
DynJAQ: An Adaptive and Flexible
Dynamic FAQ System
David Camacho,1,† Maria Dolores R.-Moreno2,*
1Computer Science Department, Universidad Autónoma de Madrid,
C/Francisco Tomás y Valiente, n° 11, 28049, Ciudad Universitaria de
Cantoblanco, Madrid, Spain
2Departamento de Automática, Universidad de Alcalá, Ctra.
Madrid-Barcelona, Km. 33,6, 28805, Alcalá de Henares, Madrid, Spain

This article presents a new type of Frequently Asked Questions ~FAQ! System, called DynJAQ
~Dynamic Java Asked Questions! that has been designed with the purpose of making learning
more appealing to beginner students of engineering disciplines and overcome the inconvenience
of these systems. DynJAQ is able to generate dynamically several HTML guides that can be
used to answer any possible question about a particular programming language ~Java!, although
it can be easily extended to any other topic. DynJAQ integrates case-based knowledge into a
graph-based representation that can be easily learned and managed. The combination of both
case-based knowledge and graphs allows it to implement a flexible hierarchical structures ~or
learning graphs! that have been applied to implement a new kind of Frequently Asked Ques-
tions Systems. In these systems the output is dynamically built from the user query, using as
basis structures the knowledge retrieved from a Case Base. The management of these cases
allows enriching the knowledge base. © 2007 Wiley Periodicals, Inc.

1. INTRODUCTION

One of the difficulties for beginner students1 in engineering disciplines is
finding and processing the large amount of information that they need in order to
prepare their related matters. Depending on their expertise, the same questions
come up frequently in their learning phase. When any student needs to learn a
particular concept, that is, how to program in a particular language, usually some
books, manuals, or distribution lists are used to solve his/her problems. When
these problems are very common, it is possible to build a Frequently Asked Ques-
tions ~FAQ! repository to answer these questions.

*Author to whom all correspondence should be addressed: e-mail: malola@email.
arc.nasa.gov.

†e-mail: david.camacho@uam.es.

INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, VOL. 22, 303–318 ~2007!
© 2007 Wiley Periodicals, Inc. Published online in Wiley InterScience
~www.interscience.wiley.com!. • DOI 10.1002/int.20198



A common solution is to use the Web as a FAQ repository to store the most
common questions ~or problems! detected by the students and the solution ~or
solutions! proposed to solve these problems to avoid continuously repeating the
same explanations. However, all of these FAQ systems are static, and they cannot
add new topics ~question and its related answer! into their repositories. DynJAQ is
a new approach that uses artificial intelligence ~AI! techniques that help to imple-
ment adaptive and dynamic FAQs. Using several AI techniques, such as Natural
Language Processing, the user is able to ask questions such as: “I want to know
how to create classes and methods, define objects and method calls in Java,” and
DynJAQ gives to the user one or several solutions for this particular question
adapted to his/her skills. The system defines a method of knowledge representa-
tion2,3 able to integrate predefined knowledge about a particular topic ~cases! into
a common solution. These solutions will be built using this knowledge as the basic
~or atomic! knowledge structures. The interaction with the system ~when a prob-
lem or question is proposed! will generate different solutions using several param-
eters provided by the users. Therefore, the solution will be dynamically adapted to
the users’ skills. DynJAQ is part of a collaborative project between two universi-
ties that aims at producing new innovative experiences in learning.

The article is structured as follows: Section 2 describes the knowledge struc-
ture that allows implementing an adaptive and dynamic FAQ system. Section 3
shows in detail the features and implementation of DynJAQ. Then, Section 4 shows
the related work. Finally, Section 5 summarizes the conclusions and future work.

2. THE DynJAQ KNOWLEDGE REPRESENTATION

This section describes how to combine a graph-based representation and case-
based knowledge into a hierarchical representation that can be used to build flex-
ible Question Answering ~QA! systems.4 A QA system directly provides an answer
to the user question by accessing and consulting its knowledge base; these kinds
of systems are related to the research area of Natural Language Processing ~NLP!.5

In our approach we have used Case-Based Reasoning to implement a dynamic and
interactive FAQ system.

