Configuring Crossover. InProceedings of the
Conference Companion on Genetic and Evolutionary Computation (GECCO 2011),
pages 575–582. ACM, 2011.

[98] A. González, D. F. Barrero, M. D. R-Moreno, and D. Camacho. A Case Study on
Grammatical-Based Representation for Regular ExpressionEvolution. InProceedings
of 8th International Conference on Practical Applicationsof Agents and Multi-Agent
Systems (PAAMS 2010), volume 2, pages 379–386, Salamanca, Spain, 26-28 April
2010. Springer-Verlag.

[99] M. Graff and R. Poli. Practical Model of Genetic Programming’s Performance on
Rational Symbolic Regression Problems. InProceedings of the 11th European confe-
rence on Genetic programming (EuroGP 2008), pages 122–133, Berlin, Heidelberg,
2008. Springer-Verlag.

[100] T. Grubber. A Translation Approach to Portable Ontology Specifications.Knowledge
Acquisition, 5(2):199–220, 1993.

[101] S. Gustafson, A. Ekárt, E. Burke, and G. Kendall. Problem Difficulty and Code
Growth in Genetic Programming.Genetic Programming and Evolvable Machines,
5(3):271–290, 2004.

[102] L. Haas. Beauty and the Beast: The Theory and Practice of Information Integration.
Proceedings of the 11th International Conference on Database Theory (ICDT 2007),
4353:28–43, Jan 2007.

BIBLIOGRAPHY 169

[103] N. Hansen, S. Finck, R. Ros, and A. Auger. Real-Parameterblack-Box Optimization
Benchmarking 2009: Noiseless Functions Definitions. Technical report RR-6829,
INRIA, 2009.

[104] P. Hansen and N. Mladenovic. Variable Neighborhood Search: Principles and Appli-
cations.European Journal Of Operational Research, 130(3):449–467, 2001.

[105] I. Harvey. The SAGA Cross: The Mechanics of Recombination for Species with
Variablelength Genotypes. InParallel Problem, pages 269–278. North-Holland, 1992.

[106] F. Herrera, M. Lozano, and D. Molina. Test Suite for theSpecial Issue of Soft Com-
puting on Scalability of Evolutionary Algorithms and OtherMetaheuristics for Large
Scale Continuous Optimization Problems. 2010.

[107] K. E. Hillstrom. A Simulation Test Approach to the Evaluation of Nonlinear Op-
timization Algorithms. ACM Transactions on Mathematical Software, 3:305–315,
December 1977.

[108] R. Hinterding, Z. Michalewicz, and A. Eiben. Adaptation in Evolutionary Compu-
tation: A Survey. InIEEE International Conference on Evolutionary Computation
(CEC 1997), pages 65–69. IEEE, 1997.

[109] J. L. Hodges and L. Le Cam. The Poisson Approximation tothe Poisson Binomial
Distribution.The Annals of Mathematical Statistics, 31(3):737–740, September 1960.

[110] J. H. Holland.Adaptation in Natural and Artificial Systems. MIT Press, Cambridge,
MA, USA, 1992.

[111] J. Hooker. Needed: An Empirical Science of Algorithms. Operations Research,
42:201–212, 1994.

[112] J. Hooker. Testing Heuristics: We Have it All Wrong.Journal of Heuristics, 1:33–42,
1995.

[113] H. Hoos and T. Stützle. Characterizing the Run-Time Behavior of Stochastic Local
Search. InProceedings AAAI99. Citeseer, 1998.

[114] H. Hoos and T. Stützle. Towards a Characterisation ofthe Behaviour of Stochastic
Local Search Algorithms for SAT.Artificial Intelligence, 112(1-2):213–232, 1999.

[115] H. Hoos and T. Stützle. Local Search Algorithms for SAT: An Empirical Evaluation.
Journal of Automated Reasoning, 24(4):421–481, 2000.

[116] H. H. Hoos and T. Stützle. Evaluating Las Vegas Algorithms – Pitfalls and Remedies.
In Proceedings of the Fourteenth Conference on Uncertainty inArtificial Intelligence
(UAI-98), pages 238–245. Morgan Kaufmann Publishers, 1998.

[117] B. Hutt and K. Warwick. Synapsing Variable-Length Crossover: Meaningful
Crossover for Variable-Length Genomes.IEEE Transactions on Evolutionary Com-
putation, 11(1):118–131, 2007.