2.1. Integrating Case-Based Knowledge into a Graph Structure

The proposed knowledge structure uses a graph representation as the main
knowledge integration structure. The combination of graph structures and case-
based reasoning ~CBR! knowledge implements the concept of the learning graph.
Any learning graph can be characterized as follows:

• The nodes in the graph are cases extracted from the case base. Those nodes can be
atomic if they only represent simple concepts or complex if they are implemented using
other learning graphs.

• Any node ~case! in the graph uses preconnectors and postconnectors to represent which
concepts are necessary to understand the knowledge stored in the node ~preconnectors!
and what concepts are acquired if this node is learned by the user ~postconnectors!.
Those connectors are used to define the transitions between the nodes in the graph.

304 CAMACHO AND R.-MORENO

International Journal of Intelligent Systems DOI 10.1002/int



Therefore, any learning graph is a hierarchical nested structure, where each
node can be decomposed into several learning graphs, and where the leafs of this
structure are implemented by simple knowledge structures ~or atomic cases!. Fig-
ure 1 shows a schematic representation of this structure.

To build an initial learning graph, it is necessary to define how to obtain the
initial and final nodes in the graph and how to generate from those nodes the rest
of the graph. In our approach, the initial and final nodes are obtained from the user
interaction. Once those nodes are defined, a simple searching algorithm is used to
build the learning graph. This algorithm is summarized in Figure 2.

Let us suppose the following example: A beginner student wants to learn to
program threads in Java ~a question like “I wish to know how to declare and use
threads in Java” will be given to the DynJAQ system!. From this question two
learning goals are acquired ~G1 � learn to declare threads and G2 � learn to use
~methods! threads!. DynJAQ is able to provide a complete tutorial ~or tutorials!
that can be used by the user such as a customized guide to solve his/her problem.
Therefore, in our example, the student will learn to program the next Java sentences:

//The following sentence declares a thread in Java Thread
myObject = new Thread();

//This sentence calls a predefined method of the object
myObject.run();

Figure 1. Learning graph representation.

DynJAQ 305

International Journal of Intelligent Systems DOI 10.1002/int



Following the example, Table I shows some possible cases ~and their related
preconnectors/postconnectors! that could be retrieved from the Case Base. These
cases represent some stored concepts about Java Programming. For instance, Case
4 stores a description about how it is possible to declare a Thread in Java ~post-
connector � declare thread!; therefore the student must understand the following
Java sentence: Thread myObject = new Thread();. However, to under-
stand correctly how to declare previously this type of object it is necessary to
know how to build any object in Java ~preconnector � new operator!.

Using previous retrieved cases ~from C1 to C5 !, the learning goals ~G1 and
G2 !, and the initial student features ~I0 !, DynJAQ builds the learning graph shown
in Figure 3.

From the previous learning graph, the next solutions ~or learning paths! are
possible:

• solution 1: I0—C1—C4—G1 ∧ I0—C2—C5—G2

• solution 2: I0—C1—C4—G1 ∧ I0—C2—C3—G2

• solution 3: I0—C1—C4—G1 ∧ I0—C2—C3—C5—G2

The following learning paths, I0—C1—G1, I0—C2—G2, or I0—C3—G2,
cannot be considered as correct solutions because if they were considered, some
preconnectors in the goal nodes ~G1 and G2 ! will be unconnected. This means that
some concepts that the user needs to achieve for his/her ~learning! goals will never
be acquired. For instance, in the first rejected learning path ~I0—C1—G1!, it is
not possible to declare a thread if previously the student does not know how to

Figure 2. Learning graph algorithm generation.

306 CAMACHO AND R.-MORENO

International Journal of Intelligent Systems DOI 10.1002/int



build an object ~using the new operator!. Therefore, to declare threads correctly,
case C4 must be studied to achieve the G1 goal.