170 BIBLIOGRAPHY

[118] C. Igel and K. Chellapilla. Investigating the Influence of Depth and Degree of Geno-
typic Change on Fitness in Genetic Programming. InProceedings of the Genetic and
Evolutionary Computation Conference (GECCO 1999), pages 1061–1068, Orlando,
Florida, USA, July 13-17 1999.

[119] T. Jansen and C. Zarges. Comparing Different Aging Operators. InProceedings of
the 8th International Conference on Artificial Immune Systems, ICARIS ’09, pages
95–108, Berlin, Heidelberg, 2009. Springer-Verlag.

[120] Y. Jin and J. Branke. Evolutionary Optimization in Uncertain Environments-a Survey.
IEEE Transactions on Evolutionary Computation, 9(3):303–317, 2005.

[121] C. G. Johnson. Genetic Programming Crossover: Does ItCross over? InProceedings
of the 12th European Conference on Genetic Programming (EuroGP 2009), pages
97–108. Springer-Verlag, 2009.

[122] D. Johnson. A Theoretician’s Guide to the Experimental Analysis of Algorithms.
Data Structures, Near Neighbor Searches, and Methodology:Fifth and Sixth DIMACS
Implementation Challenges, 59:215–250, 2002.

[123] I. Kant. The Critique of Pure Reason. Cambridge University Press, 1999.

[124] D. Karaboga and B. Basturk. A Powerful and Efficient Algorithm for Numerical
Function Optimization: Artificial Bee Colony (ABC) Algorithm. Journal of Global
Optimization, 39(3):459–471, 2007.

[125] A. Kaufmann, D. Grounchko, and R. Cruon.Mathematical Models for the Study of
the Reliability of Systems, volume 124 ofMathematics in Science and Engineering.
Academic Press, Inc., 1977.

[126] A. Kaveh and S. Talatahari. A Novel Heuristic Optimization Method: Charged System
Search.Acta Mechanica, 213(3-4):267–289, 2010.

[127] M. Keijzer, V. Babovic, C. Ryan, M. O’Neill, and M. Cattolico. Adaptive Logic Pro-
gramming. InProceedings of the Genetic and Evolutionary Computation Conference
(GECCO-2001), pages 42–49, San Francisco, California, USA, 7-11 July 2001. Mor-
gan Kaufmann.

[128] J. Kennedy and R. Eberhart. Particle Swarm Optimization. In IEEE International
Conference on Neural Networks, volume 4, pages 1942–1948, 1995.

[129] L. Kerschberg, M. Chowdhury, A. Damiano, H. Jeong, S. Mitchell, J. Si, and S. Smith.
Knowledge Sifter: Ontology-Driven Search over Heterogeneous Databases. In16th
International Conference on Scientific and Statistical Database Management (SSDBM
2004), pages 431–432, Santorini Island, Greece, June 2004. IEEE Computer Society.

[130] D. Kinzett, M. Johnston, and M. Zhang. How Online Simplification Affects Building
Blocks in Genetic Programming. InProceedings of the 11th Annual conference on
Genetic and evolutionary computation (GECCO 2009), pages 979–986, New York,
NY, USA, 2009. ACM.

BIBLIOGRAPHY 171

[131] S. Kirkpatrick, C. Gelatt, and M. Vecchi. Optimization by Simulated Annealing.Sci-
ence, 220(4598):671, 1983.

[132] C. A. Knoblock and J.-L. Ambite. Agents for Information Gathering. InSoftware
Agents, pages 347–374. AAAI Press / The MIT Press, 1997.

[133] J. Knowles, D. Corne, and K. Deb.Multiobjective Problem Solving from Nature: from
Concepts to Applications. Springer-Verlag, 2008.

[134] J. Koza. Genetic Programming II: automatic discovery of reusable programs. MIT
Press, 1994.

[135] J. Koza. Human-Competitive Results Produced by Genetic Programming.Genetic
Programming and Evolvable Machines, 11(3):251–284, September 2010.

[136] J. R. Koza.Genetic Programming: On the programming of Computers by Means of
Natural Selection. MIT Press, Cambrige, MA, 1992.

[137] J. R. Koza.Genetic Programming IV: Routine Human-Competitive Machine Intelli-
gence. Kluwer Academic Publishers, Norwell, MA, USA, 2003.