The postconnectors that are not connected in the learning graph ~i.e., the post-
connector “Declare variable” in case C1! represent those extra concepts that have
been acquired by the student in his/her learning process.

2.2. Case Model

Cases can be represented in a variety of forms using the full range of AI
representational formalisms including frames, objects, predicates, semantic nets,

Table I. Possibles cases retrieved from a
specialized Java Programming Case Base, to
learn how to declare and use threads in Java.

Case Preconnector Postconnector

C1 Declare object Define object
Declare variable
new operator

C2 Declare method List parameters
Declare object Call object

Call method

C3 Declare method Declare paremeter
Define method
List parameters

C4 new operator Declare thread

C5 return types Define method
List parameters

G1 Define object —
Declare thread

G2 Define method —
Call method

I0 — Define object
Declear method

Figure 3. Schematic learning graph.

DynJAQ 307

International Journal of Intelligent Systems DOI 10.1002/int



and rules. The frame/object representation is currently used by the majority of
CBR software. A case is a contextualized piece of knowledge representing an
experience. It contains the past lesson that is the content of the case and the
context in which the lesson can be used.6 Typically a case is comprised as follows:

• The problem that describes the state of the world when the case occurred. In our approach,
several keywords are used as preconnectors to represent what concepts are necessary to
understand the information stored in the case.

• The solution, which states the derived solution to that problem. In our approach, the
case stores the information related to a particular programming topic.

• And/or the outcome, which describes the state of the world after the case is applied. In
our approach, several keywords that represent those concept that have been learned by
the user will be used as postconnectors.

The architecture of the case-based subsystem is shown in Figure 4. This sub-
system is implemented using the following modules:

• Case Creator Tool. This tool allows the engineer building the initial atomic cases that
represent all the available knowledge about a particular topic. It also allows including
the content of the case, the keywords used to characterize the store information in the
case, the learning connectors that are “learned” by the user once the content is studied,
and the complexity of the case. Figure 5 shows an atomic case that stores information
about the topics “variables and basic types in Java.”

• NLP module. Although initially some case characteristics like the keywords or connec-
tor will be included by the engineer, an NLP analysis will be achieved by this module to
suggest the characteristics that could represent the case.

• Retrieving module. This module implements a matching ~or similarity! function that is
used to retrieve the most promising stored cases. The similarity function ~Sf ! that is

Figure 4. CBR subsystem in DynJAQ.

308 CAMACHO AND R.-MORENO

International Journal of Intelligent Systems DOI 10.1002/int



used to retrieve the cases stored from the Case Base allows the selection of the most
promising set of cases that later will be used as nodes in the learning graph. Equa-
tion ~1! shows the Sf used in DynJAQ. For each case a similarity value is calculated;
those cases with maximum values are selected to build the set of retrieved cases. The
similarity value is obtained using the relationship between the keywords given by the
user and the keywords that are used to represent the contents of the case. The Hits
value is an ordinal value that represents the intersection between the number of user
keywords and case keywords; in the best case ~the case contains all the user key-
words! the Hits number will be equal to the Number ~user-keywords!, and therefore
the similarity ~Sf ~Ci !! value for this case ~Ci ! will be 1. In the worst case ~no user
keyword is stored in the selected case! the number of Hits, and the Sf ~Ci ! value, will
be 0. Therefore, the Sf ~Ci ! value measures how well the selected case fits the user
necessities.

Sf ~Ci ! � Hits~user � keywords � case � keywords!/Number~user � keywords! ~1!

• Retain module. Once one or several solutions are successfully found, they will be stored
as new cases. Therefore, the NLP module will be used to obtain the keywords and con-
nectors that will be used to represent the case.

The Case Base is made by two different types of cases: atomic and complex.

• Atomic cases are built by the engineer and represent the specific knowledge about a
particular topic. For instance, if we consider the problem of learning Java programming,

Figure 5. Atomic case definition.