[138] J. R. Koza, D. Andre, F. H. Bennett, and M. A. Keane.Genetic Programming III:
Darwinian Invention & Problem Solving. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 1999.

[139] K. Krishnanand and D. Ghose. Detection of Multiple Source Locations Using a Glow-
worm Metaphor with Applications to Collective Robotics. InProceedings of the IEEE
Swarm Intelligence Symposium (SIS 2005), pages 84–91. IEEE, 2005.

[140] G. Kronberger, S. Winkler, M. Affenzeller, and S. Wagner. On Crossover Success Rate
in Genetic Programming with Offspring Selection. InProceedings of the 12th Euro-
pean Conference on Genetic Programming (EuroGP 2009), pages 232–243, Berlin,
Heidelberg, 2009. Springer-Verlag.

[141] K. J. Lang. Evidence Driven State Merging with Search.Technical report, NEC
Research Institute, 1998.

[142] K. J. Lang, B. A. Pearlmutter, and R. A. Price. Results of the Abbadingo One DFA
Learning Competition and a New Evidence-Driven State Merging Algorithm. InPro-
ceedings of the 4th International Colloquium on Grammatical Inference (ICGI 1998),
pages 1–12, London, UK, 1998. Springer-Verlag.

[143] W. B. Langdon and R. Poli. Why Ants are Hard. InGenetic Programming 1998:
Proceedings of the Third Annual Conference, pages 193–201, Madison, Wisconsin,
USA, 22-25 July 1998. Morgan Kaufmann.

[144] W. B. Langdon, T. Soule, R. Poli, and J. A. Foster.The Evolution of Size and Shape,
pages 163–190. MIT Press, Cambridge, MA, USA, 1999.

172 BIBLIOGRAPHY

[145] P.-S. Laplace.Théorie Analytique des probabilités. Mme. Ve Courcier, Paris, France,
1812.

[146] P. Larranaga and J. Lozano.Estimation of Distribution Algorithms: A New Tool for
Evolutionary Computation, volume 2. Springer-Verlag, 2002.

[147] C.-Y. Lee and E. K. Antonsson. Variable Length Genomesfor Evolutionary Algo-
rithms. In Proceedings of the Genetic and Evolutionary Computation Conference
(GECCO 2000), Las vegas, Nevada, USA, 2000.

[148] L. Leemis and K. S. Trivedi. A Comparison of Approximate Interval Estimators for
the Bernoulli Parameter. Technical report, 1993.

[149] J. Liang, T. Runarsson, E. Mezura-Montes, M. Clerc, P.Suganthan, C. Coello, and
K. Deb. Problem Definitions and Evaluation Criteria for the CEC 2006 Special Ses-
sion on Constrained Real-parameter Optimization. Technical report, Nangyang Tech-
nological University, Singapore, Tech. Rep., 2006.

[150] E. Limpert, W. A. Stahel, and M. Abbt. Log-normal Distributions across the Sciences:
Keys and Clues.BioScience, 51(5):341–352, May 2001.

[151] F. G. Lobo and C. F. Lima. A Review of Adaptive Population Sizing Schemes in Ge-
netic Algorithms. InProceedings of the 2005 workshops on Genetic and evolutionary
computation (GECCO 2005), pages 228–234. ACM, 2005.

[152] J. Lozano.Towards a New Evolutionary Computation: Advances in the Estimation of
Distribution Algorithms, volume 192. Springer-Verlag New York Inc, 2006.

[153] S. M. Lucas and T. J. Reynolds. Learning DFA: EvolutionVersus Evidence Driven
State Merging. InProceedings of IEEE Congress on Evolutionary Computation (CEC
2003), pages 351–358, Newport Beach, California, USA, 2003.

[154] S. Luke. A Java-based Evolutionary Computation Research System (ECJ Libraries)
home page. http://cs.gmu.edu/˜eclab/projects/ecj/.

[155] S. Luke. Code Growth Is Not Caused by Introns. InIn Whitley, D. (Ed.), Late Breaking
Papers at the 2000 Genetic and Evolutionary Computation Conference. Las Vegas,
pages 228–235. Morgan Kaufmann, 2000.

[156] S. Luke. When Short Runs Beat Long Runs. InProceedings of the Genetic and Evo-
lutionary Computation Conference (GECCO 2001), pages 74–80. Morgan Kaufmann,
2001.

[157] S. Luke. Modification Point Depth and Genome Growth in Genetic Programming.
Evolutionary Computation, 11(1):67–106, 2003.

[158] S. Luke.Essentials of Metaheuristics. Lulu Enterprises, UK Ltd, 2009.

[159] S. Luke and L. Panait. Is the Perfect the Enemy of the Good? In In Genetic and
Evolutionary Computation Conference (GECCO 2002), pages 820–828, New York,
New York, USA, 2002. Morgan Kaufmann.

BIBLIOGRAPHY 173

[160] S. Luke and L. Panait. A Comparison of Bloat Control Methods for Genetic Program-
ming. Evolutionary Computation, 14:309–344, September 2006.

[161] S. Luke and L. Spector. A Revised Comparison of Crossover and Mutation in Genetic
Programming. InGenetic Programming 1997: Proceedings of the Second Annual
Conference, pages 240–248. Morgan Kaufmann, 1998.

[162] R. Mallipeddi and P. Suganthan. Problem Definitions and Evaluation Criteria for
the CEC 2010 Competition on Constrained Real-Parameter Optimization. Technical
report, Nanyang Technological University, Singapore, Tech. Rep., 2009.

[163] O. Maron and A. Moore. The Racing Algorithm: Model Selection for Lazy Learners.
Artificial Intelligence Review, 11(1):193–225, 1997.

[164] R. W. Matthews and J. R. Matthews.Insect Behavior. Springer-Verlag, 2009.

[165] C. McGeoch. Toward an Experimental Method for Algorithm Simulation.INFORMS
Journal on Computing, 8(1):1–15, 1996.

[166] R. I. Mckay, N. X. Hoai, P. A. Whigham, Y. Shan, and M. O’Neill. Grammar-Based
Genetic Programming: A Survey.Genetic Programming and Evolvable Machines,
11:365–396, September 2010.

[167] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller. Equa-
tion of State Calculations by Fast Computing Machines.The Journal of Chemical
Physics, 21(6):1087–1092, 1953.

[168] M. Michalowski, J. Ambite, S. Thakkar, R. Tuchinda, C.Knoblock, and S. Minton.
Retrieving and Semantically Integrating Heterogeneous Data from the Web. IEEE
Intelligent Systems, 19(3), 2004.

[169] J. Miller. An Empirical Study of the Efficiency of Learning Boolean Functions Us-
ing a Cartesian Genetic Programming Approach. InProceedings of the Genetic and
Evolutionary Computation Conference (GECCO 1999), volume 2, pages 1135–1142,
1999.

[170] J. Miller and P. Thomson. Cartesian Genetic Programming. InGenetic Programming,
volume 1802 ofLecture Notes in Computer Science, pages 121–132. Springer-Verlag
/ Heidelberg, 2000.

[171] C. R. M’Lan, J. Lawrence, and D. B. Wolfson. Bayesian sample size determination
for binomial proportions.Bayesian Analysis, 3(2):269–296, 2008.

[172] D. Montana. Strongly Typed Genetic Programming.Evolutionary computation,
3(2):199–230, 1995.

[173] D. Montgomery.Design and Analysis of Experiments. John Wiley & Sons Inc, 1984.

[174] D. C. Montgomery and G. C. Runger.Applied Statistics and Probability for Engineers,
4th Edition. John Wiley & Sons, 4th edition, May 2010.

174 BIBLIOGRAPHY

[175] B. Moret. Towards a Discipline of Experimental Algorithmics. InData Structures,
Near Neighbor Searches, and Methodology: Fifth and Sixth DIMACS Implementation
Challenges, volume 59, pages 197–214, 2002.

[176] R. Morrison. Designing Evolutionary Algorithms for Dynamic Environments.
Springer-Verlag, 2004.

[177] R. Myers and E. R. Hancock. Empirical Modelling of Genetic Algorithms. Evolu-
tionary Computation, 9(4):461–493, 2001.

[178] V. Nannen and A. Eiben. Efficient Relevance Estimationand Value Calibration of
Evolutionary Algorithm Parameters. InIEEE Congress on Evolutionary Computation
(CEC 2007), pages 103–110. IEEE, 2007.

[179] R. G. Newcombe. Two-Sided Confidence Intervals for theSingle Proportion: Com-
parison of Seven Methods.Statistics in Medicine, 17(8):857–872, 1998.