DynJAQ 309

International Journal of Intelligent Systems DOI 10.1002/int



these atomic cases represent the specific information about a particular topic in the lan-
guage; that is, an atomic case could be created to provide information about how to
define a variable, another could represent how to define a method in Java language, and
so forth. Any atomic case is built by the next components:
– Content stores the knowledge ~in natural language! about one or several concepts.
– Keywords represent a list of words that represent the semantic information stored in

the content of the case.
– Complexity: This attribute is actually fixed by the engineer and represents the com-

plexity of the concept or concepts stored in the case.
– Connectors: Pre- and postconnectors represent the concepts learned by the students if

the content of the case is completely understandable.
– Granularity represents how detailed the information is that is stored by the case. The

granularity is fixed by the engineer when he or she builds the case. It is possible to
measure the granularity of a particular atomic case using the number of keywords and
connectors used by the case. Therefore, a thin granularity will use few keywords and
connectors, because the knowledge stored is very specific. However, if a rough gran-
ularity is used, the number of keywords and connectors will increase.

The concept of granularity is very important because this feature could not be homo-
geneous. Therefore it is possible to store different atomic cases with different granular-
ities. Our approach allows managing different granularities into a common solution.
The number of stored cases in the Knowledge Base are related to this feature.

• Complex cases are built by means of the user/system interaction. When any student
provides a question to the system, one or several learning graphs will be implemented.
The final user evaluation is used to decide if the new case will be stored ~or rejected! in
the Case Base. Initially all the cases stored in the Case Base are atomic. However, the
interaction with the users modifies both the number and complexity of the stored cases.
The components of this new type of cases are the following:
– Content is built by the content of all the atomic cases.
– Keywords of the complex case are the union of all the ~different! keywords of the

atomic cases.
– Complexity of a complex case is calculated as the maximum atomic case complexity

stored in the learning graph.
– Connectors: the pre/postconnectors are the union of all the atomic cases in the learn-

ing graph.
– Granularity is automatically obtained by adding the different granularities of those

atomic cases that build the case.

3. DynJAQ: A DYNAMIC WEB FAQ SYSTEM

This section describes how our approach has been instantiated into a partic-
ular implementation. We have designed and implemented a Dynamic Web FAQ
System named DynJAQ ~Dynamic Java Asked Question!. DynJAQ is able to solve
questions about how to program in Java, and it can be used like a Java-related FAQ
repository. However, the answer~s! given by DynJAQ will be adapted to user char-
acteristics ~like his/her programming level!. Figure 6 shows the different modules
that implement the DynJAQ architecture. The functionality of these modules can
be summarized as follows:

• User/system interaction. The interaction between the users and the system has been car-
ried out using Web services technologies. The system uses a module ~called Learning-
GraphTO HTML! that is responsible for generating a user-friendly representation ~an

310 CAMACHO AND R.-MORENO

International Journal of Intelligent Systems DOI 10.1002/int



F
ig

ur
e

6.
D

yn
JA

Q
ar

ch
it

ec
tu

re
.

DynJAQ 311

International Journal of Intelligent Systems DOI 10.1002/int



HTML guide! for each possible solution. The set of Graphical User Interfaces ~GUIs!
provides the following information:
– the question that represents the concepts that the user wishes to learn about Java

Programming
– the expertise knowledge or skill programming of the user
– the maximum number of possible solutions ~answers! found for his/her question.

• NLP module. This module performs the analysis of the query. Our approach uses a sim-
ple NLP technique to extract the keywords from the user query ~only a list of stop words
are used to extract the keywords from the question!. This module is used to extract other
features ~like user characteristics! from the question. This module provides the neces-
sary information to build the initial and final nodes.

• Learning subsystem. The learning subsystem has been implemented using two related
submodules:
– Learning graph module: A hierarchical graph is built using the information obtained

from the NLP module and the CBR module.
– CBR module: This is used by the previous module to retrieve the most promising

cases stored in the Case Base.