[180] J. Niehaus and W. Banzhaf. More on Computational Effort Statistics for Genetic
Programming. InProceedings of the European Conference on Genetic Programming
(EuroGP 2003), volume 2610 ofLecture Notes on Computer Science, pages 164–172,
Essex, UK, 14-16 Apr. 2003. Springer-Verlag.

[181] M. H. Nodine, J. Fowler, T. Ksiezyk, T. Perry, M. Taylor, and A. Unruh. Active In-
formation Gathering in InfoSleuth.International Journal of Cooperative Information
Systems, 9(1-2):3–28, 2000.

[182] P. Norvig. Warning Signs in Experimental Design and Interpretation.
http://norvig.com/experiment-design.html.

[183] N. F. Noy. Semantic Integration: A Survey of Ontology-Based Approaches.SIGMOD
Rec., 33(4):65–70, December 2004.

[184] M. O’Neill and C. Ryan. Grammatical Evolution.IEEE Transactions on Evolutionary
Computation, 5(4):349–358, August 2001.

[185] M. ONeill, L. Vanneschi, S. Gustafson, and W. Banzhaf.Open Issues in Genetic Pro-
gramming.Genetic Programming and Evolvable Machines, 11(3-4):339–363, 2010.

[186] K. Passino. Biomimicry of bacterial foraging for distributed optimization and control.
Control Systems Magazine, IEEE, 22(3):52–67, 2002.

[187] N. Paterson and M. Livesey. Performance Comparison inGenetic Programming. In
Late Breaking Papers at the 2000 Genetic and Evolutionary Computation Conference
(GECCO 2000), pages 253–260, Las Vegas, Nevada, USA, July 2000.

[188] P. Pellegrini and M. Birattari. Implementation Effort and Performance: A Comparison
of Custom and Out-of-the-Box Metaheuristics on the VehicleRouting Problem With
Stochastic Demand. InProceedings of the 2007 International Conference on Engi-
neering Stochastic Local Search Algorithms: Designing, Implementing and Analyzing
Effective Heuristics, SLS’07, pages 31–45, Berlin, Heidelberg, 2007. Springer-Verlag.

BIBLIOGRAPHY 175

[189] W. W. Piegorsch. Sample Sizes for Improved Binomial Confidence Intervals.Com-
putational Statistics & Data Analysis, 46(2):309–316, June 2004.

[190] A. M. Pires and C. a. Amado. Interval Estimators for a Binomial Proportion: Com-
parison of Twenty Methods.Statistical Journal, 6(2):165–197, Jun 2008.

[191] Plato.The Republic. NTC/Contemporary Publishing Company, Sept. 1997.

[192] R. Poli, W. B. Langdon, and N. F. McPhee.A Field Guide to Genetic Programming.
Lulu Enterprises, UK Ltd, Mar. 2008.

[193] R. Poli, L. Vanneschi, W. Langdon, and N. McPhee. Theoretical Results in Genetic
Programming: The Next Ten years?Genetic Programming and Evolvable Machines,
11(3):285–320–320, September 2010.

[194] M. R-Moreno, D. Camacho, D. Barrero, and B. Castaño. Human Drivers Knowledge
Integration in a Logistics Decision Support Tool. InIntelligent Distributed Computing
V, volume 382 ofStudies in Computational Intelligence, pages 227–236. Springer-
Verlag / Heidelberg, 2011.

[195] M. D. R-Moreno, D. Camacho, D. F. Barrero, and M. Gutiérrez. A Decision Sup-
port System for Logistics Operations. InSoft Computing Models in Industrial and
Environmental Applications, 5th International Workshop (SOCO 2010), volume 73 of
Advances in Soft Computing, pages 103–110, Guimarães, Portugal, 2010. Springer-
Verlag.

[196] M. D. R-Moreno, B. Castaño, M. Carbajo,Á. Moreno, D. F. Barrero, and P. Muñoz.
Multi-Agent Intelligent Planning Architecture for PeopleLocation and Orientation
Using RFID.Cybernetics and Systems, 42(1):16–32, Jan 2011.

[197] P. Rabanal, I. Rodrı́guez, and F. Rubio. Using River Formation Dynamics to Design
Heuristic Algorithms.Unconventional Computation, pages 163–177, 2007.

[198] E. Rahme, L. Joseph, and T. W. Gyorkos. Bayesian SampleSize Determination for
Estimating Binomial Parameters from Data Subject to Misclassification. Journal Of
The Royal Statistical Society Series C, 49(1):119–128, 2000.