Finally, the interaction with the user is used to learn those solutions that he/she
marks as a success. The graphs used to build those successful solutions will be
stored as new cases in the Case Base.

Figure 7a, b shows a possible input to the system given by a beginner ~Java
programmer! user and the request given by the system. When a question is pro-
cessed by the NLP module in DynJAQ, the input information is translated into:

• the expertise level of the user, used as the initial node in the graph
• the extracted keywords from the question, used as target goals ~or final nodes! in the

graph.

Using both type of nodes, a new learning graph will be generated by the Learn-
ing Module. This learning graph will be used to represent the different solutions
~or paths from the initial level of knowledge to those goal concepts that the user
wishes to learn! that the system is able to find.

Figure 7. ~a! Question about how to define a variable in Java language programming; ~b!
DynJAQ answer for a simple question.

312 CAMACHO AND R.-MORENO

International Journal of Intelligent Systems DOI 10.1002/int



For instance, let us suppose that the question, shown in Figure 8, is given to
DynJAQ. In this example, the general goal can be represented as: learn-to-define
~classes,variables,constants!. This general learning-goal can be decomposed into
three more specific goals ~these goals could be dependent!. To complete each of
those tasks, the Case Base is accessed to retrieve knowledge ~cases! that could
bind the preconnectors and postconnectors of the cases.

The preconnectors and postconnectors for each case are related to a set of
keywords that represent both the knowledge that is necessary for the user to learn
the concept represented by the node ~preconnectors!, and the learned concepts if
the node is applied ~postconnectors!.

Figure 9 shows a simple example of some possible preconditions and post-
conditions for a particular node.

Following this example, each of the decomposed goals in the hierarchical
network needs to be completed with specific information. As Figure 10 shows, the
example shown in previous figure can be translated into a case-based graph.

4. RELATED WORK

This section addresses some systems related to our approach. We briefly
describe the main features of those systems in areas such as FAQ Web systems,
Question Answering systems, or CBR systems and compare them against DynJAQ.

4.1. FAQ Web Systems

Usually a FAQ works in the following way: Any user can consult a preexist-
ing list of questions with their answers in order to find a similar question that can
answer his/her own problem. The user has the responsibility of analyzing all the
items in the FAQ ~usually searching through previous questions asked by other
users! and finding the most similar solutions and “reusing” or “adapting” them for
his/her problem. There are a huge number of Web sites that provide FAQ reposi-
tories. Some interesting examples are the following:

• The Dynamic FAQ Database ~http://products.dynamicwebdevelopers.com! is a Web
application that allows users to construct a Frequently Asked Questions Database for a
particular Web site. Therefore, the users may search in the FAQ database, as well as
submit questions for support. This application simply builds a database query access
using a simple Web interface.

• A Web site like The Collection of Computer Science Bibliographies ~http://liinwww.
ira.uka.de/bibliography/index.html! is a traditional static FAQ based on a set of ques-
tions and their related solutions.

• Other Web sites like The Internet FAQs Archives ~http://www.faqs.org/faqs/! allow users
to find different FAQ documents from repositories using a set of keywords.

However, developing a simple FAQ repository has several problems that could
be summarized as follows:

DynJAQ 313

International Journal of Intelligent Systems DOI 10.1002/int



F
ig

ur
e

8.
Q

ue
st

io
n

gi
ve

n
to

D
yn

JA
Q

.

314 CAMACHO AND R.-MORENO

International Journal of Intelligent Systems DOI 10.1002/int



~1! Not all the users have the same knowledge about a particular topic. Therefore, if only
a static FAQ is implemented, the questions could be overspecific and the user could
not correctly understand the solution proposed or only in a very general way so the
user does not find what she or he is really looking for.

~2! Usually the user must select among some existing questions to find the most appropriate.
~3! If a Web system is implemented using only a static repository of solutions, this repos-

itory will increase in size quickly and the number of documents retrieved could be
very large. Therefore, the users might not find the information or it could be very hard.

~4! No FAQ system takes into account the user features, or skills, about a particular topic.
~5! These kind of systems are not flexible because they store a set of predefined problems

and their related solutions.

DynJAQ has been designed to overcome the problems described about sim-
ple FAQ systems: It takes into account the user skills, adapting the solution to
his/her knowledge; it is flexible as it generates dynamically the solutions. Finally,
it does not use a static repository, so finding the solution is relaxed in our system.

Figure 9. Preconnectors and postconnectors in a node.

Figure 10. Decomposition of a complex node into simple ~atomic! cases.

DynJAQ 315

International Journal of Intelligent Systems DOI 10.1002/int



4.2. Question Answering Systems

There is an important research work related to the question answering ~QA!
systems.4 A QA system directly provides an answer to the user question by access-
ing and consulting its Knowledge Base. These type of systems are related to the
research in Natural Language Processing ~NLP!.5

In recent years, and due to the evolution of the Web, a new interest in the appli-
cation of QA systems to the Web has arisen. In Ref. 7 what is required to implement
a Web-based QA system is defined. Any QA system based on a document collec-
tion typically has three main components. The first is a retrieval engine that sits on
top of the document collection and handles retrieval requests. In the context of the
Web, this is a search engine that indexes Web pages. The second is a query formu-
lation mechanism that translates natural-language questions into queries for the
information retrieval engine to retrieve relevant documents from the collection, that
is, documents that can potentially answer the question. The third component, answer
extraction, analyzes these documents and extracts answers from them.

Perhaps the most popular information retrieval system, based on NLP tech-
niques, is FAQ Finder.4,8,9 FAQ Finder ~http://josquin.cti.depaul.edu/�rburke/
research/faqfinder.htm! is a system that retrieves answers to natural language
questions from USENET FAQ files. The system integrates symbolic knowledge
and statistical data in doing its question matching. Part of the challenge was to
precompile much of the system knowledge; thereby the answers could be found
fast enough to satisfy the constraints of the Web use. One issue raised by this
research is the need to have the system correctly identify that a question cannot be
answered.

However, the difficulty of NLP-based systems has limited the scope of ques-
tion answering systems to domain-specific systems. In our approach this problem
is made easier by using a general graph-based search technique integrated with
domain dependent case-based knowledge.

4.3. Case-Based Reasoning Systems

Case-based reasoning ~CBR!6,10,11 solves new problems by adapting previ-
ously successful solutions to similar problems. This problem-solving technique
does not require an explicit domain model, so elicitation becomes a task of gath-
ering case histories. The implementation is reduced to identifying significant fea-
tures that describe a case. This case is then stored and managed by means of
database techniques, and CBR systems can learn by acquiring new knowledge as
new cases.

Figure 11 shows the processes involved in CBR. This general CBR cycle
may be described by the following four processes10:

• RETRIEVE the most similar case or cases.
• REUSE the information and knowledge stored in the case or cases that solve the

problem.
• REVISE the proposed solution ~if necessary!.
• RETAIN the new solution as a part of a new case.

316 CAMACHO AND R.-MORENO

International Journal of Intelligent Systems DOI 10.1002/int



A new problem is solved by retrieving one or more previously experienced
cases, reusing the case in one way or another, revising the solution based on reus-
ing a previous case, and retaining the new experience by incorporating it into the
existing Knowledge Base ~Case Base!.

This cycle rarely occurs without human intervention. For example, many CBR
tools act primarily as a case retrieval and reuse systems. Case revision ~i.e., adap-
tation! is often being undertaken by managers of the Case Base. However, it should
not be viewed as weakness of the CBR that it encourages human collaboration in
decision support.

Our approach allows implementing a new way to manage the cases stored in
the Case Base through the use of two different kinds of cases, atomic and com-
plex, as explained in Section 2.