[199] M. Ramilo Araujo. Poĺıticas ṕublicas, instituciones y actores para la promoción
de la sociedad de la informacion y/o del conocimiento. Un análisis comparado de
Catalunya y Euskadi.PhD thesis, Universidad del Paı́s Vasco, 2009.

[200] W. Rand and R. Riolo. Measurements for understanding the behavior of the genetic
algorithm in dynamic environments: a case study using the Shaky Ladder Hyperplane-
Defined Functions. InProceedings of the Workshops on Genetic and Evolutionary
Computation (GECCO 2005), pages 32–38. ACM, 2005.

[201] R. L. Rardin and R. Uzsoy. Experimental Evaluation of Heuristic Optimization Algo-
rithms: A Tutorial.Journal of Heuristics, 7:261–304, May 2001.

176 BIBLIOGRAPHY

[202] I. Rechenberg.Evolutionsstrategie : Optimierung technischer Systeme nach Prinzip-
ien der biologischen Evolution. Number 15 in Problemata. Frommann-Holzboog,
Stuttgart-Bad Cannstatt, 1973.

[203] C. R. Reeves and C. Wright. Genetic Algorithms and The Design of Experiments. In
Proceedings of the IMA Fall Workshop on Evolutionary Algorithms, 1996.

[204] G. Reinelt. TSPLIB-A Traveling Salesman Problem Library. ORSA Journal on Com-
puting, 3(4):376–384, 1991.

[205] C. C. Ribeiro, I. Rosseti, and R. Vallejos. On the Use ofRun Time Distributions to
Evaluate and Compare Stochastic Local Search Algorithms. In Proceedings of the
Second International Workshop on Engineering Stochastic Local Search Algorithms.
Designing, Implementing and Analyzing Effective Heuristics (SLS’09), pages 16–30.
Springer-Verlag, 2009.

[206] E. Ridge. Design of Experimetns for the Tuning of Optimization Algorithms. PhD
thesis, The University of York. Department of Computer Science, October 2007.

[207] T. D. Ross. Accurate Confidence Intervals for BinomialProportion and Poisson Rate
Estimation.Computers in Biology and Medicine, 33(6):509–531, 2003.

[208] F. Rothlauf. Representations for Genetic and Evolutionary Algorithms. Springer-
Verlag, Heidelberg, New York, 2nd edition edition, 2006.

[209] B. Russell.A History of Western Philosophy. Touchstone, 1945.

[210] S. Russell and P. Norvig.Artificial Intelligence: a Modern Approach. Prentice hall,
2010.

[211] A. D. Sarma, X. Dong, and A. Halevy. Bootstrapping Pay-as-you-go Data Integration
Systems. InProceedings of the 2008 ACM SIGMOD International Conference on
Management of Data (SIGMOD 2008), pages 861–874, New York, NY, USA, 2008.
ACM.

[212] H. Schwefel.Evolution and Optimum Seeking: The Sixth Generation. John Wiley &
Sons, Inc., 1993.

[213] H. Shah-Hosseini. The intelligent water drops algorithm: a nature-inspired swarm-
based optimization algorithm.International Journal of Bio-Inspired Computation,
1(1):71–79, 2009.

[214] R. Sharma. Bayes Approach to Interval Estimation of a Binomial Parameter.Annals
of the Institute of Statistical Mathematics, 27(1):259–267, 1975.

[215] S. Silva and E. Costa. Dynamic Limits for Bloat Controlin Genetic Programming and
a Review of Past and Current Bloat Theories.Genetic Programming and Evolvable
Machines, 10(2):141–179, 2009.

BIBLIOGRAPHY 177

[216] S. Smit and A. Eiben.Experimental Methods for the Analysis of Optimization Al-
gorithms, chapter Using Entropy for Parameter Analysis of Evolutionary Algoirthms,
pages 287–308. Springer-Verlag New York Inc, 2010.

[217] S. Smit and A. Eiben. Parameter Tuning of EvolutionaryAlgorithms: Generalist
vs. Specialist. InApplications of Evolutionary Computation, volume 6024 ofLecture
Notes in Computer Science, pages 542–551, Berlin, Heidelberg, 2010. Springer Berlin
/ Heidelberg.