5. CONCLUSIONS AND FUTURE WORK

In this article, we have presented an adaptable and dynamic FAQ system, called
DynJAQ. FAQ systems have the inconvenience of being very rigid, and they do
not consider the users’ skills. In our system, we have added features like adaptabil-
ity or flexibility ~that are not present in FAQ systems!, integrating adequately
several AI techniques. We have used in DynJAQ those techniques as follows:

• NLP techniques are used to analyze the user query ~to extract the keywords from this
query! and to manage the keywords and connectors that are stored in the Case Base.

• CBR is used to represent and manage the knowledge about a particular topic or domain.
• The hierarchical learning graphs are used to build an adaptive solution to the user ques-

tion. Using the keywords ~and other user information! like “learning-goals,” a new graph
can be generated for each query.

Figure 11. The CBR cycle.

DynJAQ 317

International Journal of Intelligent Systems DOI 10.1002/int



• Web Services technologies are used ~XML, SOAP, etc.! to implement an interoperable
and flexible Web system.

The main contribution of this work is to define a general hierarchical knowl-
edge representation that can be applied to build a new type of FAQ system based
on techniques like NLP,5 CBR,10,11 or Web services to allow the implementation
of flexible FAQ and Question Answering systems.

Currently we are working in two different ways to improve the DynJAQ
system:

~1! We are extending the NLP module both to gain flexibility in the user/system commu-
nication and to automatically extract the keywords and connectors from the contents
in an atomic case.

~2! We are integrating this flexible and customizable FAQ system into a Learning Man-
agement System, called e-Go, that currently has being deployed in several Spanish
universities.

Acknowledgments

This work has been partially funded by the innovative learning experience
projects of Universidad de Alcalá ~UAH PI2005/084!. We want to thank Alberto
López and César Castro for their help in the implementation of DynJAQ.

References

1. Reid AT. Perspectives on computers in education: The promise, the pain, the prospect.
Active Learning. Oxford, UK: CTI Support Service; December 1994.

2. Davis R, Shrobe H, Szolovits P. What is a knowledge representation? An introductory
critical paper. AI Mag 1993;14:17–33.

3. Sowa JF. Knowledge representation: Logical, philosophical, and computational founda-
tions. Pacific Grove, CA: Brooks Cole Publishing Co.; 1999.

4. Burke RD, Hammond KJ, Kulyukin VA, Lytinen SL, Tomuro N, Schoenberg S. Question
answering from frequently asked question files: Experiences with the FAQ finder system.
AI Mag 1997;18:57– 66.

5. Clarke CLA, Cormack GV, Lynam TR. Exploiting redundancy in question answering. In:
Research and development in information retrieval. SIGIR: ACM Special Interest Group
on Information Retrieval, SIGIR’2001. New York: ACM Press; 2001. pp 358–365.

6. Kolodner J. Case-based reasoning. San Francisco, CA: Morgan Kaufmann; 1993.
7. Kwok CCT, Etzioni O, Weld DS. Scaling question answering to the web. In: Proc Tenth

World Wide Web Conf. New York: ACM Press; 2001. pp 150–161.
8. Burke RD, Hammond KJ, Kulyukin VA, Lytinen SL, Tomuro N, Schoenberg S. Natural

language processing in the faq finder system: Results and prospects. Proc AAAI Spring
Symp on Natural Language Processing for the World Wide Web. Menlo Park, CA: AAAI
Press; 1997.

9. Burke RD, Hammond KJ, Cooper E. Knowledge-based information retrieval from semi-
structured text. In: AAAI Workshop on Internet-based Information Systems. Menlo Park,
CA: AAAI; 1996. pp 9–15.

10. Aamodt A, Plaza E. Case-based reasoning: Foundational issues, methodological varia-
tions, and system approaches. AI Comm Eur J Artif Intell 1994;7:39–59.

11. Aha DW, Breslow L, Muoz-Avila H. Conversational case-based reasoning. Appl Intell
2001;14:9–32.

318 CAMACHO AND R.-MORENO

International Journal of Intelligent Systems DOI 10.1002/int