[218] M. F. Smith. Sampling Considerations In Evaluating Cooperative Extension Pro-
grams. InFlorida Cooperative Extension Service Bulletin PE-1. Institute of Food
and Agricultural Sciences. University of Florida., 1983.

[219] W. M. Spears. Repository of Test Problem Generators.
http://www.cs.uwyo.edu/ wspears/generators.html.

[220] W. M. Spears. Crossover or Mutation.Foundations of Genetic Algorithms 2, 2:221–
237, 1993.

[221] M. Srinivas and L. Patnaik. Genetic Algorithms: A Survey. Computer, 27(6):17–26,
1994.

[222] P. F. Stadler. Fitness Landscapes.Biological Evolution and Statistical Physics,
585:183–204, 2002.

[223] R. Storn and K. Price. Differential Evolution-a Simple and Efficient Adaptive Scheme
for Global Optimization over Continuous Spaces.International Computer Science
Institute-Publications-TR, 1995.

[224] T. Stützle and H. H. Hoos. Analyzing the Run-Time Behaviour of Iterated Local
Search for the TSP. InIII Metaheuristics International Conference. Kluwer Academic
Publishers, 1999.

[225] P. Suganthan, N. Hansen, J. Liang, K. Deb, Y. Chen, A. Auger, and S. Tiwari. Pro-
blem Definitions and Evaluation Criteria for the CEC 2005 Special Session on Real-
Parameter Optimization.KanGAL Report, 2005.

[226] E.-G. Talbi. A Taxonomy of Hybrid Metaheuristics.Journal of Heuristics, 8:541–564,
September 2002.

[227] K. Tang, X. Li, P. N. Suganthan, Z. Yang, and T. Weise. Benchmark Functions for
the CEC’2010 Special Session and Competition on Large-Scale Global Optimization.
Technical report, University of Science and Technology of China (USTC), School of
Computer Science and Technology, Nature Inspired Computation and Applications
Laboratory (NICAL): Héféi,Ānhu ı̄, China, 2009.

[228] K. Tang, X. Yao, P. N. Suganthan, C. MacNish, Y. P. Chen,C. M. Chen, and Z. Yang.
Benchmark Functions for the CEC’2008 Special Session and Competition on Large
Scale Global Optimization. Technical report, Nature Inspired Computation and Appli-
cations Laboratory, USTC, Nanyang Technology University,Singapore, China, 2007.

178 BIBLIOGRAPHY

[229] M. Tomita. Dynamic Construction of Finite Automata from Examples Using Hill
Climbing. InProceedings of the Fourth Annual Cognitive Science Conference, pages
105–108, 1982.

[230] K. S. Trivedi. Probability and Statistics with Reliability, Queuing and Computer Sci-
ence Applications. John Wiley and Sons Ltd., Chichester, UK, 2002.

[231] A. Turing. Computing Machinery and Intelligence.Mind, 59(236):433–460, 1950.

[232] M. Uschold and M. Gruninger. Ontologies and Semanticsfor Seamless Connectivity.
SIGMOD Rec., 33(4):58–64, December 2004.

[233] L. Vanneschi.Theory and Practice for Efficient Genetic Programming. PhD thesis,
University de Lausanne, 2004.

[234] R. Vdovjak and G.-J. Houben. RDF-Based Architecture for Semantic Integration of
Heterogeneous Information Sources. InWorkshop on Information Integration on the
Web, pages 51–57, 2001.

[235] S. E. Vollset. Confidence Intervals for a Binomial Proportion. Statistics in Medicine,
12(9):809–827, 1993.

[236] S. Voß. Meta-Heuristics: The State of the Art. InProceedings of the Workshop on
Local Search for Planning and Scheduling-Revised Papers (ECAII 2000), pages 1–23,
London, UK, 2001. Springer-Verlag.

[237] C. Voudouris.Guided Local Search for Combinatorial Optimization Problems. PhD
thesis, Department of Computer Science, University of Essex, 1997.

[238] H. Wache, T. Vögele, U. Visser, H. Stuckenschmidt, G.Schuster, H. Neumann, and
S. Hübner. Ontology-Based Integration of Information — a Survey of Existing Ap-
proaches. InWorkshop on Ontologies and Information Sharing (IJCAI 2001), pages
108–117, Seattle, Washington, USA, 2001.

[239] A. Wald. Test of Statistical Hypotheses Concerning Several Parameters when the
Number of Observations is Large.Transactions of the American Mathematical Soci-
ety, 54(3):426–482, Nov 1943.

[240] M. Walker, H. Edwards, and C. Messom. The Reliability of Confidence Intervals for
Computational Effort Comparisons. InProceedings of the 9th Conference on Genetic
and Evolutionary Computation (GECCO 2007), pages 1716–1723. ACM, 2007.

[241] M. Walker, H. Edwards, and C. H. Messom. Confidence Intervals for Computational
Effort Comparisons. InE uroGP, pages 23–32, 2007.

[242] M. Walker, H. Edwards, and C. H. Messom. Success Effortand Other Statistics for
Performance Comparisons in Genetic Programming. InIEEE Congress on Evolution-
ary Computation (CEC 2007), pages 4631–4638, Singapore, 2007. IEEE.

BIBLIOGRAPHY 179

[243] K. Weicker. Performance Measures for Dynamic Environments. InParallel Problem
Solving from Nature PPSN VII, pages 64–73. Springer-Verlag, 2002.

[244] D. R. White and S. Poulding. A Rigorous Evaluation of Crossover and Mutation in
Genetic Programming. InProceedings of the 12th European Conference on Genetic
Programming (EuroGP 2009), pages 220–231. Springer-Verlag, 2009.

[245] D. Whitley. An Overview of Evolutionary Algorithms: Practical Issues and Common
Pitfalls. Information and Software Technology, 43(14):817–831, Dec. 2001.

[246] D. Whitley, K. Mathias, S. Rana, and J. Dzubera. Evaluating Evolutionary Algo-
rithms. Artificial Intelligence, 85:245–276, 1996.

[247] E. B. Wilson. Probable Inference, the Law of Succession, and Statistical Inference.
Journal of the American Statistical Association, (22):309–316, 1927.

[248] M. Wineberg and S. Christensen. Statistical Analysisfor Evolutionary Computa-
tion: Advanced Techniques. InProceedings of the 12th annual conference companion
on Genetic and evolutionary computation (GECCO 2010), pages 2661–2682. ACM,
2010.

[249] M. Wineberg and S. Christensen. Statistical Analysisfor Evolutionary Computation:
Introduction. InProceedings of the 12th annual conference companion on Genetic
and evolutionary computation (GECCO 2010), pages 2413–2440. ACM, 2010.

[250] D. H. Wolpert and W. G. Macready. No Free Lunch Theoremsfor Optimization.IEEE
Transactions on Evolutionary Computation, 1(1):67–82, Apr. 1997.

[251] A. S. Wu and I. Garibay. The Proportional Genetic Algorithm: Gene Expression in
a Genetic Algorithm.Genetic Programming and Evolvable Machines, 3(2):157–192,
2002.

[252] X. Yang.Nature-Inspired Metaheuristic Algorithms. Luniver Press, 2010.

[253] J. Yuan, A. Bahrami, C. Wang, M. Murray, and A. Hunt. A Semantic Information
Integration Tool Suite. InProceedings of the 32nd International Conference on Very
Large Data Bases (VLDB 2006), pages 1171–1174. VLDB Endowment, 2006.

[254] A. Zhou, B.-Y. Qu, H. Li, S.-Z. Zhao, P. N. Suganthan, and Q. Zhang. Multiobjective
Evolutionary Algorithms: A Survey of the State of the Art.Swarm and Evolutionary
Computation, 1(1):32–49, 2011.

[255] F. Zhu, M. Turner, I. A. Kotsiopoulos, K. H. Bennett, M.Russell, D. Budgen, P. Brere-
ton, M. R. John Keane and, and J. Xu. Dynamic Data IntegrationUsing Web Services.
In IEEE International Conference on Web Services (ICWS’04), pages 262–269, San
Diego, California, USA, June 2004. IEEE Computer Society.

[256] G. K. Zipf. The Psychobiology of Language. Houghton-Mifflin, New York, NY, USA,
1935.

180 BIBLIOGRAPHY

[257] E. Zitzler, K. Deb, and L. Thiele. Comparison of Multiobjective Evolutionary Algo-
rithms: Empirical Results.Evolutionary Computation, 8:173–195, June 2000.

[258] E. Zitzler, L. Thiele, M. Laumanns, C. Fonseca, and V. da Fonseca. Performance As-
sessment of Multiobjective Optimizers: An Analysis and Review. IEEE Transactions
on Evolutionary Computation, 7(2):117–132, 2003.

